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Interlayer charge dynamics of the uniform resonating-valence-bond state
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The physical properties along the c axis of the uniform resonating-valence-bond state are studied.
The physical electron, i.e., the composite particle of a spinon and a holon, hops between the layers
incoherently. Conductivity, thermopower, thermal conductivity, and Hall constant are calculated
and compared with the experiments in high-T, cuprates. The renormalization group equation is
obtained for the interlayer hopping t, which is found to be marginally relevant. The effects of the
spin gap are also discussed.

I. INTRODUCTION

Recently there appeared several experiments on the
physical properties of the high-T, cuprates along the
c axis, i.e., perpendicular to Cu02 planes, revealing
anomalous features. The dc resistivity p behaves
as insulating for small x (x: hole concentration) while
metallic in overdoped region . The in&ared optical con-
ductivity o, (u) along c axis has been measured by several
groups .2 s In the underdoped region o (ur) is broad and
featureless in the normal state showing the incoherent na-
ture of the c axis transport. Below the superconducting
transition temperature T„on the other hand, the plasma
edge appears suddenly in the in&ared response imply-
ing the onset of the coherent motion along the c axis.
The thermopower S is positive and increases with T and
tends to saturate around 8, 80 pV/K for T ) 250 K at
x = 0.15 (La2 Sr Cu04). The Hall constant BJI with
the magnetic field H parallel to the plane has been mea-
sured on YBa2CusO„(Ref. 8) and on La2 Sr Cu04.
They found the negative and small values which are al-
most temperature independent in a sharp contrast with
the in-plane B~ which is positive and depends strongly
on the temperature.

At an early stage, Anderson proposed that the in-
sulating p with the metallic p b invalidates the Fermi-
liquid picture in high-T cuprates. The localization oc-
curs simultaneously along all the directions because the
scaling equation can be mapped to the isotropic one by
the appropriate change of the scales along a, 6, and c axis.
These considerations are for the cases of static disorder,
i.e., the elastic scattering of the electrons. In the case of
inelastic disorder, on the other hand, one should distin-
guish between the two cases, i.e., the scatterings within
the layers and between the layers. In the former case,
one should compare the interlayer hopping t, with the
inverse of the inelastic lifetime h/w. When t )) 5/v the
coherent motion along all the directions occurs with the
anisotropic band. When t « 5/r, on the other hand, the
thermalization occurs before the interplane hopping, and
the motion along c axis is incoherent. However the dc
conductivities have the similar expressions in both cases

when t is much less than the intralayer transfer t . Both
the inplane o. and c axis o. are proportional to 7. and
their ratio is of the order of (t /t )2.ie When the scat-
terings occur between the layers and give rise to 0. , the
inplane cr is proportional to w while o to 1/w. Hence
their product cr o, = [e N(leap)vpa] [N(pp): density of
states at Fermi level p~,' e~'. Fermi velocity in the plane;
a: lattice constant] is temperature independent. Re-
cently, Rojo and Levin studied models including elastic
and inelastic scatterings between the layers and claimed
that there appears some temperature range where the
c-axis resistivity is insulating while the inplane one is
metallic.

A.ccording to resonating-valence-bond (RVB) scenarios
with spin-charge separation, ' a spinon and a holon
have to recombine to form a physical electron in order
to hop between adjacent layers, and dissociate again into
a spinon and a holon. Hence the conduction mecha-
nism is expected to be quite difFerent between inter- and
intralayer. Recently Anderson et al. proposed "charge
confinement" within each layer with the vanishing oscil-
lator strength along the c axis at zero temperature.
This is coming &om the in&ared catastrophe due to
the rearrangements of the whole electronic system due
to the charge transfer between the layers. They also
demonstrated "confinement" for the two coupled one-
dimensional Tomonaga-Luttinger liquids.

Considering the situation that many scenarios have
been proposed to explain the c-axis conductivity, it is im-
portant to study various transport properties besides the
conductivity. In this paper we calculate several physical
properties, i.e. , conductivity o. = p, thermopower S,
thermal conductivity K, and Hall constant B~, based on
the uniform RVB state. ' This means that the calcula-
tions in this paper are restricted to the region where the
temperature is higher than the Bose condensation tem-
perature of the holon TBE and also the spinon pairing
texnperature TD. The rough estimate of the condensa-
tion temperature TBF is given by T~E xJ with J being
the spin exchange interaction. T~ is estimated to be
around one-fifth of J at half-filling (x = 0) and decreases
as a function of x. Therefore our considerations can be
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applied to the normal state near the optimal doping.
We will treat the hopping matrix element t between ad-
jacent layers as a small perturbation. When the tempera-
ture T is not very low, the lowest order terms with respect
to t, give the dominant contributions. As T is lowered,
the higher order terms grow and efFectively renormalize
t . We will also discuss this renormalization later, but
Grst restrict ourselves to the lowest order contributions.

