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We investigate the role of a magnetic field on the aging properties of spin glasses, focusing both on ac
susceptibility measurements with an additional field variation and on thermoremanent magnetization
(TRM) relaxation (to which the field variation is inherent). We propose a scaling of the TRM decay
curves for various amplitudes of the magnetic field. Regarding aging as a random walk in a set of traps,
we analyze the transient modification of the dynamics after a field change as twofold: an average reduc-
tion of relaxation times, well described by a Zeeman reduction of the energy barriers (hard traps), to-
gether with an “emptying out” of some other relaxation modes (fragile traps) corresponding to a partial
quench effect. The fragile traps are associated with the longest time scales, that is to processes involving
a large number of spins. A quantitative analysis of the results allows us to estimate a typical number of
spins involved in both types of traps, as well as to discuss the growth of the energy barriers as a function

of the number of spins.

I. INTRODUCTION

Aging occurs when the physical properties of a system
evolve with time, giving rise to nonstationary dynamics
and to the breakdown of time translational invariance for
the response of the system to an external perturbation.
Aging phenomena have been known in some branches of
the material science,! but their analysis has remained lim-
ited to a phenomenological description, and until recent-
ly? they had no place in any ab initio theoretical construc-
tion. Aging effects were initially seen as an experimental
difficulty, since the measured properties vary during the
measurement. For example, in spin glasses, the decay of
the thermoremanent magnetization (TRM) and the relax-
ation of the zero-field-cooled magnetization have been
found to depend on the waiting time before the field vari-
ation, the maximum decay rate being obtained after a
time of the order of the waiting time itself.>~> Careful
analyses of these aging phenomena, and especially of the
effect of slight temperature changes, have later shown
that aging can teach us a lot about the hidden properties
of the spin-glass phase.® The hierarchical organization of
the metastable states as a function of temperature, in-
ferred from the temperature variation experiments,®
brings the experimental spin glass closer to its rather
abstract description in the Parisi solution of the mean-
field problem.” Conversely, since the real spin glass is al-
ways found out of equilibrium, the theory is now focused
on out-of-equilibrium properties, and its most recent
analytical and numerical developments® show that aging
phenomena indeed occur within the original
Sherrington-Kirkpatrick (SK) model.’

The dynamics of the spin glass is commonly investigat-
ed by recording the response to a small field variation (ex-
cept in the case of measurements of the spontaneous mag-
netic noise!%). In the present paper, we want to address
the question of how far aging is affected by the field varia-
tions which are used in the diverse experimental
scenarios. We discuss TRM measurements for various
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field amplitudes; but the most quantitative information is
obtained from low-frequency ac susceptibility measure-
ments, during which a small dc field variation (compara-
ble to those used for TRM studies) is applied.

In a standard experiment, the spin glass is quenched
from the paramagnetic phase, above the freezing point
T,, down to some temperature T,. We call age the time
elapsed at the constant temperature T; this time governs
the observed properties. For example, in a TRM decay
measurement, the sample is cooled in a field, which is re-
moved after a waiting time ¢,,. Aging is visible in the ¢,
dependence of the decay curves, or more precisely in
their age dependence, the age being in that case the sum
of the waiting time plus the duration of the relaxation
measurement. Phenomenological scaling relations have
been established to account in detail for these aging
effects;>® they can be summarized in the following way.
We describe the spin-glass dynamics by a distribution
g(r,t,) of relaxation times 7 at an age t, =t +¢,; the age
dependence of the distribution is found to be

g(r,t,)=G(r/tt) , )

where p is an exponent ~0.9 for 0.4<T/T,<O0.9.
Thus, over most of the temperature range, aging is
equivalent to a “logarithmic shift” of relaxation times,
with a constant of proportionality slightly lower than 1.
This point can be given a physical meaning, which is
briefly discussed at the end of Sec. IV. For our present
purpose, it will be sufficient to retain (as an approxima-
tion) that the TRM relaxation essentially depends on the
ratio t /t,,. Correspondingly, the ac susceptibility at fre-
quency o relaxes as the age ¢, increases, and mainly de-
pends on the product w-¢,.

The occurrence of aging, together with an approximate
t/t, or w-t scaling, can be intuitively understood within
the scenario of weak ergodicity breaking,'! which we
briefly recall. Due to frustration, the spin glass cannot
find equilibrium in the low-temperature phase; within a
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configuration space description, it wanders in a self-
similar mountainous landscape of metastable states, sur-
rounded by energy barriers of all possible heights. This
general picture is implied by the evidence, in the experi-
ments, of dynamic processes at all time scales. In Ref.
11, this slow evolution is sketched by a random walk
among a collection of “traps” with random trapping
times 7, all equally accessible. To each trap is associated
a certain magnetization M and ac susceptibility y (). In
order to obtain the properties of the real sample, one
should average over a collection of magnetically decorre-
lated subsystems with the appropriate probability distri-
bution. The distribution of trap depths is taken as an ex-
ponential, as suggested by the mean-field results.” For
thermally activated processes, this then leads to the fol-
lowing distribution of trapping times:

(1)= i
W +x

(for r>>71,) , 2)

where x (from the distribution of barrier heights) is a
temperature dependent parameter describing the struc-
ture of the phase space. The crucial point is that x <1 in
the spin-glass phase, and that in consequence the mean
value of ¥(7) is divergent; the mean time needed to ex-
plore the whole set of traps (and thus to reach ergodicity)
is infinite. In this sense, ergodicity is weakly broken: al-
though there are always larger and larger barriers to be
crossed, the system never gets trapped in a finite region of
phase space. This is at variance with usual ergodicity
breaking, where systems reach rather quickly an equilib-
rium configuration, albeit in a restricted sector of phase
space.

