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We develop the polaron theory taking into account the spatial dispersion of lattice polarizability
caused by several phonon branches. This allows us to describe new effects which cannot be obtained in
the classical polaron theory because of the limitations of its model medium that has only one dispersion-
less phonon branch interacting with the carrier. It is demonstrated that if the spatial dispersion is al-
lowed, the carrier spectrum in a medium with many-component polarization proves to have an autolo-
calization band structure. It occurs due to limitation on the polaron velocity in accordance with
Landau’s theory of the quantum liquid. This results in several effects. One of them is “Cherenkov” radi-
ation by a sufficiently rapid polaron of the coherent medium vibrations. Owing to this radiation there
exists a possibility that two polarons can couple under resonance conditions with the medium vibrations.
It leads to the formation of a two-center bipolaron coupled due to the exchange of real phonons. The
influence of the autolocalization band structure on the properties of a system with high carrier concen-
tration is also studied. This is of interest as far as the properties of high-temperature superconductors
are concerned. Like any complex oxides they are characterized by many-component polarization. The
obtained limitation on the velocity of any autolocalized state causes both the existence of maximum po-
laron concentration (of the order of 10?° cm™!) and modification of the Bose-condensation condition for

1 OCTOBER 1995-I1

bipolarons.

I. INTRODUCTION

The theory of a large-radius polaron describes the
practically important and widespread case of dielectric
screening of a charge carrier in a medium with
sufficiently strong electron-phonon coupling. Neverthe-
less, this theory has a surprisingly small number of exper-
imental confirmations and practical applications. One of
the most important experimental results indicating the
presence of autolocalized carriers of a large-polaron type
is the extremely large energy losses of the carrier moving
through an Al,0; crystal.! Having analyzed all energy-
loss mechanisms Tornber and Feynman? came to the con-
clusion that the only mechanism of such losses can be op-
tical phonon scattering of the carrier which is in a pola-
ronic state. This means that a carrier autolocalized state
can be formed even in crystals with intermediate
electron-phonon interaction such as the Al,O; crystal
which is characterized by a Frohlich constant of about
3.2 Polarons were also observed in several other experi-
ments such as photoinduced infrared absorption,
normal-state tunneling,* and Hall measurements® on the
complex oxides demonstrating high-7, superconductivity
at high carrier concentration. The polaron-based inter-
pretation is also possible for the unusual conductivity
behavior in BaTiO;.6

Why are there so few experiments confirming the pola-
ron theory? It so happened that a factor which has a
great influence on the polaron motion was not usually
taken into account by the polaron theory. This factor is
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spatial dispersion of the lattice polarizability of crystals.
Indeed, since the localized carrier can be connected with
the coordinate system there exists a critical value for its
velocity, as was shown in Landau’s theory of the quan-
tum liquid. This critical value is the minimum phase ve-
locity of phonons. When the polaron exceeds this veloci-
ty it radiates real phonons so that its state is not station-
ary in the absence of an electric field. Moreover, it was
shown”? that in principle the polaron with such velocities
cannot be formed due to the reconstruction of the pho-
non vacuum.

Determined by the phonon dispersions the critical ve-
locities are small in most crystals. This causes decompo-
sition of polarons already at a temperature of about 5-15
K (at low carrier concentrations when Boltzmann statis-
tics can be applied to polarons®). So the polarons at such
concentrations can be observed only at very low tempera-
tures.” This fact was not taken into account by the classic
polaron theory. All the basic studies in polaron theory
were carried out neglecting the polarizability spatial
dispersion, which was often misleading because polaron
motion with a velocity higher than the critical one leads
to polaron destruction.

Nevertheless, the results obtained in the studies of the
polaron effective mass can easily be put on a real base
presuming that the phonon dispersion is nonzero and the
critical velocity is higher than the velocity of the polaron
motion. But there are some works studying polaron
braking caused by the polarization field.>1® As will be
shown below, for such effects to occur the polaron veloci-
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ty must exceed the minimum phase velocity of phonons.
If a model medium has one phonon branch?!® we are
faced with a contradiction because the carrier localiza-
tion disappears when the polaron velocity exceeds its crit-
ical value (if there is no other factor in the carrier locali-
zation).

The simplest way to study such processes correctly is
to introduce into the model another branch of optic pho-
nons capable of providing the carrier localization. If the
minimum phase velocity of phonons of the latter branch
u, is higher than that of the first branch u,, a carrier
moving with the velocity v in the interval u; <v <u, will
also be in the polaronic state. Such a model medium al-
lows us tc investigate correctly the process of partial
breaking of the polarization “cloud” enveloping the auto-
localized carrier when its velocity exceeds the minimum
phase velocity of phonons of one branch.

