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High-temperature superconductors, including the fullerene compounds, are all characterized by a very
small value of the Fermi energy (E), of the order of the Debye phonon frequency (wp). This implies a
breakdown of Migdal’s theorem for the electron-phonon interactions and it requires a generalization of
the many-body theory of superconductivity. In this and in the following paper we consider the first steps
of this generalization in a perturbative scheme with respect to the parameter (Awp /Er). Here we dis-
cuss in detail the vertex correction function and the self-energy for wp, /Ez70. The main result is that
the vertex function shows a complex behavior with respect to the momentum (g) and frequency () of
the exchanged phonon. In particular vertex corrections are positive for small values of g. We discuss
that the small g region may be favored by electronic correlations and by density of states effects. In such
a situation it is possible to obtain a strong enhancement of 7T, with respect to the usual theory. In addi-
tion vertex corrections and other effects due to the breakdown of Migdal’s theorem should have impor-
tant consequences on other properties like the isotope effect, transport properties, phonon frequencies,
tunneling and photoemission data. The essential results of this and the next paper should also apply to
cases in which the attractive interaction of the electron pairs is due to a bosonic excitation different from
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phonons.

I. INTRODUCTION

All high-T, superconductors are characterized by a
very small value of the Fermi energy E. From the data
of Ref. 1, confirmed by various other experiments, one
obtains Ep=~0.1-0.3 eV for oxide superconductors.
A ;Cg, compounds, chevrel phases and organic supercon-
ductors. The Debye phonon frequencies w; range from
80 meV for the oxides to 160 meV for the fullerene com-
pounds. This situation implies a breakdown of Migdal’s
theorem?? because the ratio wj, /E is not negligible and
the energies of electrons and phonons are comparable.
Migdal’s theorem corresponds to an adiabatic approxi-
mation for the dynamics of electrons and phonons and it
allows one to neglect vertex corrections and other effects
in dealing with the electron-phonon interactions. Within
such an approximation it is possible to generalize the
BCS theory of superconductivity to include all the
many-body effects. This leads to the Eliashberg equa-
tions*> for which the most popular expression for T, is
the McMillan one.® These many-body effects produce a
strong reduction of T, with respect to the BCS expression
and are essential for the argument, shared by several au-
thors, that electron-phonon superconductivity is limited
by a maximum T, ~20-30 K.” This argument, together
with the evidence for strong electronic correlations in the
oxides seemed to make the electron-phonon interaction
as hopeless to explain the high-T. materials and stimulat-
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ed the search for radically new mechanisms.>® The
breakdown of Migdal’s theorem however leads to a very
different situation that we are going to study in this and
in the following paper (paper II).!°

Our point of view is the following: it is clear that the
phase diagram of the cuprates or the properties of ful-
lerene compounds as a function of the band filling!! re-
quire to start from a Hubbard-type Hamiltonian or in
any case from concepts more complex than the simple
Fermi liquid. It is also the case however that supercon-
ductivity is always associated to a metallic behavior
above T, and that the phenomenology of the supercon-
ducting state is relatively normal, apart of course from
the value of T, and a few other properties. Also for the
normal state various elements point to a Fermi-liquid
phenomenology'?> " '* even though important anomalies
are present. Since we will refer only to these properties
we will adopt the Fermi liquid as a starting concept.
From this point of view the description of the supercon-
ducting compounds implies unavoidably the breakdown
of Migdal’s theorem.'> !¢ In this and in the following pa-
per we focus on this point and try to derive its implica-
tions as far as possible. This implies necessarily certain
drastic simplifications with respect to other elements, like
the Coulomb interactions, that are certainly important in
these systems. We are going to see however that elec-
tronic correlations due to Coulomb interactions can play
an important role also in the present framework by
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enhancing the positive regions of the vertex corrections.

We have named this generalization of the theory of su-
perconductivity as ‘“nonadiabatic superconductivity.”
Clearly also the standard superconductivity is a nonadia-
batic phenomenon and here we mean that, in addition,
the electron-phonon coupling is also nonadiabatic. We
believe however that this title is compact and unambigu-
ous. After all, “high-T, superconductivity” also refers to
low-temperature phenomena.

In Sec. II, we present a simplified discussion of the
self-energy effects on superconductivity and of the role
played by vertex corrections. In particular, we show that
it is consistent to discuss the breakdown of Migdal’s
theorem within a perturbative scheme. Within this
scheme the high-T, phenomenology that is now inter-
preted via Eliashberg equations in terms of very strong
coupling (A=3) can be reinterpreted, in case of positive
vertex corrections, from a weak-coupling scheme with
A=0.5-1.0.

In Sec. III we define the specific model assumptions
that we are going to use here and in paper II and recom-
pute the usual self-energy in the case wj /Ez70. The re-
sult corresponds to a reduction of the wave-function re-
normalization term and therefore to an enhancement of
T..
In Sec. IV, we present an analytical calculation of the
vertex correction function including explicitly the depen-
dence on the momentum (q) and frequency (w) of the ex-
changed phonon. The structure of this function is quite
complex and even its sign depends explicitly on g and w.
In particular, positive values are obtained for small
values of q.

In Sec. V, we discuss the role of specific material prop-
erties. In particular, we present simple arguments that
indicate that electronic correlations may favor positive
vertex corrections and contribute therefore to an
enhancement of T,. Also the problem of the pseudopo-
tential u* is briefly discussed.

In Sec. VI, we show how the simplified picture of Sec.
II is supported by a more detailed analysis and discuss a
simplified equation for T,. The breakdown of Migdal’s
theorem is expected to have important consequences for
the isotope effect and various other properties.

II. SIMPLIFIED DESCRIPTION OF MANY-BODY
EFFECTS AND VERTEX CORRECTIONS

In this section we present some arguments that allow
one to construct a simple, intuitive picture, of the role of
electron-phonon many-body effects in superconductivity.
The following sections and paper II will provide a more
systematic treatment that is however going to confirm the
essence of the simple picture we expose here.