After a time t,, the system has explored a very large
number of short-lifetime traps, which actually contribute
(as far as x < 1) to a very modest part to the total elapsed
time. As usual with extremely broad distributions, the
significant contributions arise from the largest—
although infrequent—events. Thus, after a random walk
during ¢, the system has the largest probability to be
found in a trap of characteristic time of order ¢, itself.
At that point, ¢, fixes the time scale of the dynamics, and
the microscopic time 7, becomes irrelevant. For TRM
experiments, it has been shown!! that the magnetization
decay depends on the ratio ¢/¢,. A similar formulation
can be given in the case of ac experiments;!! assuming
that the out-of-phase susceptibility y, (@) of a 7 trap is a
function of -7 only, peaked around w-7=1 (e.g., a sim-
ple Debye form), one finds by averaging over the subsys-
tems that the out-of-phase part ¥''(w,t) of the ac suscep-
tibility reads

X'(0,8)=x, (0t)* '+x, (for t>1/0), (3)

where X, is a constant. We have added in Eq. (3) the
equilibrium value Y., which naturally appears when
some stationary ‘“bottom of the traps” dynamics is intro-
duced, as recently discussed in Ref. 12 (see also Sec. V).
The -t dependence of Y''(w,t) is equivalent to the t /¢,
scaling of the TRM. We mainly concentrate here on the
dissipative component of the ac susceptibility because it is
the most sensitive in relative value to aging effects.
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The results presented here have been obtained with the
CdCr, ;In, ;S, insulating compound, elaborated by M.
Nogues at the Meudon-Bellevue CNRS laboratory. This
sample has been previously characterized as a spin glass,
exhibiting a static and dynamic critical behavior!® around
T,=16.7 K. It is worth noticing that this system
presents in all respects the same behavior as the
Ag:Mn, ¢, metallic compound.>®

The paper is organized as follows. In Sec. II, we de-
scribe the behavior of the aging out-of-phase susceptibili-
ty when small field variations are applied. We analyze
the results with the help of the trap model,!! and examine
the manner in which the traps are affected by a field vari-
ation. This prompts us to go one step beyond the
“phase-space” description of the trap model, by associat-
ing to a trap a typical number of spins to be flipped to es-
cape. However, the general features of the effect on aging
of field variations that we deduce from both x’* and TRM
measurements are experimental facts, and therefore in-
dependent of any model. In Sec. III, we examine TRM
measurements for various fields amplitudes along the
same line, and in Sec. IV we use both TRM and y" re-
sults to develop a global quantitative description. Final-
ly, in Sec. V, we use our analysis to relate the number of
spins to the energy barrier associated with metastable
states.

II. AGING OF THE ac SUSCEPTIBILITY
AND dc FIELD VARIATIONS

A. Experiments

The low-frequency (0.1 and 1 Hz) ac susceptibility in
presence of a superposed dc field has been measured with
an rf superconducting quantum interference device mag-
netometer, the lock-in detection being performed by a di-
gital method. Details on this setup and the experimental
procedure can be found in Ref. 14, where other results of
the same series of }'' measurements are also presented.
Let us only recall that, upon applying or removing a dc
field of 5-30 Oe, a huge varying magnetization adds up
to the response of the spin glass to the small (0.3 Oe) ac
probe field. For each point, this magnetization drift has
been measured; during the time needed for the lock-in
detection (two ac periods), it has been approximated
linearly, and accounted for in the digital analysis.

At the beginning of the measurement, the sample is in
the paramagnetic phase at T =1.3T; it is cooled down
to 0.77, (12 K, temperature of all the present ¥" mea-
surements) in a few minutes. At this point, the spin glass
is out of equilibrium and starts aging; we continuously
record the ac susceptibility, which slowly decreases. Ag-
ing is particularly visible (in relative value) in the out-of-
phase component X'’, on which we focus here. Figure 1
presents the x'’ relaxation as a function of the age (time
elapsed after quench); in the first part of the experiment
(age <350 min), the relaxation shows the aging evolution
started at the quench. After 350 min, we apply a dc field
of 5-30 Oe. This range of values remains small com-
pared to the field of order 1 kOe which, at this tempera-
ture, would bring the spin glass back to the paramagnetic
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phase.!* The field is kept applied during a second period
of 350 min; it is then removed, and the Y'’ measurement
is pursued during another 350 min.

In Fig. 1, the first obvious consequence of applying the
dc field is that the y'' relaxation is restarted. In terms of
metastable states or traps, we can say that the field varia-
tion AH has produced an increased population rate in the
short-time traps (of order 7=1/w), therefore increasing
x''(w). We associate a typical Zeeman energy E(AH) to
the field variation AH; the lifetime 7 of the traps will be
reduced to 7' by a multiplicative factor a such that

7=a7 and a=exp(—E(AH)/kyT), (4)

where kj is the Boltzmann constant and T the tempera-
ture. At the time #; of the perturbation, the system has
the largest probability!! to be found in 7 traps such that
7~1;; if the perturbation reduces this value to a-7;, the
system will now behave as if its age was also reduced to
a-7;. This is the trend observed in Fig. 1, but a careful
examination shows that this does not work quantitative-
ly. The y" relaxation after the field variation cannot be
exactly superimposed onto some part of the one following
the quench; a horizontal translation, corresponding to a
decrease of the effective age, yields too smooth an effect.
The measured relaxation restarts more abruptly, as if for
part of the subsystems the effect was more like a new
quench rather than a reduction of the age.

In addition, a decrease of the effective age is not
sufficient on its own to explain the frequency dependence
of the results. Figure 2 shows similar experiments, per-
formed for two different values ®=0.1 and 1 Hz of the
frequency. At 0.1 Hz, the field is applied after 350 min as
in Fig. 1, whereas at 1 Hz, it is applied after only 35 min,
in order to keep the product w-t; constant. The curves,
plotted as a function of w-#, have been vertically translat-
ed in order to make them coincide in their first part. Part
of this vertical translation accounts for the difference in
the equilibrium values of x'’ at 0.1 and 1 Hz, which can-
not be disentangled from a slight uncertainty on the
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FIG. 1. Relaxation of the out-of-phase susceptibility y’’ (in
arb. units) at frequency =1 Hz and constant temperature 12
K, as a function of the time (age) following a quench from above
T,=16.7 K. The sample is (as in all figures) the CdCr, ;Ing S,
insulating spin glass. After 350 min, a static field AH (=5, 9,
15, or 30 Oe) is applied, producing a renewed Y’ relaxation.
After another 350 min, the field is removed. The inset sketches
the procedure.
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FIG. 2. Comparison of the effect on '’ of a dc field variation
in two experiments at frequencies ®=0.1 and 1 Hz. The field
variation is applied at a time ¢; (=350 and 35 min, respectively)
such that the product w-f, is kept constant. The curves are
plotted as a function of w-t, and have been vertically shifted in
order to superpose both relaxations before the field variation.
At constant w-t, the effect of the perturbation is seen to be
stronger for the lowest frequency (longest ¢,).

phase setting of the lock-in detection at each frequency.
The coincidence of both relaxations after the quench
shows that the -t scaling, suggested by the trap model,
indeed works fairly well.