The plan of this paper is the following. In Sec. II the
model is introduced and the conductivity sum rule is de-
rived. In Sec. III the conductivity, thermopower, and
thermal conductivity along the c axis are studied, and
the Hall constant is calculated in Sec. IV. The renormal-
ization of the interlayer hopping t is studied in terms of
the efFective action for the boson and the gauge Geld in
Sec. V. Section VI is devoted to discussion and conclu-
sions. We take the units where h = c = k~ ——1, and the
lattice constant of the system is taken to be unity.

II. MODEL AND SUM B.ULE

The essential difIiculty in the theories of strongly cor-
related systems is the treatment of the strong repulsive
interaction between the electrons. A useful trick to treat
the strong on-site repulsion is the slave boson method
where the double occupation of the electrons at one site
is excluded. Hence the three states for each site x is
expressed as (i) up-spin electron, (ii) down-spin electron,
and (iii) hole. Then we introduce the operators for each

state f&t(R), fg(R), f&t(R), fg(R), and bt(R), b(R), respec-
tively .f operators satisfy the ferinion anticommutation
relations and b operators boson commutation relations.
The constraint that all the states for each site R is ex-
hausted by the three states above is expressed as

ft(R) fg(R) + f~t(R) fg(R) + bt(R)b(R) = 1. (1)

The creation operator of the physical electron Ct (R) with
spin o at site B is expressed in terms of the boson an-
nihilation operator b(R) and fermion creation operator
ft(R) as

Ct(R) = ft(R)b(R). (2)

EfFective Hamiltonian for the strongly correlated system
is written in terms of the constrained operators C~ and
C and hence in terms of b (holon) and f (spinon) opera-
tors by setting Eq. (2). Introducing the mean-field decou-
pling for the fermions and bosons and replacing the local
constraint Eq. (1) by the global and averaged one, we ob-
tain the mean-Geld theory of RVB state. The low lying
fIuctuation around this mean-field state is the gauge Geld
which recovers the local constraint Eq. (1). It has been
shown that this gauge Geld plays important roles when
studying the physical properties of RVB states [15]. For
the details of this derivation the readers are referred to
Ref. 15 and we start with the following Hamiltonian for
the uniform RVB state:

—) ) (t f (r)f (r+ e )e'~ -t"'t+t'+ - "'~+ Bc. +tt f (r)f (r))
e,v, n n=a, b

—) ) (te b (r)b (r-be e)e'~ t"' t+t' t"' t~ +H.c. +ttebt(r)b (r))
a=a, b

—) .tCJ.(.) C, +,.(.)""-i"'l+H. ,

where Ho is the efFective Hamiltonian describing the in-
dependent layers while V is the interlayer hopping Hamil-
tonian. In deriving Eq. (3) we have assumed that the in-
terlayer hopping t is small and does not modify the two-
dimensional RVB state in each layer. The fermion trans-
fer energy t~ is of the order of xt +J, while that of boson
is estimated as t~ J. t = tb, t are the transfer energy
of the electron along the three directions and J is the spin
exchange energy appearing in the original t-J model. In
Eq. (3) the site index R is explicitly specified by the layer
index g and the site index r = (r, r„) within the plane.
( is an arbitrary constant which does not appear in the
physical quantities as discussed in Ref. 15. Each layer is
the square lattice and e = (1,0, 0), es = (0, 1,0), and
e, = (0, 0, 1) are the three unit vectors. We have em-

ployed the Peierls approximation for the external elec-
tromagnetic Geld, i.e.,

R'=a+~„
A~(r, E) = dr A(r")