We start by showing how self-energy effects within
Migdal’s theorem modify the BCS equation for 7, into
the McMillan expression and then we consider also the
inclusions of vertex corrections. Starting from the BCS
expression for T, (including the Coulomb term u*)

T,=(w)e /A1 2.1)

as arising from the usual scattering diagram of Fig. 1(a).
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(a)

(c)
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FIG. 1. (a) Standard BCS diagram; (b) the effect of electron-
self-energy in the dressed Green’s function (double lines) is ab-
sorbed in the definition of an effective vertex; (c) the effective
vertex corresponds to the bare one divided by the Z of the in-
coming electron propagator.

Then we would like to modify this expression to include
self-energy effects [Fig. 1(b), left] without going through
the usual Eliashberg discussion. Our basic idea will be to
absorb the effect of electron self-energy in the definition
of a new effective coupling A [Fig. 1(b)]. Note that this
has nothing to do with the vertex corrections that we will
consider later.

Considering the real part of the self-energy, the elec-
tron propagator is>

1

= . 2.2
G(k,0) p—TT (2.2)
By expanding as usual
>
S(k,0)=30)+———(0), (2.3)
dw
one defines the coupling
d
A=— —-Z (2.4)
dw
and the wave-function renormalization term
a
Z=1——;—=(1+7&). (2.5)
dw
The propagator [Eq. (2.2)] can be rewritten as
1 1
= 2.6
G(k,0) Z o—e,/Z (2.6)

The self-energy therefore has two effects: the first one is
to renormalize the band dispersion near the Fermi level.
This enhances the density of states (DOS) because the
Fermi velocity is reduced?®

N(0)=N(0)(1+A) (2.7)
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and it also enhances the effective mass
m*=m(1+A). (2.8)

The second effect is to reduce the spectral weight of the
coherent part of the propagator. It is possible to absorb
the prefactor 1/Z into an effective vertex in order to deal
with propagators that do not contain the wave-function
renormalization prefactor. This concept is illustrated in
Fig. 1(c) and it corresponds to writing

g wGlk,0)= Golk,0) , (2.9)

1
8k,k' 7

where G, represents the bare propagator with a renor-
malized dispersion.

In practice every double line (G) ending into a vertex g
is substituted by a single line (G) with a modified vertex
[Figs. 1(b) and 1(c)]:

=g L
&=8— -
We can now use the BCS expression (2.1), referring to the
new G, (with modified DOS) and with a vertex g. This
leads to an effective coupling
A

N:"’ZF~ = ——
A=g-°N(0) Y

that, inserted into Eq. (2.1) instead of the original A, gives

(2.10)

2.11)

TCE(w)e—(lﬂ)/[x—u*(lﬂ)] 2.12)
that is quite close to the McMillan expression.® Looking
at Eq. (2.11) we can make a simple interpretation of the
effects of self-energy. The density of states is enhanced
by a factor (1+A) but the coupling (g?) is reduced by
(1+2)* so the total effect is a reduction by a factor
(1+A). This term is responsible for the reduction of T,
from the BCS to the McMillan formula. We see there-
fore that, within Migdal’s theorem many body effects
suppress the value of T,.

At this level of discussion it is easy to introduce also
the effect of vertex corrections (Fig. 2). Migdal’s theorem
states that, if a bare vertex has an amplitude g, the

g + g Aa/E)

FIG. 2. Bare vertex and first-order vertex corrections for
electron-phonon scattering.
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correction is of the order g[AMw;, /E;)].>> Therefore if
op/Er—0 these corrections are negligible even if A is
large. Considering instead the situation in which wp /Eg
is not zero but rather of the order of unity we have a
more complex situation. In order to clarify these effects
it is useful to consider the addition of a phonon line to
the basic BCS diagram (Fig. 3). If the phonon is added in
position (a) this corresponds to a self-energy effect and it
gives a contribution of the order of A as we have seen in
Eq. (2.11). If instead we add the phonon in the position
(b) this corresponds to a vertex correction and the contri-
bution is of the order A(wp /Eg). Migdal’s theorem al-
lows one to disregard this diagram in view of the term
op/Ep but not because it is of higher order in A. The
effects of the breakdown of Migdal’s theorem therefore
can be studied in a perturbative scheme. For example, if
wp/Ep=~1and A <1 Migdal’s theorem does not hold but
the two contributions [Figs. 3(a) and 3(b)] are of the same
order and both relatively small. This clarifies also that
the breakdown of Migdal’s theorem can coexist with a
Fermi-liquid picture. Of course this may imply some
nontrivial deviations from the ideal Fermi-liquid picture,
nevertheless a perturbative scheme based on propagating
electrons preserves its validity.

We consider now the addition of vertex corrections to
the many-body effects discussed before. In this case the
bare vertex g should be substituted by (Fig. 2)

@p
g'=:g' 1 4‘Aﬁ}§—‘ (q,ao)ﬁ- e N
F

(2.13)
where the function p(g,w) characterizes the dependence
of the vertex corrections on the frequency and momen-
tum of the outgoing phonon (q,w). We are going to see
in the fourth section that the momentum and frequency
dependence of the vertex function is quite complex and it
can be positive or negative. One should then consider the
role of this function on the gap equation. In order to
study its main effect on the transition temperature we can
consider an effective average {(p(q,w)) that also can be
positive or negative depending on the details of the prob-
lem. In a favorable situation (see fourth section and pa-
per II) we can assume that (p(q,w))=1. In the case
@p /Ep~1 we can then use Eq. (2.13) into (2.11) and ob-
tain the new effective coupling

(a) (b)

e

FIG. 3. The addition of a phonon line in position (a) to the
standard BCS diagram corresponds to a self-energy effect and it
gives a contribution of order A. The addition of a phonon line
in position (b) corresponds instead to a vertex correction and is
of order Awp /Ep.
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-~ M1+Maop/Ep)plg,0)) T
= TEwY, =A1+A) .

This leads then to a rather different expression for 7,
(Ref. 13) with respect to Eq. (2.12):

Tcg<w>e—1/[m+m—y*] )

(2.14)

(2.15)

This discussion is highly simplified and we are going to
see in the following how to make it more systematic.
However it is useful to clarify the main effects of vertex
corrections in a favorable situation.