In contrast, Fig. 2 clearly shows that the effect of the
field perturbation is weaker at higher frequency and con-
stant w-t;, thus shorter ¢,. This feature has been sys-
tematically observed for all the values of AH that we
have explored. We interpret this result in the following
way: the relevant traps (those which are significantly oc-
cupied) are more affected by the field variation in the (0.1
Hz, 350 min) experiment than in the (1 Hz, 35 min) ex-
periment. At the time of the perturbation, these relevant
traps have a lifetime of the order of the age, i.e., larger in
the 0.1 Hz case; hence, the deeper the trap, the stronger
its coupling to the field. We are thus led to go beyond the
purely phase-space description that we have used up to
now, by specifying how a 7 trap “couples” to the magnet-
ic field. One can think of a typical number N of spins,
which must be flipped to escape from the bottom of the 7
trap of depth B(N):

T7=15 exp(B(N)/kyT) , (5)

Ty being some attempt time, to be specified later. B(N) is
expected to increase with N. We now explicit the energy
variation E(AH) in Eq. (4) as a Zeeman coupling of the
field with the group of N spins, where “spins” denote the
elementary magnetic objects to which the field couples;
they can be single spins, but also renormalized groups of
spins. Let us say that they have a magnetic moment M
equal to mpug. Due to the random nature of the interac-
tions and the frustration they cause, the net uncompen-
sated moment for a group of N spins is of the order of
V'N, and thus we write

E(AH)=E(AH,N)=VNmpuzAH . 6)

The reduction factor « is thus smaller (stronger perturba-
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tion) for the deeper traps which are explored in a longer
experiment; this is the correct qualitative behavior ob-
served in Fig. 2.

We give in Fig. 3 a tentative sketch for qualitatively
summarizing our picture. Figure 3 depicts the free-
energy landscape after a field variation. Two sets of traps
are shown, corresponding to two different values of the
total magnetization. The perturbation has tilted the
landscape; the new value of the field now favors the mag-
netization corresponding to the set of traps located
downhill. In our analysis, the deeper the traps, the larger
the number of spins involved, and the larger the exten-
sion of the traps in the configuration space. In Fig. 3, we
have pictured the deeper traps as craters with a very en-
larged opening. In such a situation, the overall slope of
the landscape clearly has a more drastic effect on the
deeper traps.

B. Quantitative analysis

The exact analytical calculation of the Y'' relaxation
after a field variation within the trap model is beyond the
scope of this paper. We have instead worked out a sim-
ple approximation which allows us to reproduce the ex-
perimental results with two physically meaningful param-
eters. From Egs. (4) and (5), the effect of the field is to
reduce the lifetime 7 of a trap to 7’ such that

B(N)—E(AH,N)

T(N)=a-7(N)=T1, exp (7)

From Eq. (3), the x'’ relaxation after the quench follows a
> 1 power law, as can be checked in Fig. 4 (the dotted
line corresponds to x =0.76, which is the value obtained
from the analysis of the TRM data'®). Just after the field
variation at ¢, the reduction of the age from ¢, to a-#,
alone would produce a (¢t —¢, +a-t;)* ! shape, but such
a shape (dashed lines in Fig. 4) does not account well for
our measurement. The observed shape indeed shows a
rather abrupt restart of the relaxation; it suggests that,

Free Enerqy

FIG. 3. Schematic picture of the free-energy landscape after
a field variation. The magnetically unfavorable metastable
states have been tilted, and their depth has diminished; the
deeper the trap, the larger its extension, and the stronger the
effect of the field perturbation (in agreement with the result in
Fig. 2).
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FIG. 4. Example data with fits to equations in the text. The
dotted line is a power-law fit of the relaxation following the
quench [Eq. (3), x =0.76 from TRM data (Ref. 15)]. The solid
lines correspond to our model for the effect of the field pertur-
bation [Egs. (11), (A1), and (A2)], with fitted values of a and p;
for the last stage of the experiment, the limiting cases [Egs. (A1)
and (A2)] of full memory (FM) and no memory (NM) are
displayed (see Appendix A). The dashed lines are calculated
with p=0 in Eq. (11), that is with the only effect of an age
reduction (“a effect”). They show that the “p effect” of a partial
quench is needed to reproduce the data (the observed departure
has been found systematically).
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for part of the subsystems, the effect of the field variation
is similar to that of the initial quench. This is what
would happen if these subsystems were sitting at ¢, in
traps which have coupled so strongly to the field that
they have been immediately emptied once the field is
switched on (the existence of such fragile traps was
indeed recently established within the SK model by one
of us'®). A way to account for this effect is to assume that
B(N) grows less rapidly than E(AH,N)~V N, in order
to obtain that 7'(N) in fact decreases for large NN (this will
be checked for self-consistency in Sec. V). In that case,
the traps with sufficiently large N will indeed be com-
pletely washed out by the field variation, which corre-
sponds to the observed effect on x'’. This occurs beyond
a critical size N*, which can be defined in the following
way: a trap is emptied out if its escape time after the field
perturbation is shorter or equal to the “probe time” of
the experiment, which is the inverse frequency 1/w.
Thus, N* is defined in such a way that:

T(IN*)=a-7(N*)=1/0 , (8)

which means in terms of energy depths of traps

1_
P To €Xp

9)

B(N*)—E(AH,N*)
kT '

The critical size N * is associated to a characteristic trap-
ping time 7* which, in the absence of field perturbation,
reads

B(N*)

T*=71(N*)=1, exp [—————

Ky T (10)

Our approximation simply consists in dividing the set of
traps in two families. The first one, corresponding to
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7=<7*, is that of the “hard” traps which are only partially
affected by the field. They yield a behavior which is
characteristic of a reduced age, which we approximate by
a mean multiplicative factor {a), averaged over the fam-
ily. The second one, such that 7> 7*, is that of the “fra-
gile” traps, which are completely destabilized by the per-
turbation. The notion of a threshold size N* is reminis-
cent of the treatment of a field perturbation AH in the
“domain theory” of Ref. 17, in which the authors state
that two thermodynamic equilibrium states differing by
AH are indistinguishable up to a certain (AH dependent)
“overlap length” (see also Ref. 18). However, we insist
that our definition of N* is purely dynamical (and not
thermodynamical), and thus explicitly depends on the
probe frequency [see Eq. (8)].