R=(~,e)

where p = a, b, c, r is the three-dimensional space vec-
tor, A(rg is the vector potential for the external electro-
magnetic Geld, and the integral is along the straight line
connecting the two end points A and B'. As has been
discussed in Ref. 15 the phase of the order parameters,
i.e., (f& (r) ff (r+e )), which is assumed to be indepen-
dent spin o, and ( &(br) (brtte+)), constitutes the spatial
component of the gauge field a (r, E). It has been known
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that only the transverse part of the gauge field gives the
singular contribution in the small &equency and wave
number. Then we consider only the transverse part for
a (r, g). Then our Hamiltonian is gauge invariant for the
following two kinds of gauge transformation. One is the
internal one which leaves the physical electron invariant,
1.e.,

For a moment we will neglect this gauge field, which cor-
responds to the mean-Geld treatment. In this case the
Hamiltonian for each plane g becomes

IIoe = ).6fe i, fe, a, + ) elbe „be,A, ,

k, cr k

be(r) m be(r)e's(" el,

a.(., ~) ~ a.(., ~)+ e(., e) —e(. + e..e)

The other is the usual one related to the electromagnetic
field,

(„)e'( +4)4( )

where (g (eI, ) is the energy dispersion of the fermion (bo-
son) measured &om the chemical potential pE (pE). In
the continuum approximation these dispersions are given
by (A,, = k /(2m@) —pE and eA,, = A: /(2mE) —pE. Al-
though the physical electron operators C~ and C with the
constraint of no double occupancy do not obey the usual
fermion anticommutation relations, the deGnition of the
currents which satisfy the conservation law remains the
same and J along the c axis is given by

be(r) + be(r)-e'~~("' J,(., e) =- t.) [C,'.( )C„.( ) —C", ,.(.)Ce ( )]

A (r, g) m A (p, E) + [P(r, E) —P(r + e, I)]/e,

A, (r, I) ~ A, (p, g) +. [P(r, E) —P(r, E + 1)]/e.

On the other hand the energy current JE, (E, r) cannot
be written in terms of the electron operators, and its
integral over the plane JE,(I) is given by

JE (8) = ) JE,(r, I.)

(6+q —&I ) [fe I,+q ~e,qfe+1, /e+q' ~be+i q~
—fe+i q+ql be+i, ql fe, a+q, ~be q] ~

k, q, q', cr

where N2D is the number of lattice site per plane.
Now we discuss the sum rule for the conductivity

o (w). It is well known that the conductivity sum rule
can be derived for quite a general Hamiltonian just using
the commutation relation between the coordinate x,„and
the momentum p;„of the ith particle in the first quan-
tization scheme. (Here we treat the three directions in a
unified way by using the notation p = a, b, c.) The result
1S

OO e22VI„„=— Reo.„„(~)d(u = '
b„

7C p m

where N, is the electron number and m is the bare mass
of the electron. This result is too general to be useful,
because we are usually interested in the energy scales
less than some characteristic cutoff. The t-J model offers
exactly this type of description, i.e. , the effective model
for energy cutoff E less than the on-site repulsion U and

the band gaps between conduction band and any other
bands. This leads to the tight-binding model with the
constraint of no double occupancy. Then the sum rule
for the energy up to E is derived. by the following general
formula:

I„= ([J„,R„]),

where R„= —e gee R„Ct(R)C (R) is the center of
mass of the charge. Using the (anti)commutation re-
lation of the holons and spinons, the right-hand side of
Eq. (8) can be easily calculated and the result remains
the same form as in the case of noninteracting fermions
on the lattice,

I„=— Reer„(u)) d(u
p

= b„„t„) (Ct (R)C (R+ e„)+ H.c.),
R,o
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where p = a, b, c and R = (r, 8) specifies the lattice point
in 3D. Applying the mean-Geld theory for the spinons
and holons, Eq. (9) gives

I„„=h„„t„NsD) (ft(R) f (R+ e„))

x (b(R)bt(R+ e„))+ c.c., (10)

I~~ = Igg ~ N3D&~x .

where N3D is the total number of the lattice sites. Here
the RVB order parameters y~+, ~ = (ft(R)f (R+e„))
and bR ~+, = (b(R)bt(R + e„)) appear. We have as-
sumed that y~+ ~ is independent of spin o. It should
be noted that the arguments of the operators are diQ'er-

ent, i.e. , R and B+e~. In. the continuum model leading
to Eq. (7), the products of the operators have the same
argument and give the electron number. In the present
case, the holon part vanishes like x as x ~ 0. Actually
its order of magnitude is roughly estimated as

III. TRANSPORT PROPERTIES ALONG c AXIS

We now calculate various transport properties along
the c axis in terms of the perturbation theory in second
order with respect to t . Because the physical electron
hops between layers, the c axis conductivity o. , ther-
mopower S, and thermal conductivity e are expressed
in terms of the physical electron Green's function G(k, s).
Using the tunneling Hamiltonian formalism we calculate
the following three correlation functions.