Consider, for example, the comparison between the
graphite intercalation compounds KC; and fullerene
compounds ( A43;Cgy) as shown in Table I. This compar-
ison is particularly relevant because the two systems have
strong similarities in the electronic and vibrational prop-
erties. Therefore, even if there may be an appreciable in-
determination in the absolute values of the parameters
(say A), the relative difference is much more meaningful.
In this respect it would by very useful if microscopic cal-
culations of A for 4;Cy, would be accompanied by analo-
gous calculations for KCj.

The transition temperatures differ by more than 2 or-
ders of magnitude and even if A can be somewhat larger
for the fullerene compounds, the larger value of u* (Ref.
26) actually compensates this advantage. Therefore from
a standard Migdal-Eliashberg point of view, not only the
fullerene compounds are far from ideal, but it is not even
possible to understand why their 7. values should be
larger than the very low T, of graphite compounds.

If we consider the value of the Fermi energy of the two
systems we can see however that the situation is com-
pletely different. Graphite compounds have a broad band
with a Fermi energy of several eV. In such a case
Migdal’s theorem holds (wj,/Er=0.02) and the small
value of T, is consistent with the McMillan expression.
In the fullerene compounds the electronic states are in-
stead distributed in many narrow bands. These bands are

TABLE I. In the estimation of superconductivity parameters
the comparison of graphite intercalation compounds (KCs) and
fullerene compounds ( 4;Cg) is particularly interesting because
many properties are similar while the T, values are very
different. From the estimated parameters shown one can see
that the KCg compound is well compatible with the usual
theory [Eq. (2.12)]. On the contrary the 4;Cq compounds are
far from ideal from a Migdal-Eliashberg point of view. Actually
a basic difference between the two systems can be found in the
value of the Fermi energy and in the fact that Migdal’s theorem
is strongly violated for 4;Cq. A review of the fullerene data
can be found in Ref. 13, while the graphite data are from Ref.
33.

KCq A4,Cq
T, 0.1-0.2 K 20-35 K
@p 2000 K 2000 K
A ~0.25 ~0.5
n* 0.1 0.4
Er 10 eV 0.2 eV
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separated by gaps of about 2 eV, therefore the scattering
with phonons is limited to the single band in which the
Fermi level is located. This leads to Ep=~0.2 eV and it
implies the breakdown of Migdal’s theorem (wp /Ep~=1).
Note that Coulomb scattering can instead extend over
many bands and this is the reason for having a not too
large value of u*. If the vertex corrections are mainly
positive we can use instead Eq. (2.15) that gives a T,
value compatible with the parameters of the fullerene
compounds.

It is interesting to note that if one would use the value
of T, to determine A via the McMillan equation, one
would obtain an anomalously large value of A. Our point
is instead that the real value of A is normal (0.5-1) but
the equation should be changed. For example, a large
amount of data for the oxide superconductors can be
reproduced via the usual Eliashberg equations with
A=3,"7 that is considered an unrealistic value. This im-
plies that [Eq. (2.11)]

x A

A Y =0.75 .
If vertex corrections are important we should instead use
Eq. (2.14),

A=A(14+A)=0.75,

(2.16)

(2.17)

that leads to the more realistic value A=0.5. This is a
very important point because it shows that the inclusion
of vertex corrections even at a perturbative level may al-
low one to reinterpret data that according to the usual
theory lead to anomalously large coupling (A=3) as aris-
ing instead from a situation of weak-intermediate cou-
pling (A=0.5).

In the following sections and in paper II we are going
to reconsider this whole matter in a more systematic way.
However the main conclusions of this simplified discus-
sion will be confirmed provided that the vertex correc-
tions are mainly positive. We are going to see that this is
the case if the small-g scattering is dominating or in other
specific situations. It is interesting to note that the in-
clusion of electronic correlations in the problem actually
produces a modulation of the electron-phonon scattering
which favors the small momentum scattering. In our
perspective therefore the main effect for the high-T,
phenomenon is in the breakdown of Migdal’s theorem.
However, electronic correlations should be also essential
to bring the system in a range of favorable parameters
with respect to the sign of the vertex corrections.

III. THE MODEL AND THE SELF-ENERGY

The model Hamiltonian is the usual one'®

H=Y s(k)clck+2 a)ob:;bq
k q

+ S cliqerlbg+bly) (3.1)

g
VN i
corresponding to the coupling of a single Einstein mode
with frequency w, to an electronic band characterized by

a dispersion €(k) and a chemical potential u. In order to
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perform analytical calculations we adopt a simplified
scheme based on the following assumptions.

The density of states is assumed to be constant (N)
between —E /2 and E /2 with a Fermi energy at zero.
This corresponds to a half-filled band with Ez=E /2.

The g dependence is considered only for the scattering.
For integrations over the Brillouin zone we use the
simplification

£ (3.2)

[\°]

E/2
E/2

2 —N, f (3.3)

In general one may have a coupling gy y ., explicitly
dependent on k and q. Here we consider simply a con-
stant value g. We are going to see however that the
dependence on q maybe very important and this is a
point that we will reconsider in the following and in pa-
per II.

The dimensionless coupling is defined as usual
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n S

FIG. 4. This diagram corresponds to the standard self-energy
to first order. Its specific calculation is performed by keeping
wp/Er as a finite parameter instead of considering the usual
Migdal limit wp /E—0.