We define p as the proportion of subsystems which are
in this fragile region at the time ¢, of the perturbation.
At time ¢ from the quench, the y’’ relaxation after a field
variation at time #; can thus be written as the sum of the
two corresponding terms:

X'o,t >t )=px"(w,t—t)
+H(1—p)x"(w,{a)t;+t—1;). (1)

The functional dependence of ¥’ on @ and ¢ is deter-
mined from the power-law behavior following the quench
[see Eq. (3)].

Thus, we summarize the effect of a field variation in
two components: an average reduction of the trapping
times (concerning what we call hard traps), together with
a sudden emptying out of the deepest traps (fragile traps).
After the field change, we describe the jump of ¥’ as a
redistribution of the population of the traps within an in-
variant distribution of trapping times. The system is sud-
denly attracted towards another set of traps, which has
the same statistical properties as the previous one; the
reduction or temporary extinction of some relaxation
times reflects the fact that the system shifts away from
the unfavorable region of the configuration space. Then,
aging resumes; the new set of traps still has the initial dis-
tribution [Eq. (2)]. As time elapses, deeper and deeper
traps will progressively be populated again, and the ves-
tiges of the perturbation will slowly become insignificant.

Let us now turn to the third phase of the experiments:
at a time #,(=2¢, in our case), the static field has been re-
moved. Figures 1, 2, and 4 show that the '’ relaxation is
again restarted, and that the effect is slightly weaker than
when the field was established at ¢;. Part of the aging
during ¢, remains effective after the field cycle; there is a
memory effect, for which we have estimated upper and
lower bounds in Appendix A.

For each of our Y’ measurements, we have chosen the
values (&) and p to fit the data. An example is shown in
Fig. 4 (solid lines). The relaxation during the second part
of the experiment, when the field is applied, can be satis-
factorily reproduced by Eq. (11); concerning the third
part, we have only constrained {a) and p by imposing
that the experimental curve lies in between the two
bounds given by Eqgs. (A1) and (A2) of Appendix A. We
will discuss later the results on (a ), in comparison with
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TABLE I. Values of the proportion p of subsystems in the re-
gion of fragile traps [7>7*, Eq. (10)], deduced from the three
series of Y" measurements. ?, denotes the duration of each
phase of the experiment; starting from the quench, the field is
applied at t; =¢,, and removed at t, =2¢,.

o (Hz) t, (min) H=5 Oe H=9 Oe H=15 Oe H=30 Oe

0.1 350 0.01 0.10 0.35
1 350 0.01 0.02 0.15 0.60
1 35 <0.01 <0.01 0.07

the TRM experiments. The p values are summarized in
Table 1.

Comparing the two series of results at 1 Hz, one sees in
Table I that p increases with the duration of the experi-
ment. Indeed, at fixed field and frequency, the limit 7*
[defined by Eq. (10)] above which the traps are fragile is
fixed; the longer the waiting time, the larger the number
of subsystems which are found in long-lifetime traps,
hence the larger the proportion p of them beyond 7*.
Also, the correct qualitative behavior as a function of the
frequency o is found; at fixed ¢, and field, a higher fre-
quency yields larger values of N* and 7* [see Egs. (9) and
(10)]; the proportion p of subsystems beyond 7* is there-
fore expected to be lower.

At this point, we have a quantitative estimate of the
effect of the field on the aging evolution of ¥’ in the spin
glass. We now use the same guideline to analyze the
effect of the field in another class of experiments: the re-
laxation of the thermoremanent magnetization.

III. FIELD SCALING OF THE TRM RELAXATION

In a TRM experiment, the sample is cooled from above
T, in a given field, and kept at constant 7' < T, under this
field during a time ¢#,,. Then the field is removed, and the
decay of the remanent magnetization is measured. The
relaxation function is sensitive to the field amplitude; it is
faster for a larger field. In a previous paper,!® we have
parametrized the field dependence of the relaxation func-
tion. We now reanalyze an extended set of this previous
series of data, obtained with the same CdCr, ;In, ;S, sam-
ple as for the y'' data.

Repeating identical experimental procedure, we have
explored field amplitudes ranging from H =10 to 100 Oe
(previous data®® with H=0.1 Oe, taken with a different
setup, cannot be directly included in the present analysis).
The measurements have been performed by extracting
the sample from the pick-up coils, a method which yields
the full value of the magnetization at each point. This
enables us to compare not only the shapes but also the
amplitudes of the decay curves obtained for various field
values. We have normalized the remanent magnetization
to its field-cooled (FC) value (indeed, a measurable relaxa-
tion of the FC magnetization in another sample has al-
ready been quoted,21 but in our case we have checked®
that no relaxation of the field-cooled magnetization is
found within the accuracy of the present set of TRM
measurements).

A set of TRM curves measured at T=12 K for z,, =30
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min and 10-100 Oe field amplitudes is presented in Fig.
5. For increasing field, it appears clearly that the
remanent magnetization represents a decreasing fraction
of the FC value (11% reduction from 10 to 50 Oe, 27%
from 10 to 100 Oe). This effect is larger than the non-
linearity of the magnetization,'® which reduces the FC
susceptibility by 3.5% from 10 to 50 Oe and 6.5% from
10 to 100 Oe. Also, the measured relaxation becomes
steeper. On a t /¢, plot like the insert of Fig. 5, it can be
seen that the overall qualitative effect of increasing the
field is compatible with the age reduction deduced from
the y'’ experiments. This can be checked by trying to ad-
just the different curves on the same master curve as a
function of the modified variable ¢ /({a(H))t,), where
{(a(H)) has the same meaning as for y"'.

However, the {a) reduction does not give a complete
scaling of the curves. One finds that the initial falloff of
the amplitude, increasing with the field, is not well repro-
duced by the {a) reduction, and necessitates the intro-
duction of a second parameter, as was the case for the y"”
data. We have defined p as the proportion of subsystems
located in the region of fragile traps which are washed
out by the field variation. At the field cutoff in the TRM
experiment, some of these subsystems will indeed jump
directly into the region of more favorable magnetization,
thus contributing to the initial falloff of the magnetiza-
tion. We have rescaled the magnetization amplitude by a
factor «(H), which we qualitatively relate in Appendix B
to the parameter p from the Y’ analysis.