CLG'

p, = (J,; J~,) = ) —2t, (—e)e
A:

Another comxnent on Eq. (10) is that the existence of
the RVB order parameters between the layers is not a
trivial issue. We assume that the interlayer coupling t
is weak enough and yR~ ~ ——b~ ~~, ——0 and the
hopping between the layers is incoherent in the normal
phase, while the coherency sets in and y~~,.~ becomes
nonzero in the superconducting phase. However this does
not lead to the conclusion that I = 0 in the normal
phase. In this case the approximation Eq. (10) is not
accurate enough because it describes only the coherent
motion, and we estimate Icc in terms of the incoherent
hopping via the perturbation theory with respect to t
(V). The result is

I~~: 2NsDt ) ) fi,+q (1 fi,+q )(1+nq )nq
A: q1,qg

,p(&.+„-„-&.+„+„)
X )

(y+q~ —
eq~

—(g+q~ + eq~

which is roughly estimated as

2

I„NsDt, N(p, y )x NsD —x.2 ~c

a

Therefore the ratio of the integrated oscillator strengths
is estimated as

I..
Iaa (ta) (14)

This result is not characteristic of the incoherent hop-
ping between the layers, but is the generic feature for
the open orbit along the c axis. Actually assuming the
three-dimensional band structure with the open Fermi
surface along the c axis, the ratio of the integrated os-
cillator strengths is the same order as Eq. (14) for small
t /t « 1. Therefore we conclude that the integrated
oscillator strength does not distinguish between the co-
herent and incoherent motion between the layers.

OO

og, = (JE,, JE,) = ) —2t2s' — [Ag(s)]',~ 27I BE
A:

(17)

where A&(s) = ——ImG (k, s) is the spectral function of
the physical electron and f(z) = [e~'+ 1] is the Fermi
distribution function. These expressions show that these
three correlation functions reveal the temperature and
energy dependence as well as the asymmetry of the spec-
tral function A&(s). In the uniform RVB state, the spec-
tral function A&(s) consists of the quasi-particle-like peak

[quasiparticle part A~ ' 'l(s)] and the incoherent back-
A:

ground [incoherent part A
'"' l(s)]. The quasiparticle-

A:

like peak is centered at s = $g —[p~~ ((g = 2" —py
with p~, p~ being the chemical potentials for spinons
and holons, respectively). Its width I'q ~ QJT comes
&om the momentum distribution of the holons, its peak
height P, is x/I'q~, and the integrated weight is 2:.
The incoherent part, on the other hand, extends be-

low s = s, (k) = —
~p,~~ — ", , with A '"' "

(s')

2m~ e k —e near the edge. The integrated weight
of the incoherent part is (1 —x)/2. Putting this spectral
function Ag(s') = A- ' (e')+A '"'

(s) into Eq. (15), o,
is decomposed into three parts as

(q.p. } ~ (incoh) ~ (cross}
C C C C )

where o, o '"', and o
"" correspond

to A-, A-'"' ), and the cross term 2A-
lc - ' - A: A:A-'"', respectively. For the k integration in

A:

Eq. (15), A~ ' 'l(s) can be replaced by r b(x —(i,

+~p~~) and o, ' ' is obtained as
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e x'
0(~ ~'1 = t,—N(p~) I'q p

(i9) (26)

0,'"' "1 = 8e t,mBN(p~)xv~/2vrmBT e xT ~ .

(20)

The cross part o.( ' " is similarly estimated as

2 c 2T—1/2
t2' J )

q.p.