We begin by reconsidering the calculation of the stan-
dard self-energy to first order (Fig. 4). This is not a new
diagram, however, the point is that in the usual approach
the self-energy is computed in the limit wj, /Er—0, while

=02
A=g°N, . (3.4 in our case we will keep this ratio as a finite constant.
Considering a parabolic dispersion We use the Green’s functions as the Matsubara repre-
sentations with usual notations.? For electrons we have
kK (3.5)
ek)=——pn, .
wm P Gliw,,e; )=~ - - )
iw,—¢,—3liw,,k)
= _‘1_ 9k = . (3.12)
e(k—q)= 2m TR M cosd , (3.6) o0, =27 T[n+1]
where 4 is the scattering angle, we can identify with chemical potential =0, and for phonons
ki ki — 2
E=—, p=——. (3.7) Dolio,,0)=—5——, o,=rT(2m).  (3.13)
m 2m 0 nr %0 m%n +m(2) m
At this stage we are going to neglect the ¢* term in Eq. .
(3.6), so our results hold for not too large values of g. The standard self-energy to first order is given by
Later however we will see that the inclusion of these Slio,)=— Tg? 3 3 Goliog,g )Dylin, —iwg,wy)
quadratic terms does not change the results appreciably. k, s :
In practice these approximations correspond to assuming 2
a lf)cally linear dispersion of the band in the vicinity of = —Tg?N, 2 fE/z 1— —coo2 .
kp: E/2 ;=% (0, ;)" +o§
e(k)=vpk|—p=x , (3.8) (3.14)
e(k—q)=vplk—q|—p=x—qcos?, (3.9)  Considering that
. —(iw,+x)
having defined fE;izdx — l_x _ fEf/zdx 2;— :
q=vglql . (3.10) s w;+x
The bandwidth E and the chemical potential u are now = —j2arctan , (3.15)
given by s
E=2vpkp, pu=vpky . (3.11)  we obtain
J
S(iw,)=—io,AT S arct Bog0, (3.16)
iw —iw arctan . .
" " s>0 20)5 [(ws_wn )2+w(2)][(ws+wn )2+(‘%]
The wave-function renormalization is given by
. 1 .
Z(iw,)=1— o Slio,) . (3.17)

n
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Considering the case w, =0 and neglecting the tempera-
ture dependence (T —0)

1 + o0
T - d 3.18
g Toard_ @ ( )
we obtain
A o E | 8wgo
Z=1+— d t — | .
Y fo @ arctan |- P (3.19)
Introducing
20, o
3] 0 0
=—, =—=— 3.20
y o m=— E, (3.20)
and integrating by parts we have
4 ro m 1 yp?
Z=1+A— d - (3.21)
ﬂ‘fo y1+m2y22y2+1

The integrand has poles at y =i and y ==+i/m. Consid-
ering the contour in the upper half-plane we finally arrive
at the expression

1

Z(m)=1+A l Tom
In the usual case m —0 and we recover the standard ex-
pression Z=1+A. For a finite value of m however we
have a correction factor as given by Eq. (3.22). There-
fore, the fact that w,/E is different from zero reduces the
wave-function renormalization due to the standard self-
energy. In view of the discussion of the previous section
we can see that this reduction corresponds to an enhance-
ment of T,. In order to avoid confusion we define m as
the nonadiabatic parameter and m —0 is the adiabatic
limit. In this case one has the standard superconductivi-
ty that is still a nonadiabatic phenomenon but here we
use the terms ‘“‘adiabatic” and ‘“nonadiabatic’ in relation
to the nature of the electron-phonon coupling.

. (3.22)

IV. THE VERTEX CORRECTION FUNCTION

In this section we will compute the vertex correction
function'® corresponding to the diagram of Fig. 5. As we
are going to see this function can be positive and negative
and it is strongly dependent on the frequency and
momentum of the exchanged phonon (g,®). We use the

model and the schematizations discussed in the previous
J

A(mm’q;me):l+)\'PV(mm’q;w0,E)
1

—wg
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n-m

n

FIG. 5. First-order vertex correction diagram. The resulting
vertex correction function can be positive or negative depending
on the values of the momentum (q) and frequency (®,,) of the
emitted phonon.

section. Since the model has no well-defined Brillouin
zone we assume for the maximum momentum q,,, =E,
however, its precise maximum value can only be specified
within a realistic model. This is actually a very impor-
tant point because for small values of g the vertex func-
tion is positive while it is negative for large values of g.
Therefore a modulation in the coupling g, , or a cutoff
due to other reasons are crucial elements to enhance or
reduce the value of the critical temperature. We will
come back on this point in the discussion and in paper II.
It is useful to introduce a dimensionless momentum
Q=—§,—, Qmax=1 . @.1)
For the moment we consider the case w, =0. This is an
external variable and the characteristic behavior of the
o, dependence in the gap equation is defined by a cutoff
that will be present anyhow in this equation. So it should
not be particularly important to consider the explicit o,
dependence. Later we will consider this dependence ex-
plicitly to show that indeed it is not crucial.
The vertex function that multiplies the bare vertex to
include the first correction beyond Migdal is

5 1

=1-¢'T3 3
mS kS

io; —e(ky)

(0, — ;) +w}

(4.2)

(0, —o,)—ek,—7) |

where the vertex correction function P, is a function of the phonon variables w,, and g and it depends parametrically
on wy and E=2E.. In addition we neglect the temperature dependence associated with the variable w; and consider
the T—0 limit [Eq. (3.18)]. Using also the approximation of Eq. (3.3) we have

1 E/2

1

2
Wop 1

Py(w,,,q;00,E)

_ 1 + o0 i 1
2 d-En xf_w de f_ld”ll io—x o*+o} [[(0—w,)—(x—g-n]

4.3)

In this equation we have introduced the angular dependence as a correction factor to the angular independent case. In
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three dimensions the angular averaging for a function f(«}) of the scattering angle 6 (=cos@) is given by
[ fonmsingdy
J 2msinddo

_1 pr1
=5 J_fomdn. (4.4)

In view of the strong dependence on momentum that we will obtain for P}, this is a point to reconsider in view of the
application of our results to systems with reduced dimensionality.
We are going to integrate first in @ so it is convenient to rewrite Py, as

2
o (4]
LL 2 g [ a0t [ 1 0 (.5)

Py=—— ,
VT TEQ 2w d —en™N . 992 (0+ix)[o—a, +i(x—3)] (@+iog)w—iwg)

in which we have used the new variables y =g, 7, and Eq. (4.1). In order to perform the w integration it is convenient to
split the integrand as the sum of relatively simple terms:

1 E/2 EQ @o 1
P i, —_ -
r= EQ i f—E/Z f 2(a> +iy) 27

xf+°° 11 11 1
o—iv, otix otioy otix oo—iey [w—w,+i(x—y)]