Figure 5 shows this two-parameter scaling of the
(T=12 K, ¢t,=30 min) set of TRM curves. The con-
tinuity of the obtained ‘“‘master relaxation function” is
quite good. What is remarkable is that increasing fields
give access to a time region of the master curve which is
not easily accessible at lower fields; the reduction of the
effective age of the system allows us to measure the relax-
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FIG. 5. TRM relaxations at T=12 K for ¢, =30 min, with
values of the applied field ranging from 10 to 100 Oe. The mag-
netization has been normalized to the field-cooled value. The
insert shows the decay curves as a function of ¢ /¢,,. In the main
part of the figure, the curves have been rescaled in order to
place them on a unique master curve: the factor a accounts for
the age-reduction effect, and the parameter « for the partial
quench effect. These parameters are related to those deduced
from the x’' measurements (see text). In this rescaled plot, the
higher-field curves are in continuation of the lower-field ones,
giving access to an extended time region.

ation function for very large values of ¢/({a)t,). The
long-time power-law behavior, for instance, is only visible
at the very end of the 10-20 Oe curves; but it is fully pic-
tured by the 100 Oe relaxation, which is obviously a
power law with the same exponent (slope in the log-log
plot of Fig. 5) as that of the end of the low-field curves.
This is in agreement with the prediction made in Refs.
11, 12, and 15 that the long-time part of the TRM relaxa-
tion is a power law.

We do not have an extensive set of comparable mea-
surements at various ¢, for each of the field values ex-
plored. Also, we do not aim to establish here a complete
scaling of the TRM data as a function of both field and
waiting time, since the ¢ /¢, scaling is only approximate
(Sec. I). We limit ourselves for now to field scaling at
fixed t,,. Figure 5 shows our most complete data set; we
have also obtained a similar scaling, although with less
data, at 12 K for ¢,, =350 min (2 curves) and at 13 K for
t, =30 and 300 min (3 curves for each). Interestingly,
the longer t,, data favor lower values of {a); this corre-
sponds to the fact that the averaging of a is performed
over a set of traps among which the deepest ones are
more and more populated for increasing ¢,,. Simple argu-
ments within the trap model, or following Parisi,?* sug-
gest that {a) should be a decreasing function of the re-
duced variable Ht}. Our data is compatible with a power
law of exponent A~0.2 (this determination cannot be
very accurate because of the insufficient amount of data).

A systematic study of the TRM decay for various field
amplitudes has been recently performed on a Cu:Mn spin
glass by Chu, Kenning, and Orbach.”® We could check
that all qualitative trends which are found in their results
are compatible with ours. They describe a landscape
with barriers of all heights very close to the picture con-
sidered here. Nevertheless, we believe that the existence
of a distribution of trapping times with infinite mean [Eq.
(2)] is a crucial point for a quantitative description of ag-
ing since it is at the heart of the most visible evidence of
aging, which is that after ¢, the characteristic relaxation
times of the system are of the order of ¢, itself. The pic-
ture of the effect of the field as a “Zeeman tilting of the
phase space” has indeed emerged from discussions with
these authors; our present point, however, is that all traps
are not equally affected by the field change.

The effect of the field amplitude on the relaxation of
the zero-field-cooled magnetization has also been investi-
gated by Djurberg, Mattson, and Nordblad.** The au-
thors mainly study the logarithmic derivative of the re-
laxation, which is a good approximation to the distribu-
tion of response times.> This quantity is shown to peak at
shorter times for sufficiently large fields, in qualitative
agreement with our conclusion of an age-reduction by a
factor (a(H)).

IV. COMPARISON OF THE RESULTS FROM TRM
AND y"" MEASUREMENTS

We first consider the mean reduction factor {a). The
quantity has the same meaning in both experiments, and
can be used to quantitatively specify the Zeeman cou-
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pling E(AH,N) of the field to the N spins associated with
a 7 trap.

Figure 6 presents a set of (a) values deduced from
both kinds of measurements. Within the error bars, it is
clear that a behavior which is common to both experi-
ments is found. {(a) is an average value over the family
of hard traps visited after ¢,; this average value yields a
typical size N, characteristic of the order of the magni-
tude of the relevant hard traps:

In{a)=E(AH,N)/kgT . (12)

We have assumed in Eq. (6) that the energy depth varia-
tion E(AH,N) of the trap for a field change AH is pro-
portional to AH. Figure 6 shows that the approximation
works well up to around 50 Oe; in that range, the mag-
netic moment can be considered independent of the field.
This is obviously a low-field approximation; for higher
fields, the interactions locking the relative orientations of
the spins in a random way should no longer be dominant,
and an extensive polarization of the N spins is expected.
The magnetization of a set of N spins will then grow fas-
ter than V'N, presumably proportionally to NAH (or
slightly slower than AH due to nonlinearities), thus lead-
ing to E(AH)x<AH?. This is indeed the general trend
which can be seen in Fig. 6: above 50 Oe, In{a) varies
faster than linearly with the field. -

The slope of In{a) versus AH is VNmup /kyT [Egs.
(4) and (6)]. Let us now specify the meaning of the ele-
mentary magnetic moment mpug. From the study of the
susceptibility of spin glasses above T, it is known (see
Ref. 14 and references therein) that the elementary mag-
netic objects which produce the paramagneticlike
behavior are not individual spins, but renormalized
groups of spins. This has been observed in different sam-
ples by different laboratories; in the case of our sam-
ple,!>20 the measured Curie constant indicates a magnetic
moment equivalent to ~60 ferromagnetically coupled
Cr’" ions as basic renormalized entities. Using this
value, we find N =670, which means that escaping from
the hard traps typically involves flipping of the order of
700 elementary groups of Cr3" ions. We can now check
afterwards the validity of the linear approximation in Eq.
(6); the energy V' N mugH becomes of the order of the
mean interaction energy kp7T, for H =45 Oe (T,=16.7

o (H)

0 50 160
H (Oe)

FIG. 6. Field dependence of the parameter a [Eq. (4)] from
both ' (open circles) and TRM (full diamonds) experiments at
12 K. The solid line is a fit to a linear dependence of the Zee-
man energy Ina with field [Egs. (4) and (6)]. Departures from
this approximation are expected above ~45 Oe (see text).

K). It is therefore natural that the linear approximation
fails above this field range.