(2Z)

giving the same order contribution as 0. . Summariz-
ing the above

where N(p~) is the density of states at the Fermi level of
the spinon. Considering N{y~) & and I'~ ~ gJT,

2

is estimated as o. ' ' e,&, x T ~ . Although
we have assumed that the motion between the layers
is of hopping type which is justified when tc Q( I'qp
its temperature dependence is metallic. The incoherent
part cr,

'"' comes &om the overlap between A&'"' (s) 2

and the tail of Bf(s)—/Bc. Approximating Bf—(s)/Bs by
pe~' for —c )) T and using pB = T ln & assuming the

Boltzmann distribution, we obtain cr
'"' as

where we have assumed T )& TBE and hence I@BI &) T,
i.e., the incoherent and the cross parts dominate. The
thermopower is positive and its magnitude is of the order
of kB/e 90 yV/K when we make the Boltzmann con-
stant kB explicit in Eq. (25), which is in qualitative agree-
ment with the experiment. This positive sign comes &om
the incoherent background which extends only for e ( 0,
which means that the "hole" carries the energy between
the layers.

IV. HALL EFFECT

We now turn to the Hall constant RH with the electric
field E(II a) and the magnetic field H(II b) parallel to the
layer. RH cannot be expressed in terms of only the phys-
ical electron Green's function because it comes Rom the
loops enclosing the magnetic flux and the motion within
the layer is in the form of spin-charge separation. Then
we must Grst construct the composition rule for RH. This
can be easily achieved by noticing that the efFective elec-
tric fields E,E which the bosons and fermions are
experiencing are the screened ones by the gauge Geld as

off-diagonal conductivity cr, is composect as

(t, i f' J) r /T i
+bI —

IETr Jr (22)

0, ={J„.J )

(q.p. ) ~ (incoh) ~ (cross)gc —~c c c

0 II 'B
I (incohl IV'B I (cross)

ce e

E E(q.p. ) ~ E(incoh) + E(cross)
c c c c

T2
(q.p. ) + O'B (incoh) + +B (cross)

e2 ~c
e C e c (24)

Then the thermopower S and the thermal conductivity
are obtained as

& p & IpBI & inBT
To T e e 2vrx

'

where a and b are dimensionless constants of order unity.
The first term in Eq. {22)might give the metallic temper-
ature dependence but reduced by the factor x compared
with the second. Because our calculation is valid only
for T ) THE xJ, the metallic dependence of the o.

does not mean that 0 —+ oo as T ~ 0. Actually the
ratio of the first to the second term is of the order of
TBE/T xJ/T; o, shows insulating behavior o, Ti~2

for T && TBE. Whether the metallic temperature depen-
dence is observed or not at lower temperature depends
on the ratio a/b

The other two correlation functions p and uE are
estimated similarly as

+caoF + +caaBB F

OF +OB (27)

ca
H 0 aaOCCII

~B ~Fca + ca RCB + RCF
H H0CC+ &F&CC+

(28)

where the composition rule o = o'yoB/(Oy + a'B)
[0.~(B1 is the conductivity of the spinon (holon)] has been
used. RB (RIr ) is the Hall constant assuming that the
current in the plane is carried by the boson (fermion).
Here some comments are in order. First, both o and.
a are of the order of t2 and RB O(to). Therefore
the small value of RH does not come out &om the weak
interlayer coupling. Secondly the cancellation of the re-
laxation rate 1/v occurs between the denominator and
the numerator to result in the finite RH, and 0 diverges
when one uses the bare Green's functions of fermions and
bosons. Instead of going to the detailed analysis of ~
taking into account the relaxation, let us be content with
the high frequency limit where RH is determined solely
by the kinematics and the interaction of the system. Fol-
lowing the argument by Shastry et al. , RH and RH

where 0, (o', ) is the off-diagonal conductivity with the
current in the layer being carried by the positively
charged bosons (negatively charged fermions). Then it
is straightforward to derive
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are expressed as

with

B~B(F)gcB(F)
( )

H
()( )' (29)

(u) ~ —,as (b) -+ oo, BH is regarded as theB(F) 1 eB(F)'

high &equency limit of B~ . The commutator zn the~B(F)

numerator of Eq. (30) is evaluated up to the second order
in t and after some calculations we arrive at

H(F) . i([J,J ( )])
H +0 ~1 I (30) BcB

ex (31)

where I is the integrated oscillator strength of the
boson (fermion) within the layer.