II. THE MEDIUM MODEL

In accordance with what was said above we shall con-
sider a model medium with two-component lattice polar-
ization caused by two phonon branches having different
dispersion. This model differs from that possessing one
branch of optic longitudinal phonons used in the classical
polaron theory’ constructed for the alkali halides. Our
model describes well most ionic crystals, for example,
complex oxides (which have many ions in a unit cell and,
consequently, many phonon branches).

Let us consider the case when two resonance phonon
frequencies 1o, and Qpg, satisfy the inequality
Q101 <Q1gy. The corresponding frequencies of longitu-
dinal vibrations will be denoted as , and Q, (2, <Q,).
The dipole moment associated with the vibration of each
type will be characterized by inverse effective dielectric
constants ¢, =g; '—eg; ! (for the low-frequency reso-
nance) and c,=¢_'—¢; ! (for the high-frequency one).
Here €, and €, are static and high-frequency dielectric
constants and €; can be determined from the Liddane-
Sachs-Teller ratio £, =€, Q3Q 1.

Suppose the dispersion of longitudinal phonon
branches follows the ordinary law
Q}k)=QX0)+ulk?, i=1,2. (1)

The minimum phase velocities of phonons u;, i =1,2, are
presumed to satisfy the inequality u; <u,. In accordance
with this we will denote the two phonon branches as low-
and high-velocity (LV and HV) ones.

The Hamiltonian function for such a medium can be
written in the form

2
oP .

-1

QP2+ 5 —ufP; VP, | .

H=fd3r > —2(7;2

i=1,2 ;34

()

Here P, and P, are the dipole moments associated with
the two phonon branches under consideration. The term
of the form P;P; is absent in H because the vibrations be-
longing to different branches are independent in the har-
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FIG. 1. An example of the dielectric permittivity dispersion
in a crystal with two-component lattice polarization.

monic approximation used here.

The motion equation yielded by the Hamiltonian func-
tion (2) was usually written in terms of the polarization®
or polarization field potential.® But to make the physics
of the problem more apparent it will be convenient to
write the motion equations for the distributions of the po-

larization charge density p, = —divP;, i =1,2, associated
with each of the two phonon branches:

82

—87+Q,?~u,?v§ pi(r,t)=0 . 3)

Here we assume the medium to be isotropic. The dielec-
tric permittivity of the medium under consideration can
be obtained from (2) or (3) in the form
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FIG. 2. An example of phonon dispersion satisfying the con-
dition necessary for the autolocalization band structure effects
to occur.
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(where we make allowance for the decay). The example
of the phonon dispersions and dielectric permittivity cor-
responding to the discussed model medium is demon-
strated by Figs. 1 and 2.

III. BAND STRUCTURE OF THE CARRIER SPECTRUM
CAUSED BY AUTOLOCALIZATION

The presence of the charge carrier in the system is de-
scribed by the medium Hamiltonian function with addi-
tional terms:

2
H= [d’r{w* 2”
+3 ;% Q,?P,?+-a§;i
—u?P,V?P, |—P,D l
(5)
D=—eV,f‘I/+(r’,t)‘I/(r’,t)|—§:l;,—| ;

where W is the carrier field operator, m* is the effective
mass of the ‘“free” carrier in the conduction band, and
the zero energy level is the bottom of this band. Since the
phonon field is supposed to be classical the motion equa-
tions will have the form

2
[lh—a——E0+ h_g
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where ¥ is the real wave function of the autolocalized
carrier state.

The system of the motion equations (6) and (7) can be
solved in an ordinary manner?® using the direct variational
method. The functional which must be minimized has
the form

d’r,

|r—r?|

fd3r¢(r)l -vi+E fd3r,2 .

X G;(11,1,)Y%(1,) ]¢(r) , (8)

where the unknown distributions p,(r,?) and p,(r,?) are
expressed through the carrier charge distribution ¥(r,t)
and the corresponding Green functions G, and G,:

pi(r,0)=—ec,Q? [ G,(r—r',t )WHr',1)d’r . )

Considering a straight-line translational motion of the
carrier with the constant velocity v parallel to the z axis
of the cylindrical coordinate system we can find the