We give in Appendix B a brief discussion of the com-
parison between the values of the scaling factor «, ob-
tained from the initial falloff in the TRM decay, with the
parameter p characterizing the “partial quench effect” in
the '’ experiments. We now analyze the set of p(x"’) re-
sults, which allows us to specify the range of 7* and N *
values which are explored in the measurements.

p is the proportion of subsystems in traps greater than
T* at the time 7,,. In the ¢, <7* limit, one finds, within
the trap model, that p is given to first approximation by

X
sinmrx ty
~—Smrx W 13
PEIT(x+1) lT*} ’ (13)

where I is the Euler gamma function. More accurately,
we have estimated 7* from our fitted values of p by using
an expansion up to terms of order (¢, /7*)* T2, Interest-
ingly, at this stage, without any assumption concerning
either 7, or the dependence of 7 (or B) upon N, we can es-
timate N* from the values of 7*: from Egs. (6), (9), and
(10), we may write

kT
2 Inwr*

14
p——7 (14)

The 7* and N * results are summarized in Table II. Note
that the logarithmic dependence of N* on 7* means that
our assumption on the relation between p and 7* is not
too crucial for our later conclusions. Table II shows that
N*, of the order of 10°~° groups of renormalized spins is
much larger than the typical number of spins in hard
traps N, as it should be, and remains smaller than the
number of spins within a micron size grain ~10'°. Ex-
periments on mesoscopic samples of about 10" ~® spins
should thus display interesting modifications of the aging
behavior. 7* is found of the order of 100 times z,, for
H =5 Oe, and rapidly approaches the experimental time
window as H increases above a few tens of Oe. This is in
agreement with the experimental fact that the aging phe-
nomena in TRM relaxations are insensitive to the field
amplitude in the 0.1-20 Oe range;'° the observed relaxa-
tion itself does indeed depend on the field amplitude,
mainly becoming faster for increasing field, but the effect
of aging on the dynamic properties [as, e.g., parametrized
by u in Eq. (1)] remains the same. Beyond this low-field
range, departures have been previously quoted;!® these
may also be correlated with the appearance of nonlinear
effects.!?

One may wonder whether the influence of a field varia-
tion, which is shown here to produce a sudden depopula-
tion of the traps beyond 7*, could also be responsible for
the observed systematic deviations>%!® from a pure ¢ /7,
scaling. We show here that 7* presents a very rapid vari-
ation with the field; if this effect was to be at the origin of
the fact that u [Eq. (1)] is lower than 1, u should go closer
and closer to 1 as the field is reduced. In polymer
glasses,! a gradual decrease of u as the stress increases is
observed, but very low stress data are lacking and the
question of the zero-stress limit of u is not settled. In our
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TABLE II. Values of 7* and N* [from Egs. (13) and (14)], calculated from the values of p which
have been fitted to the different y’’ measurements.

o (Hz) t, (sec) T*(H) (sec) N*(H)
5 9 15 30 5 9 15 30
0.1 2.1x10* 1.9x10° 1.0Xx10° 2.4X10* 3.9%x10° 6.8X10° 1.8X10°
1 2.1X10* 1.9X10° 7.8X10° 6.1X10* 1.5X10* 5.5X10° 1.5X10® 3.5X10° 6.7X10*

1 2.1X10° >1.9X10° >1.9%X10° 1.6 X 10*

>3.9X10° >1.2X10°2.7X10°

case, we have recalled above numerous TRM results
where no sign of a u approaching 1 at very low fields [as
low as 0.1 Oe (Refs. 5 and 20)] was found. Thus, the sys-
tematic departure from a pure ¢ /¢, scaling is likely to be
related to another important feature of experimental spin
glasses. We briefly recall how these deviations can be in-
terpreted!’® in the context of the trap model.!! If the
number of traps per subsystem is large but finite, and dis-
tributed with some typical value N', then those subsys-
tems smaller than N’ will eventually reach ergodicity
within the time of the measurement: their dynamics will
no more depend on ¢, (“interrupted aging”). As shown
in Ref. 15, this produces an effective scaling very close to
the one given in Eq. (1), with u < 1, and a good collapse of
the TRM curves for various ¢, and two different samples.
The result is a value of a typical time ¢.,, needed to reach
ergodicity in a significant fraction of the system, of the
order of a few 10° sec (tens of days) in the region
0.6-0.9T,. Of course, this does not mean that aging
suddenly disappears after ¢.,,, which must be understood
as a crossover time scale. Thus, since the experiments in-
dicate that this latter effect (1 < 1) persists in the limit of
vanishing fields, we conclude that both kinds of crossover
time scales are found in spin glasses: the effect of the
field amplitude on the dynamics only appears for
sufficiently high fields, such that the threshold value
7*(H,®) becomes smaller than ¢,,.

V. SIZE DEPENDENCE OF THE FREE-ENERGY
BARRIERS

We have obtained that a typical number N of (possibly
renormalized) spins should be associated to a trapping
time 7; N is the typical number of spins which must be
flipped for escaping from the trap. This allowed us to
quantify the Zeeman coupling of the field to the traps.
We have now determined a set of coupled 7*,N* values
(Table II); we can tentatively use them to determine—or
at least constrain—the possible shape of (&), i.e., of the
corresponding free-energy B(N), together with the ac-
ceptable range for the attempt time 7, [Eq. (5)]. [Note
that Eq. (14) does not give the explicit dependence of 7 on
N, due to the presence of H.]

A natural assumption for B(N), inspired from Fisher

and Huse’s droplet description,'® is
B(N)=EN"V, (15)

where E, fixes the energy scale, and v is some exponent
which, as stated in Sec. II B, is expected to be smaller
than 1/2 so that 7/(N) becomes a decreasing function of

N for large N. From the arguments of Fisher and Huse,!®

one should expect 0.06 <v <0.66 (the lower bound being
a reasonable guess. Note that v is equivalent to /3 in
Ref. 18). We have fitted the shape Eq. (15) to the 7*,N*
values deduced from the '’ measurements. Despite the
low number of points entering the fit (3+4, correspond-
ing to the first two lines in Table II), some general trends
can be observed. First, we have fixed 7, to the micro-
scopic value of 107 !% sec. This yields E,=26kyT, a rath-
er large value for the reversal of the elementary magnetic
entities (N =1). However, the exponent is found to have
the remarkably low value v=0.03; this allows the ex-
ploration of a large range of N(1—75000) within the ex-
perimental time window. The tendency to low values for
v persists if 7 is set to 1 sec instead of being microscopic,
which yields v=0.10 and E,=3kyzT. Thus in any case,
we find that the time scale 7(N =1) for elementary pro-
cesses is macroscopic (0.1 to 10 sec) rather than micro-
scopic.