The self-energy part PH (w) contains the informa-B(F')

tion about the inelastic scattering while BH aboutcB(F)

the kinematics and interaction of the system. Because

2gQ

e(1 —x)
' (32)

where the dimensionless factors gB, gF are de6ned as

fo dr P„r~& [GHi(r) r)GH2(r) r)]GFi(r) r)GF2(r) r)
'gB =

p 7

f dr Q„GHi(r) r)GH2(r) r)GFi(r) r)GF2(r) r)
(33)

f dr g„z [GFi(r, r)GF2(r + e~, r) + GFi(r + e~) r)GF2(r, r)
'gF

f dr Q„GF,(r) r) GF2 (r, r)
(34)

The boson (fermion) Green's functions GHi (r, r),
GH2 (r, r) [GFi(r, r), GF2(r, r)] are defined as
GHi(r) r) = (b(r) r)b (0) 0)), GH2(r) r) = (b (r, r)b(0) 0))
[GFi(, ) = (f(r)r) f (0, 0)), GF2(, )
(ft(r, r) f(0, 0))]. In deriving Eqs. (31)—(34) we have
assumed that the characteristic momentum and energy
scales of GBq 2 are much smaller than those of GF q 2
because the fermions are Fermi degenerate with a large
Fermi surface and large Fermi energy p,F while bosons
are distributed thermally near the bottom of the disper-
sion with small momentum ( ~T) and energy ( T).

(k )Therefore gB is estimated to be gB ",- "
& && 1

assuming the Boltzmann distribution. gF, on the other
hand, is determined solely by the fermion Green's func-
tion, and is estimated as

where ( )FS is the average over the Fermi surface. rIF is
almost temperature independent but depends on the hole
concentration x. For example gF ~ 0 as x ~ 0 assum-
ing the tight-binding band with only nearest-neighbor
hopping. Although one cannot discuss the dc Hall con-
stant B~, it is noted that the positive contribution BH
is suppressed by the small factor gH T/J (( 1 in
contrast with the in-plane BH which is almost deter-
mined by the boson Hall constant BBH —

—, . There-
fore BH ——BH + BH is determined by the subtle
balance between the reduced positive contribution B~
and the negative one BH, and its magnitude is ex-
pected to be small and less than — which is consistent
with experiments. '

V. RENORMALIZATION-GROUP EQUATION
FOR INTERLAYER HOPPING

&f(4I ) i k~k e9$I, E b(&)'"
In the previous sections we have studied the efFects of

interlayer hopping up to the lowest order in t . We now
investigate the renormalization of t due to the higher
order contributions. For this purpose, we Brst integrate
over the fermions &om the Hamiltonian Eq. (3) and ob-
tain the eH'ective action SB for the bosons:

PF I be, e + @be(r)be ( ) r()ie, +e + @be(r)be (r)~e,e +i

( (9
SH = ) dr d rbe(r) r)

I

—pH + (i 7 —a) Ibe(r, r)
0 g )9r 2ma

+ « ~*~ ) "(be(~~)be(~~)I']-, ,
0 e

( ( (V' + ia)2
2mF
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where a = (a, ab) is the gauge field and b and b are the functional integral variables (c-number fields) corresponding
to the operators b and b, respectively. In Eq. (36) we have introduced the repulsive interaction u within the layer.
This repulsion originally comes &om the constraint that only one boson or one fermion can occupy the site, and hence
the bosons obey the hard core condition. In terms of the T-matrix approximation which is valid in the dilute limit,
the renormalized interaction u in the effective theory describing the low energy states is estimated to be of the order
of the kinetic energy of the boson on the lattice, i.e., u t~ 1/m~. Expanding Trln in Eq. (36) with respect to t,
we obtain the following effective action for the boson and the gauge field as

KB
Sa = ) d~ d rbg(r, ~) I

—p~+ (iV' —a) Ibe(& 7)
lOT 2m' j

P
+ drdr ') v(be—(r, r)br(r, r)f + ) v(bl—(r, r)be(r, r)'((bg g(rr, r)brrg(r, r)f)

0 e e

+).I
X~V'+We la-(V, ~)a (—V,

—~).v)

We have chosen the Coulomb gauge, i.e. , 8 a +(9„a„=0
and a represents the transverse part. Its dynamics is
given by the current-current correlation function of the
fermions. y~ is the Landau s diamagnetic susceptibility
of the fermions and p~ is the dissipation constant of the
order of the Fermi wave number k~. The interlayer inter-
action v is generated &om the interlayer hopping and is
given by v = 2t N(p~—) & 0 (attractive interaction). It
is noted that there is no direct hopping term between the
layers in S~ because we are interested in the normal state
above T, and assume y~~...R = (f t (R)f (R + e,)) = 0
as has been discussed below Eq. (11). Higher order terms
with respect to t are also higher order in b and bt,
and hence are irrelevant in the following renormalization-
group (RG) argument. Here we redefine a as a /gy~.
Then the coefficient of a (q, u)a (—q, —u) in the last
term of Eq. (37) becomes q2 + 7IurI/q with p = pz/y~,
and iV' —a should be replaced by iV' —ea with the gauge
charge e being 1/gy~.