Green function for Eq. (9) from the equation

2
[a +Q7—uV? |Gi(r,t)=8(r—vt) . (10)

ot 2m o2
—ef[pl(r',t)+p2(r',t)]*ﬁ— =0, (6) .
[r—r'| The solution of this equation will give us a Green func-
5 tion which can be called a specialized one since the &
d 2 Q2 —uV? |p,(r,t) function in the right part of Eq. (10) fixes the form of the
at ar? o trajectory. It can easily be seen that the solution of such
) an equation is the polarization charge density distribu-
=, (1) for i=1 (7a) tion generated by a moving point-charge particle. It has
G YT, fori=2, (7v) the form”8
J
exp{ —Q,;[(z—vt)2 /B2, +r*]"% /u;} 2 122
2 om0 V<un Bu=1—v /u
4ufBy;[(z—vt) /By +r°]
G(r,t)={ cos{Q,[(z—vt)? /B3 —r*]""*/u;
! { ;[ /322' > ] 5 1/2’}, v>u;, z—ut <0, r<l|z—uvt| /By (11)
2mu By [(z—vt)* /By —r”]
0, v>u; |z—vt|<0, r>|z—vt|/By;, lz—vt|>0, B3, =v2/u?"1,
f
where i=1,2, z=z—2z', and r=r—r'. As is clear from v>u; it is a periodic function oscillating at infinity. As

(11) the Green function for Eq. (7), G,;(r,r’,t), experiences
sharp reconstruction when the velocity of the carrier
changes in the vicinity of the minimum phase velocity u;:
at v <u; it is localized near the point r—r’'—vt=0 and at

the carrier state is determined by the functional (8)
strongly depending on the form of the Green functions
there are obviously three different states of the carrier in
a medium with two-component polarization and these
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states occur in the different velocity intervals v <u,,
u; <v<u,,and v >u,.

If the translational motion velocity v is within the in-
terval [0,u,], both polarization charge distributions p,
and p, are obviously localized in the region of the carrier
localization. We shall call this polaron having two polar-
ization “clouds” due to two different phonon branches a
double polaron (DP). The participation of both phonon
branches in the DP formation can be confirmed by calcu-
lation of the total (free and screening) charge of the pola-
ron:

qmt=f+f[p,(r,t)+p2(r,z)]d3r. (12)

o

In the case of v <u, it turns out to be
e
qtot=;———e(c1+c2)=e/so . (13)

To make the first approximation to the DP binding en-
ergy Epp and radius Rpp we may use the formulas of the
classical polaron theory with the effective inverse dielec-
tric permittivity ¢ =c,+c,=¢e_'—¢, !. For a more pre-
cise description it is necessary to solve the system of
equations (6) and (7). As for the DP effective mass m pp it
depends considerably on the frequencies of both phonons
forming the polaron. Therefore, without solving the sys-
tem of motion equations (i.e., using the well-known ex-
pressions obtained in the one-branch model medium) it is
possible only to point out the interval containing m fp.

As soon as the polaron velocity exceeds the u,; value
the term in (10) corresponding to the interaction of LV
polarization with the carrier proves to tend to zero.
Indeed, at such velocities v it is the result of integration
of the rapidly oscillating [with the period
A, =2m(v2—u?)"2/Q, along the z axis] Green function
G, with the comparatively smooth function ¥?. This
means that the LV polarization cannot contribute to lo-
calization of such a rapid polaron. Nevertheless, due to
the interaction with the HV phonons an autolocalized
state of the carrier is preserved at such velocities. This
carrier state is, of course, different from the DP state be-
cause it has no polarization ‘“cloud” of LV phonons.
This fact can be demonstrated by the value of the total
charge of the polaron moving with the velocity exceeding
Ut g, —€ /€y, ie., the charge carrier in such a state is
screened only by the HV polarization and the carrier lo-
calization is maintained only by the HV phonon branch.

It is obvious that such a polaron [we shall call it a sin-
gle polaron (SP)] has smaller binding energy and effective
mass and a larger radius than the DP. To determine SP
characteristics classical polaron theory formulas may be
used since they are obtained for the case of carrier locali-
zation due to the interaction with phonons of one branch.
However, it must be pointed out that analytical solution
of the system (6) and (7) taking into account the polariza-
bility spatial dispersion was found in the polaron theory
only for the slight-dispersion case® while here we shall be
interested in the case of strong dispersion of the HV pho-
non branch.

When the velocity of the carrier translational motion
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FIG. 3. Autolocalization band structure in the medium with
two-component lattice polarization.

exceeds the higher of the two minimum phase velocities
of phonons u, the Green function G, starts oscillating
too, so that no factor of the carrier localization at such
velocities exists. The higher average velocities are acces-
sible only for delocalized carriers. Thus consideration of
the model medium with two-component polarization al-
lows us to describe the partial destruction of the autolo-
calized state with two polarization “clouds,” when its
motion is sufficiently rapid. It also enables us to predict
the transition from one polaron state to another due to
the change of its momentum.

The information obtained can be presented as the car-
rier energy versus average carrier momentum. Ignoring
the carrier motion inside the polaron, the average carrier
momentum describes its state with an uncertainty which
is greater for the most localized DP, less for the SP, and
negligible for the free carrier. An example of such a band
structure of the carrier spectrum caused by autolocaliza-
tion is shown in Fig. 3. There the energies are represent-
ed with respect to the bottom of the conduction band and
the critical average momenta of the carrier corresponding
to transitions between different carrier states are
pi=m*u,; and p,=m*u,. As is clear from Fig. 3 two
gaps appear in the carrier spectrum in the medium with
two-component lattice polarization.