The small value of v suggests that the power law [Eq.
(15)] could as well be a logarithmic dependence, as sug-
gested by Rieger:®

B(N)=E,In(N/N,) . (16)

We cannot discriminate between Egs. (15) and (16);
indeed, we only know a set of N(7) values in the limited
region of N~10°"% The logarithmic fit gives
E|=1.25kp T, independently of the choice of 7, which in
this formulation is only correlated to the value of N,.
Trying 7,=10"!2 sec yields the completely unphysical
value Ny,=1. 1078, whereas a more likely value Ny=1 is
obtained for 7,=0.01 sec (7q=1 sec corresponds to
N,=43). Again, we are led to consider that the charac-
teristic time for the elementary processes relevant to our
experimental time window is in the micro- rather than
the microscopic time scale.

This is a very interesting point, which raises the ques-
tion of what “trap” really means. All along this paper,
we have sketched the spin-glass behavior (at a fixed tem-
perature) as a random walk among a single type of trap.
On the other hand, we know that another class of experi-
ments,® in which slight temperature variations are ap-
plied during aging, show that the metastable states are
hierarchically organized, and that the bottom nodes of
the hierarchical tree develop into new branches as the
temperature is lowered. The experiments analyzed here
have been performed at constant temperature after the
quenching procedure; in that case, only one level of the
hierarchical tree is explored, whereas the temperature
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variation experiments give access to higher or lower lev-
els in the tree. At a fixed temperature, the system
wanders among the “bottom nodes” of the tree as de-
scribed in the trap model; these “bottom nodes’” are not
elementary configurations, but rather free-energy valleys
involving a larger number of configurations, which can
subdivide into other valleys at lower temperatures—see
the recent discussion given in Ref. 12. The attempt time
7o corresponds to elementary jump processes between the
bottom nodes; we interpret the macroscopic value that
we obtain as indicating that the bottom nodes at a given
temperature proceed from the renormalization of the
lower branches of the tree (which, otherwise, would only
be revealed by decreasing the temperature). 7, can thus
be understood as a renormalized value; it may therefore
be of a macroscopic order of magnitude.

We have thus tentatively obtained the dependence of
the trapping time 7(N) upon a corresponding number of
elementary magnetic objects N, and also the fashion in
which a 7 trap is modified by a field variation. Figure 7
displays, using Eq. (16), the variation of the energy depth
of the traps due to a field variation of a given amplitude,
as a function of N.

VI. CONCLUSION

In this paper, we have addressed the question of the
effect of the magnetic field on the free-energy landscape
of a spin glass. The aging phenomena contain much in-
formation about the complex geometry of this landscape,
since the evolution of the macroscopic properties reveals
the slow spreading of the system among valleys and
mountains, towards the distant horizon of equilibrium.
Most experimental investigations involve a field varia-
tion; however, the ac susceptibility is close to the limit of
zero applied field, and we have used this highly sensitive
probe to study the effect of an additional field variation,
with an amplitude comparable to that used for TRM de-
cay experiments. We have made a direct and quantitative
comparison of both classes of experiments.

Aging, together with its main consequence of an ap-

15
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FIG. 7. After a given field variation AH (=5, 9, 15, or 30
Oe), dependence of the depths of the traps
AE=B(N)—E(AH,N) [Eq. (7)], in units of k5T, on the corre-
sponding number of spins N (decimal logarithm scale). We have
used the logarithmic dependence of B(N) [Eq. (16)] with
70=0.01 sec. The dashed lines stand for the typical value
AE(N*)=kzTIn(1/0-7y) [Eq. (9)]. In a ¥’ experiment at fre-
quency o, this typical value defines the cross over N* between
hard (N <N*) and fragile (N > N*) traps.
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proximate ¢ /¢, or w-t dependence of the dynamics, can
be usefully described by a random walk in a wide distri-
bution of traps.'"!> We have used this picture as a guide-
line to interpret our experimental results. From the re-
laxation of x"’ during aging, and from the modification of
this relaxation when an additional dc field is changed, we
find that the effect of the field is twofold. Firstly, all traps
have their depth reduced by a Zeeman energy term E,
which helps to escape towards a region of more favorable
magnetization. Secondly, the depth reduction is more
important for the deeper traps. Thinking of the pertur-
bation as a general tilt of the landscape, this assertion
suggests that deeper traps have a larger extension in the
configuration space: the larger opening of the deeper
traps will make them more sensitive than the smaller
ones to a given tilt angle.

This selective coupling of the field to the traps has led
us to associate to a given trap depth B a typical number
N of spins (or basic renormalized entities). The Zeeman
term E is found proportional to the field H, up to ~50
Oe; it is likely to represent the coupling to the field of
frustrated clusters of frozen magnetic moment, such that
E <V'N H. The shape of the restart of the "’ relaxation
after a field change shows a partial quench effect: from
this observation, we infer that some of the deepest traps
are immediately emptied by the field change, or in other
words that the field-perturbed trap depth B(N)-E(N) be-
comes a decreasing function of N for large N. We thus
describe the '’ results with the help of two fitting param-
eters: an average {a)={exp(—E(N)/kzT)) of the
Zeeman effect on the small-N traps which are only par-
tially perturbed (hard traps). This corresponds to a mean
reduction of the effective age at the time of the perturba-
tion from ¢, to {a)t,. The second parameter is the pro-
portion p which is the requenched population from the
region of unfavorable large-N traps which are completely
washed out (fragile traps). The limit between both fami-
lies is found for trapping times of the order of 10°7 sec
for H~ 10 Oe.

We have analyzed along the same line a set of TRM ex-
periments performed with various field amplitudes
(10-100 Oe). We find that the effect of increasing the
field amplitude is actually to reduce the effective age by
the same factor (a) as found in x'’; the ¢ /¢, scaling vari-
able is to be replaced by ¢ /({a)t, ). The contribution of
the fragile traps also appears; it is seen as a slight increase
of the initial falloff of the magnetization for increasing
fields. Let us remark that, in the case of the TRM experi-
ments, the measurement is only sensitive to magnetiza-
tion changes, and ignores further aging among deeper
and deeper traps, which will however continue within an
unchanged distribution of trapping times.