Now we treat u, v, and e in terms of RG.2 We
successively integrate over the rapidly varying part of
the boson field down to the energy scale of the order of
T, which corresponds to the "quantum regime" in the
terminology of Fisher and Hohenberg. In this quantum
regime the recursion formula up to the one-loop order is
obtained following the similar procedures in Refs. 22,23
as

du(g) 1 2 e4(g)——u 'g
dg 4'

this approximation by choosing the appropriate dynam-
ical exponent z(g). It is noted that Eq. (39) does not
include the coupling constant e2(g) with the gauge field
and either the intralayer interaction u up to this order,
and which can be easily solved. The attractive interac-
tion v(g) = —2t, (g)2N(p~) scales to larger value, i.e. ,

marginally relevant, as

- 1/2'
1 —t, N(P, F)ma l ~A

(41)

VI. DISCUSSION AND CONCLUSION

which blows up at A = A0e "~(»». We stop the
renormalization at A = T, and the effective interlayer
coupling at T is t (A = T). As long as the tempera-
ture T is higher than A, the renormalization effect can
be neglected and t, (T) remains nearly t, . This slow in-
crease of t should be compared with that of the direct
hopping t hebe+1 + H.c. which is relevant and behaves
like t, (A) = t (Ao)(Ao/A) . Therefore we expect the in-
terlayer charge dynamics remains incoherent as long as
T ) A and T ) TBE in the underdoped region. For

—10t, /J 10 i, A Aoe io which is extremely small
energy. It should be noted that Clarke, Strong, and
Anderson claimed that the incoherent nature of the
interlayer (interchain) motion cannot be captured by the
RG equation and is a more subtle issue.

dv(g) 1 2
)

dg 8m'

de2(q)
dg

(40)

where u(g) = 2m~u((7), v(g) = 2m~v(g), and g = ln &
with A being the cutoff energy. As is described in Ref. 23,
there is no scaling of e (g) in the quantum regime within

We have studied the interlayer charge dynamics of the
uniform RVB state in terms of the perturbation theory in
t . In the underdoped region we should take into account
the spin gap formation. The effects of this spin gap
are essentially different between the intralayer and inter-
layer charge dynamics. Within each layer the charge
dynamics is largely determined by holons, and the for-
mation of the spin gap in the spinon system affects the
holon only indirectly through the gauge field, i.e., the
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Quctuation of the gauge Geld is suppressed and also the
relaxation rate of the holon which leads to the suppres-
sion of the resistivity p &om the T-linear behavior. 24

This naturally explains why p is affected so little in
spite of the pseudogap formation observed in the neu-
tron scatterings and NMR. The interlayer hopping,
on the other hand, occurs through the physical electron
whose spectrum has a (pseudo) gap and the conductivity
o. = p is reduced and shows insulating behavior as
a function of temperature. Recently Homes et al.4 and
Tajima et a/. measured the optical conductivity o (w) of
YBa2Cu306 70, and found the clear evidence of the gap
Rom T 150 K in contrast with o q(u) which shows no
symptom of the gap. The Josephson process does not
contribute to 0 because the holons are not condensed
in the spin gap phase, i.e., (btbt+z) = 0. Then the inte-
grated oscillator strength I, is suppressed by the pseudo-
spin gap through the reduction of N(p~) in Eq. (13).
Very recently Ong et al. observed the negative magne-

toresistance for semiconducting p in Bi2Sr2CaCu208+g
and oxygen-reduced YBa2Cu306+ . The magnetoresis-
tance is weakly anisotropic, and activated in tempera-
ture. This result is consistent with the idea that the
magnetic Geld reduces the spin gap and increases the
conductivity along the c axis. However, the existence of
the spin gap in La2 Sr Cu04, especially at room tem-
perature, is not well established and further studies are
needed for this material.
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