1 1
otioy [o—w,, tilx—y)]

(4.6)

Consider the first term in the o integration. If x <0 both singularities are in the upper half-plane, so one could close
the contour in the lower half-plane and the integral would give zero. This leads to [see Fig. 6(a)]
1 . Hx) Hx)

I,=—2 = . 4.
Y miwo-H'x wot+x @D

The second term gives [see Fig. 6(b)]

-1 . 9(—x) —3H—x)
I —_ 2 T — . .
2 2 ! —iwyt+ix Wy—X 4.8)

The two terms given by Egs. (4.7) and (4.8) will cancel when integrating over x so we can neglect them. The other two
terms give [see Figs. 6(c) and 6(d)]

I3=——1——(2m‘) Hx—y) — Hx —y)

27 iwg—w,, +i(x—y) wytio, +(x—y) ’ “.9)
1 . Hy—x) Hy —x)
I —_— __2 = . .
4 217( ) —lwg—w, tilx—y) wy—iw,—(x—y) 410
From Eq. (4.6), (4.9), and (4.10) we obtain
1 E/2 EQ ‘90 1 —dHx—y) dHy —x)
Py=— - + . .
Y EQ f—E/Z f Y20 0, +iy | wytio, +(x—y) o—ieo,—(x—y) @10
Considering that
X y x y
Jovax [ dyoty—x)fxp)= [ dx [ dydtx—y)f(—x,—y), (4.12)
*0 Yo *0 0
we can rewrite Eq. (4.11) for relatively small values of y, (y < E /2) as
2
@9 1 rEQ EN 0, tylogt(x—y)]
P d dx (4.13)
YT EQ2 2l yfy (xp +y)){[0o+(x —p) P +a7, ]
Introducing the new variables
usx-—y,
(4.14)
z=u+twg,

we have
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15 E E/2—y+o w2 +y-z
= lf ° f ’ PRIV 24z
EQ 2 Y -Eo @ (0%, +y“ Nz*to;,)

Considering the z integration, the first term in Eq. (4.15) gives

E/2—y+ta, 1 1 w,, @,
f dz—z—-——z —— |arctan—— —arctan————
&) w, tz ©,, g E/2+wy—y

m

and the second term is

E/2—y+ay

Z __dz=

1. |0k +H(E/2—y+awy)?
f < 3 —In .
@ z*tw;, 2

co(zﬁ-cof,,
Inserting Eqgs. (4.16) and (4.17) into Eq. (4.15) leads to
0, +(E/2—y +aw,)?

03+ w3,

lln

a)m
arctan—— —arctan + >

wm
(020 E/2+600—y

_ % 1 rEQ 1
P~ 02 e iy |

In order to proceed with the y integration it is convenient to expand the term in the curly brackets { - -
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(4.15)

(4.16)

(4.17)

] . 4.18)

- } for small

values of y. This is consistent with the fact that our initial schematizations [Egs. (3.7) and (3.8)] are also consistent with
small values of Q and therefore of y. We will expand up to quadratic terms in y so that for the In term we only consider

the linear term because this is multiplied by y. This is

ln(E/2+w0—y)2+w3,, —n (E /24 wy)?+ 0?2,
0%+ w?,

2(E /2+w,)
(E/2+w)2+m3,,y )

a)(z)-i-wfn

For the other two terms we can consider that

—%arctanf(y)z 1+1f2f' f'=3—£ ,
d—zarctanf(y)=—l lf”*———zf.f,z l .
dy? 1+ 2 1+ 2
Since in our case
wm

f(y)=—————E/2+w0_y ,

’ — wm
f |y=o—m ,

. _ 2w,,
Fly=0= (E/2+w)

and considering that in Eq. (4.18) only the quadratic term in y will lead to a nonzero contribution we have

2 HE /240y )?

l—d—arc’tanf(y)

2 dy? y=0 (E/2+wp)+a?,
2w, _ 20,, w?, 1
(E/2+wy)?  E/2+wy (E/240y)? (E/2+wy)*+ o2,
0, (E /2+wg)

(E /24w +0? >

The result of this expansion in Eq. (4.18) gives therefore

@9 EQ A EQ  By?
Py=——r ————dy+ —d
¥ EQ fO (02, +y?) Y fO (02, +y?) Y
having introduced
(‘)m
A=w, [arctan 60—0 —arctanm ,

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)
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(E /24 wy)[(E /24 wy)* 42032, ]
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= (4.28
[(E /24wy +0?, )
The y integrations can now be performed to arrive at our final result that is the central point of this paper:
© 1) 1)
PV(a)m,Q;wo,E)=é arctanm—:—arctanT'iwO arctan %
(E /240 [(E /2+0y)*+202, ]
— EQ—comarctanE2 ol 3 02 5 & (4.29)
m [(EN2+wy) +o;,]
[
This result is pure real while in general one may expect lim Py(w,,,Q;00E)
that the vertex correction function should be complex. 2-0
However, in our schematization of half-filled bands com- g @,, @,,
bined with a small-q expansion, the imaginary part van- =5 |arctan g —arctan—, /2+w, 4.31)
ishes exactly. "
In order to clarify the dependence on w,, and Q it is and
useful to consider the following limits. The static limit E/2
corresponds to taking first the limit @,, —0 and then the wlrjgoclli_r{loPV(wm,Q;wo, E)= m . (4.32)

limit Q@ —0. In this case we have
@o

— m . (4.30)

lim lim P ,Q 00, E)=
Ql.n.loLu,:n:o v(@m @500, E)

The vertex function is negative in this limit and this re-
sult is in agreement with the calculation of Grabowsky
and Sham!® who only considered this limit in the context
of plasmons and from this argued that vertex corrections
should be negative in general. We can see that this is not
the case and, in fact, if we reverse the order of the two
limits we obtain the dynamical limit that is positive

N,

(a) (b)

® —i(x-y)
j O .

(c) (d)

FIG. 6. Poles and contours of integration in o for the various
terms in Eq. (4.6).