We have been able to rescale the set of TRM curves
measured at various fields (but fixed ¢,) on the same mas-
ter curve.'* For different t, values, more accurate as-
sumptions than the simplified ¢/¢, scaling should be
used; this is beyond our present purpose. The analysis of
the parameters fitted to both Y’ and TRM allows us to
specify the function B(N), which expresses the size
dependence of the trapping times. The trap depths
vary as a power law of N with a small exponent, or
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can be represented as a logarithmic growth:
B(N)=1.25kz T In(N /N,). In the latter case, the physi-
cal condition that Ny > 1 implies that the attempt time 7,
associated with thermally activated escape from the traps
is macroscopic, namely 7,=0.01 sec for Ny =1.

Indeed, the present stage of the trap model'"!> which
we have used here is that of a “one-level tree,” which we
know to be insufficient to account for the effect on aging
of temperature variations, or even the existence of sta-
tionary dynamics. The temperature variation experi-
ments support a hierarchical organization of the metasta-
ble states.® A recent extension'? of the trap model to a
Parisi-tree-type organization of the states shows that, at a
given temperature, the relevant metastable states for ag-
ing correspond to a given level of the tree; these states
indeed consist in sets of hierarchically lower-level states,
among which ergodicity can be reached. We see in the
appearance of a macroscopic value for 7, an indication
that the basic thermal jumps are actually occurring
among renormalized sets of lower-level states.

Our data analysis allows for the rescaling of TRM re-
laxations for various fields onto the same graph. In our
picture, the field appears capable of extending the experi-
mental time window in which the relaxation is explored;
as a function of the reduced scaling variable, the 100 Oe
curve is clearly the continuation for longer observation
times of the curves at lower fields. Meanwhile, increasing
the field brings closer and closer to the experimental
times the crossover time scale 7* due to the fragile traps.
The limit of higher fields has been known for a long time
from the pioneering TRM studies:*® aging disappears.
Thus, slight field variations teach us instructive subtleties
of the spin-glass phase, but stronger perturbations erase
all this information. Indeed, the mechanics of glassy po-
lymers! have already displayed very similar phenomena:
weak stresses reveal aging in the slow strain of the ma-
terials, whereas high stresses have been quoted! to erase
the effect of previous aging.
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APPENDIX A: MEMORY EFFECT AT THE END
OF THE FIELD CYCLING

When the field was applied at ¢,, the hard traps had
their lifetime reduced by {a); some of the subsystems in
this region may have stayed within these magnetically
unfavorable traps when, at ¢,, the field has been removed.
These traps now have a favorable magnetization, and ag-
ing will continue among them. For these memory-
keeping subsystems, there is no perturbation at 7,. We
do not intend to calculate this effect in all details, but we

FIG. 8. Schematic diagram demonstrating the full-memory
(FM) and no-memory (NM) scenarios for field-cycling experi-
ments.

state what can be expected in two limiting cases of

(i) full memory (FM): none of the (1—p) subsystems is
perturbed at ¢,. (= effect of aging during [#,,¢, ] negli-
gible: subsystems in hard traps at ¢; are still in the same
trap at ¢,.)

(ii) no memory (NM): all of the (1—p) subsystems are
perturbed at t,, as at ¢,. (= the effect of the field per-
turbation at ¢, has been forgotten: all subsystems in hard
traps at ¢; have decayed into new traps before ¢,.)

These two limiting hypotheses can be sketched in the
way shown in Fig. 8, yielding simple formulas for y'’:

(ii) FM case

X'(0,t>1,)=p*x"(w,t —1,)
+p(1—px"[o,{a)(t,—t)+t—1,]

+(1—plx"(w,t) ; (A1)

(ii) NM case
X'(w,t>1t;)=px"(t—1t,;)
+p(1—p)x"[w,{a)(t,—t))+t—1,]
+(1—p)x"[o,{a)({adt;+t,— 1)

+t—t,]. (A2)

APPENDIX B: COMPARISON BETWEEN «(TRM)
AND p(x")

The scaling factor k, obtained from the TRM results,
accounts for the field dependence of the “almost instan-
taneous” falloff of the magnetization after the field cutoff.
This initial falloff is the sum of all relaxation processes
occurring before the first measurement, which in that
case is performed after ~5-10 sec. In terms of traps,
these processes can indeed be associated with the p pro-
portion of the subsystems which are in these fragile traps
that are completely washed out by the field change. But
the two experiments give in fact access to different quan-
tities; y’’ essentially measures the number of subsystems
which, after having been kicked out of the fragile traps,
restart aging and are therefore found in short lifetime
traps of order 1/w. On the other hand, the TRM decay
measures a magnetization decrease: only those of these
restarting subsystems which go to a region of different
magnetization are contributing, and also at time ¢ all pro-
cesses having occurred before ¢ are integrated. There-
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fore, it is not straightforward to make a detailed compar-
ison of both quantities k<(TRM) and p(x'’); we can discuss
them at least qualitatively. Using the previous parame-
trization of the TMR relaxation with the trap model,!!
we write that the TRM value for H =20 Oe is m,=0.5
(in units of mgc) at time zero after the field cutoff, the x
scaling thus yields the values of the initial falloff
Am;=1—mg,/k, which are listed in Table III. Table III
shows that, as expected from the above remarks, the rela-
tive variation of Am; with the field is much weaker than
that of p(x'') (see Table I). A crude comparison of their
overall behavior shows that

Am;=(0.03 to 0.10)p(x’')+0.46 . (B1)

In this expression, 0.46 is thus the zero-field limit of Am ;
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TABLE III. Results of the « scaling for TRM measurements
at 12 K and ¢, =30 min. k=1 is arbitrarily fixed at the lowest
field. Am; is the corresponding value of the initial falloff of the
TRM, in units of the field-cooled magnetization m gc.

H (Oe) 10 20 50 100
K 1 1.02 1.07 1.08
Am;=1—mgy/x 0.46 0.48 0.50 0.51

in addition, Eq. (B1) indicates that 3—10 % of the subsys-
tems which escaped from the fragile traps at the field
change will change their magnetization within the first
few seconds. The comparison cannot be pursued in more
details without a complete analytical formulation of the
model, which is not our present purpose.
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