The sign of the function Py, is represented in Fig. 7 by the
open areas in the plane (Q,w,, ) for two different values of
wo/Ep (note that E=2E). It results that small values of
Q correspond mainly to positive vertex corrections. The
behavior of Py(w, ) for different values of @ and
wo/Ep=1 is shown in Fig. 8.

In order to estimate the average effect of the vertex
correction function P, we can take an average over fre-
quencies and momenta. In doing this one should consid-
er that, since P, depends strongly on Q and our model
calculation is highly idealized, a specific physical mecha-
nism or a more realistic model may introduce a modula-
tion of the scattering as a function of Q and eventually

1
0.8
0.6}
o P, <0 P,>0
0.4}
0.2}
0 .
0 0.2 0.4 0.6 0.8 1

0/
o

FIG. 7. We report in this figure the sign of the vertex func-
tion Py(w,Q) for wy/Fr=1.0. The open areas correspond to
Py >0 and the dark areas to Py <0. From the behavior of the
function Py(w,Q) it results that the limit case P,(0,0) depends
crucially on the order of the limits. The structure of Py(w,Q) is
therefore rather complex and its is nontrivial to extrapolate its
full role in the gap equation by considering only limiting cases.
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FIG. 8. Behavior of Py(w) for different values of Q. For
small Q values the positive part of the vertex function becomes
predominant.

also of w,,. For this reasons we introduce a cutoff Q, for
the average over momenta and consider how the average
of the vertex function depends on Q, itself. For the fre-
quency average a natural cutoff is automatically provided
by wg so it is not necessary to consider further limita-
tions. In Fig. 9, the solid lines represent the average
values of Py, corresponding to different values of Q. as a
function of the Migdal parameter wy/Ep. In the Migdal
limit (wy/Er—0) the whole effect vanishes and one re-
covers Migdal’s theorem. However for finite values of
wo/Ep the effect is quite appreciable and it depends
strongly on the value of Q, and therefore on the range of

0.4

° 45 Q =10

-0.1 Looo?oOOOOnnmnnn
"o 0.2 0.4 0.6 0.8 1
m

FIG. 9. In order to estimate the total effect of the vertex
function P, (Q,) (solid lines) on the gap equation it useful to
consider its average with respect to Q and o as a function of
m =wy/Er. While for w a natural cutoff is provided by w,, for
the average over Q specific modulations may be introduced by
specific models. For this reason we have considered different
cutoff values Q,. The result is that small values of Q. corre-
spond to globally positive vertex correction. We have also test-
ed the validity of our analytical scheme by including explicitly
the g2 terms [Eq. (3.6)] and performing a numerical analysis that
corresponds here to the little circles.
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momenta that are relevant for the system in question.

In order to check the validity of our approximation to
neglect the terms of order g2 in Eq. (3.6) we have includ-
ed these terms and computed the average function P, nu-
merically. The results of this calculation are represented
by small squares in Fig. 9 and they give an idea of the va-
lidity of our analytical scheme. Clearly it is very good for
small values of Q while for large values of Q the deviation
from the numerical results become appreciable.

In order to proceed systematically in a diagrammatic
expansion an important clue is provided by the Ward
identities that relate vertex corrections to the self-energy.
In our case a Ward identity can be written in the follow-
ing way:

Zlio,=0)= limoéimoPV(wm,Q;wo,E)

wm—>

1

=1+
1kl-i-m

(4.33)

This Ward identity refers to the propagation of a single
electron and it seems to support the simple argument of
Sec. II about the order of the various diagrams. In paper
IT however we are going to see that for superconductivity
the situation is more complex because one should refer to
the pair of interacting electrons. The correct Ward iden-
tity for superconductivity will imply a (small) correction
with respect to Eq. (4.33).

Up to now we have only considered the case w, =0 in
Fig. 5. This was because an eventual structure of P, with
respect to @, would not have much effect once inserted in
the gap equation. However we have also considered the
case ®,70 explicitly. Defining w,=w0,, and w,=o,
—w,, in Fig. 10(a) we show the sign of the function P,
for 0=1.0 and wy/Er=1.0. The open areas correspond
to P,>0. In Fig. 10(b) we show the same plot for
Q=0.1. The comparison with Fig. 10(a) shows again
that small values of Q enhance the areas of positive
values for Py,.

In summary the main result of this section is provided
by Eq. (4.29) that shows a complex behavior of the ver-
tex function Py on the momentum and frequency of the
exchanged phonon. Even its sign depends crucially on
these parameters as shown in Fig. 7. This situation is
therefore quite different from the previous simplified
studies of the vertex corrections that did not include
these dependencies.!® 2! Our analytical expression [Eq.
(4.29)] is derived using various schematizations some of
which we have tested by a numerical analysis that has
confirmed the general behavior of the analytical result.
Our starting model is extremely simplified and, in the
same sense, it can be related to the properties of the free-
electron gas. It is important therefore to consider the
properties of real systems for which various other effects
have to be included. Apart from the obvious effects of
the specific Brillouin zone and band structure a general
element that appears to be characteristic of all high-T,
superconductors is the important role of the electronic
correlations due to Coulomb interactions. In the next
section we are going to discuss in a simple way the role of
these correlations with respect to the vertex functions.
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V. ELECTRONIC CORRELATIONS
AND REAL MATERIALS

The calculation of the vertex function in Sec. IV refers
to a highly simplified model that, in some sense, can be
considered as the free-electron gas. Despite this simplici-
ty the result shows a complex structure with respect to
frequency and momentum. Therefore its application to
real systems is a delicate matter. Here we are going to
present some considerations about the effects of a more
realistic picture on the vertex corrections.

Clearly one should consider the full band structure of
the system in the calculation. One can expect that many
specific details of the band structure will not modify ap-
preciably the main features of the vertex function in view
of the averaging procedures on which it is based. Howev-
er strong peaks in the density of state?® (DOS) may be
relevant for the dependence on ¢ and @ of the vertex
function. For example, if the Fermi level lies near a peak
of the DOS, small-g scattering acquires a larger weight
with respect to large-g scattering because it involves re-

01/ O

[ORRA)

(b)

0 5
w2/ ®
o

FIG. 10. Generalization of the vertex function to the case
®,70 (Fig. 5). Defining 0=, and 0,=o0,—,, (Fig. 5) we
show the sign of the function P, in the map of w,w, for
Q0 =1.0. The open regions correspond to P, >0. (b) Same plot
for Q=0.1. Also, in this more general case small values of Q
favor positive vertex corrections.

L. PIETRONERO, S. STRASSLER, AND C. GRIMALDI 52

gions of the Fermi surface corresponding to larger values
of the DOS. Large-q scattering instead will be indepen-
dent on the starting point and it will sample the average
value of the DOS on the whole Brillouin zone. This situ-
ation would enhance the positive regions of the vertex
functions. The opposite would happen instead if the Fer-
mi level is located near a minimum of the DOS. It is also
interesting to compare our results with the vertex correc-
tions obtained in the limit of unfinite dimension.3* Clear-
ly in this limit one loses the strong g dependence of the
nonadiabatic terms, however, the band filling can also
give rise to important effects that appear to lead to posi-
tive corrections in the case of relatively few carriers.®> In
this respect our calculations refer only to the half-filled
case but it should be possible to generalize them to other
situations.

Apart from the specific band-structure effects a crucial
element common to all high-T, superconductors is the
role of electronic correlations induced by Coulomb in-
teractions.®®?? In fact, even if our starting point of view
is that of a Fermi liquid, many properties of these sys-
tems, like the phase diagram for the oxides®® and the
band filling for the Fullerene compounds,'! can only be
understood with Hubbard-type models. This implies that
even in the case of metallic properties, those that are as-
sociated with superconductivity, electronic correlations
are expected to play an important role. It is important
therefore to include these properties in the structure of
our vertex function. One effect is a renormalization of
the parameters, however, more important is the possible
modulation of the electron-phonon coupling g as a func-
tion of g and w.

For example, in a simple jellium mode
electron-electron potential V(q,w) is

47re? w?

g’ +k2 0®—wg) ’

123 the screened

Vig,0)= (5.1)

where k; is the Thomas-Fermi wave vector and w(q) is
the phonon spectrum. For w <w(q) the interaction be-
comes attractive and the amplitude is larger for small
values of ¢ with an upper cutoff at k;. The value of k;
can be estimated from

2
ks2=ﬁ€——N(O) ,

0

(5.2)

where €, refers to the atomic or ionic polarizability, that
in a more realistic picture is given by the interband tran-
sitions. N (0) is the DOS at the Fermi level. High-T,
materials are in some sense closer to doped ionic systems
than to normal metals.?? This implies that €, can be
rather larger but the metallic part of the screening, and
therefore k, is expected to be rather small. This implies
that small momentum scattering is predominant and
gives more weight to the positive regions of P, (q,w).

The above jellium model is not very realistic for ful-
lerene and cuprate compounds that are usually described
in terms of a tight-binding picture. For example, in ful-
lerene compounds it is believed that the main electron-
phonon coupling is the one with the vibrations of a single
molecule.!? This would lead to a picture as shown in Fig.
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n(r) n(r)

W/W:e_ 7

@e

(a) (b)

FIG. 11. Schematic picture of the electron-phonon interac-
tion for uncorrelated (a) and correlated (b) electron. In the first
case an electron does not perturb the electronic density n(r) and
it interacts with the vibrations of a single molecule (shaded). In
case of correlation (b) an electron is accompanied by a correla-
tion hole of size £ and it will interact with all the molecules
within this zone.

11 in which an electron at position 7 interacts only with
one molecule and, if one neglects correlations, it does not
perturb the average electronic density n(r). This corre-
sponds to the simple Hamiltonian
H=3% gOCiTci¢i ) (5.3)
1]
where the index i refers to the position of the molecules
and ¢; is the phonon field at ;. Due to the local nature
of the interaction the resulting g(q)=g, is structureless.
However if we consider that electrons are actually corre-
lated we should associate to each electron the corre-
sponding correlation hole of size £ [Fig. 11(b)]. This im-
plies that a perturbation of the electron density at posi-
tion r will interact with all the molecular vibrations
within the size of the correlation hole £. This leads to a
generalization of Eq. (5.3) into
H=3clc; 3 g0, fli—jl), (5.4)
i j
where the function f(|i —j|) describes the delocalization
of the interaction. In the limit of no correlations
f(li—jl)=8,;; and one recovers Eq. (5.3). If, on the other
hand, this function extends over a zone of size &, the re-
sulting electron-phonon coupling in g space will acquire a
structure factor f(q) that is the Fourier transform of

fUi—jbh
8(q)=go"f(q) .

This structure factor will be characterized by an upper
cutoff g, of the order

(5.5)

g =£"". (5.6)
Therefore we see that also in the case of a tight-binding
picture it is reasonable to expect an upper cutoff over the
scattered momenta due to electronic correlations. In a
highly simplified picture £~ ! can also be related to ki,
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however a more detailed study seems to be necessary.
Recently a step in this direction has been made by Kulic
and Zeyher and by Grilli and Castellani?* who have com-
puted in various ways the effect of strong electronic
correlations on the electron-phonon interaction. Their
results qualitatively confirm our simplified discussion and
provide a systematic scheme to describe these effects. In
particular Kulic and Zeyher present a detailed study of
g(q) as a function of doping. The result is that, for small
doping, g(q) is enhanced for small-g values and decays
rapidly beyond a characteristic value g, that is strongly
dependent on the doping. An interesting property is that
the average value of the resulting A is about constant for
different values of the doping. This situation seems to
support therefore one specific choice for the structure of
g(q) that we are going to discuss in paper II.

We can conclude therefore that, in general, electronic
correlations introduce a structure in g(g) with an upper
cutoff for the momenta. Considering the structure of the
vertex function (Sec. IV), whose sign is shown in Fig. 7,
this upper cutoff will unbalance the situation in favor of
the positive part of the vertex function.

Another effect of the Coulomb interaction in relation
to superconductivity is provided by the so-called pseudo-
potential term p*.2>2?% This term is constructed by the
static screened repulsion u corrected by the dynamic
effects of the retarded interaction. Usually this term is
included in the gap equation and described in terms of
the electron gas. In the high-T, SC the situation is more
complex because one has a large static screening due to
interband transitions and a relatively small metallic
screening in view of the low carrier density. In such a sit-
uation the usual description is rather unrealistic.

The most accurate analysis of u* for the fullerene
compounds (that however also involves drastic
simplifications) is due to Gunnarson and the result is
u*~0.4.%% This value is much larger than the usual one
for normal superconductors (u*=0.1) and it makes it
difficult to interpret the data of the fullerene compounds
(Table I) by means of the usual Migdal-Eliashberg theory
(see also Sec. II). Given this complex situation we prefer
to consider the problem of u* separated from the gap
equation and to add it at the end. In fact for systems like
the high-7, SC the analysis of u* requires one to go
beyond the free-electron picture and to add the specific
properties of the material.”> The situation is less critical
for the electron-phonon scattering that involves mainly
only the states of a single band.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have started a detailed analysis of the
implications on superconductivity due to the breakdown
of Migdal’s theorem. This is a general situation for all
the high-T, superconductors. Our first observation is
that it is possible to study this problem in a perturbative
scheme with respect to the parameter Alwp /Eg). This of
course does not necessarily imply that real materials lie in
this regime. However the idea is that the main reasons
that may produce an enhancement of T, should also be
valid beyond the perturbative regime.
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We have seen that even the standard self-energy ac-
quires a favorable correction factor if evaluated for
op/Er70. The main part of the paper deals however
with a detailed calculation of the vertex function Py (q,»)
as a function of momentum and frequency of the ex-
changed phonon. This function has a nontrivial structure
with respect to ¢ and w and its sign can be positive and
negative depending on the region of the (q,w) plane (Fig.
7). This implies that, depending on the specific properties
of the material, the value of T, can be both enhanced or
suppressed by the vertex corrections. In any case this
new situation provides a much broader range of possibili-
ties with respect to the usual theory. We have also point-
ed out how electronic correlations that are certainly
relevant in all the high-T, systems, should favor small g
scattering corresponding to positive vertex corrections
and to a consequent enhancement of T .

We are now in the position of giving a more firm basis
to the simplified discussion of Sec. II. A detailed analysis
of the generalized gap equation, also including other
effects like the cross term that should be kept in a sys-
tematic approach, will be presented in paper II. However
a simplified scheme within the limits of the present dis-
cussion would lead to the following equation for T:

""[l+20((1)0/EF))\,]
, (6.1)
A1+ (P IA]2—pu*

T.=wwzo(wy/Ef)exp l

where
—1

w
1+—>

Zo(wo/EF)= EF

(6.2)

The prefactor term is due to the integral over available
energies restricted to a single band of width 2E.. We see
that in the Migdal limit w; /E—0 one recovers the usu-
al prefactor w,. If however wp > Ep the prefactor be-
comes essentially equal to E; and independent on w,.
This could have important consequences on the isotope
effect that can become very small or negligible in view of
this effect. The term z,(wp /Ef) in the numerator of the
exponential is due to the reduction of the self-energy
effect we have discussed before and it corresponds to an
enhancement of T, independently on g and w. The vertex
correction (PV) corresponds instead to an average over q
and o and it is crucially dependent on the properties of
the system in question. Specifically an upper cutoff g, for
the electron-phonon scattering momentum leads to posi-
tive values of (P, ) as shown in Fig. 9. As we have dis-
cussed this cutoff can be provided by electronic correla-
tions. One can also see from Fig. 9 that vertex correc-
tions are appreciable also for relatively small values of
the parameter w,/Er. We see therefore that, if positive
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vertex corrections are dominant, the simple discussion of
Sec. II is essentially confirmed by a more detailed
analysis.

Concerning the isotope effect, in addition to the prefac-
tor already mentioned we see that the phonon frequency
appears also in the terms z, and (P, ). In the usual ap-
proach instead w, appears only in the prefactor and in
p*. This new situation allows therefore for a more com-
plex structure of the isotope effect in which the exponent
a can become very small but also larger than the usual
maximum value a=0.5. In paper II we are going to
proceed more systematically and the corresponding ex-
pression for T, will be more complex. It will confirm
however the general trends of the present discussion.

In summary we have presented a study of the conse-
quences of the breakdown of Migdal’s theorem on super-
conductivity. This brings us in a broader situation in
which appreciable enhancements of T, are possible de-
pending on the specific properties of the material. In par-
ticular we argue that electronic correlations can represent
a possible element to drive the system into a region of pa-
rameters that favors positive vertex corrections and
therefore enhanced T, values. This picture is still based
on having fermions above T, as supported by specific ex-
periments to probe the nature of the transition,?” however
the effects we discuss are the precursors of the polaron
picture, however without reaching it. In this respect
various experimental data that point to polarons®® or
strong electron-phonon interaction could actually be con-
sistent with the present scheme.

Vertex corrections and other effects beyond Migdal’s
theorem should of course play an important role in vari-
ous other properties like transport, the shifts of phonon
frequencies,?’ tunneling,’® and photoemission data.’! In
each of these effects, however, the role of vertex correc-
tions is expected to be different from that played in the
superconductivity. It is very important therefore to ex-
amine these effects in detail in order to make specific pre-
dictions that could be tested by experiments. Finally we
would like to mention some work that has been recently
performed regarding the nonadiabaticity in the electron-
phonon interaction from the point of view of the single
molecule in relation with the Jahn-Teller distortions.*
This work represents a complementary view (local) with
respect to our and it would be interesting to consider the
possibility of a unifying picture.
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FIG. 7. We report in this figure the sign of the vertex func-
tion Py(w,Q) for @,/Fr=1.0. The open areas correspond to
P, >0 and the dark areas to P, <0. From the behavior of the
function Py(w,Q) it results that the limit case P (0,0) depends
crucially on the order of the limits. The structure of Py(w,Q) is
therefore rather complex and its is nontrivial to extrapolate its
full role in the gap equation by considering only limiting cases.