It is natural that only carrier states with sufficiently
large lifetimes are depicted. The DP’s, SP’s, and free car-
riers may have momenta from other intervals but for a
very short time. If a SP with the velocity v <u, appears
in the medium it will be enveloped by the LV polarization
during the time 7gp=27/Q,. Similarly, the lifetime of
the free carrier with v <u, is 7, =27 /Q,. The lifetime of
the DP with the velocity v >u,; can be evaluated as
Top=Rpp/(v—u;).

IV. THE EFFECT OF COHERENT-PHONON
RADIATION BY THE MOVING POLARON

The SP is not a stationary state in the whole velocity
interval 4, <v <u,. When on increase of the SP velocity
the period of oscillations A, of the Green function G,
exceeds the SP diameter 2R gp, the result of integration in
(9) becomes substantially nonzero. It oscillates in an
acoustic cone (named by analogy to the light cone)
behind the moving polaron. If the inequality
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vi—u? >>[QRep/(2m) T (14)

is satisfied these oscillations are quasiharmonic. Such an
effect in the motion of the point-charge particle has been
described by Myasnikov and Popov.” They pointed out
that such a polarization charge distribution appears as a
consequence of the coherent radiation of real phonons by
a localized charged particle moving with a velocity
exceeding the minimum phase velocity of the phonons,
which is similar to Cherenkov’s effect. In the case of po-
laron motion the radiation of different parts of the pola-
ron charge density becomes coherent when the wave-
length of the radiation becomes much larger than the po-
laron size.

Thus the single polaron moving with the velocity v
satisfying inequality (14) has a tail of radiated LV polar-
ization in the acoustic cone behind the polaron. This
resembles a supersonic plane with its boom but here the
“boom” can act on the “plane” to a more significant de-
gree. Interaction of the SP with the LV polarization
charge radiated by it leads to the slowing of the SP
motion. As a consequence the carrier states with corre-
sponding average momenta are not stationary in the ab-
sence of an external electric field. Knowing the form of
the Green function G, (11), it is possible to find the field
strength necessary to stabilize SP motion with a certain
velocity. Since in the case of v2—u? >>1 the LV polar-
ization charge concentrates to the highest degree on the
SP trajectory, the braking force due to the radiated LV
polarization at such velocities can be approximately eval-
uated from (11) and (9) as F=c,Q%e?/v?. Equating it to
the force caused by the field, one can express the equilib-
rium SP velocity v as a function of the field strength E:
v(E)=(c,Q% /E)2. Thus in this velocity region the
losses decrease with increase of the velocity. It is quite
natural since the wavelength of the radiated wave of the
LV polarization charge increases with the SP velocity.
Bearing in mind that the losses are Ohmic when the pola-
ron velocity is lower than u,; and continuously increase
when the polarization tail is formed, we can assume an
approximate dependence v(E).!! Experimental observa-
tion of such behavior of the average carrier velocity or
corresponding behavior of the carrier mobility versus
electric field can be an indication of this effect of the au-
tolocalized band structure.

The exact relationship between the steady-state veloci-
ty and the field strength necessary to support it was ob-
tained in Ref. 2 and later in Ref. 10 by directly solving
the motion equations written in terms of quantum con-
sideration of the polarization field. However, using the
model medium with one phonon branch the authors of
Refs. 2 and 10 assumed that the autolocalized state of the
carrier still exists when its velocity exceeds the minimum
phase velocity of the phonons. Consequently, in their
model polarization of one and the same type plays the
role of a dissipative subsystem absorbing the energy of
the rapid polaron motion and supports the carrier autolo-
calization. This contradiction can be easily eliminated if
another phonon branch with higher dispersion is intro-
duced into the model. In such a case the autolocalized
state of the carrier is preserved when its velocity exceeds
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the minimum phase velocity of the LV branch, so that
both conditions for the coherent radiation turn out to
occur: there is a localized particle moving with a velocity
exceeding the critical one. Thus, the results of Refs. 2
and 10 are correct for the model medium with two pho-
non branches of different dispersions.

But the interpretation of these results can be corrected
(in the case of Ref. 2) and expanded on the basis of the
present study. Tornber and Feynman assumed? that the
reason for the thresholdlike increase in energy losses
versus average carrier velocity is the one-phonon process
of carrier scattering. But numerical calculation? shows
that a sharp increase of losses takes place when the aver-
age carrier velocity is 10—100 times lower than the veloc-
ity corresponding to the threshold of one-phonon scatter-
ing. On the basis of the present study that considers the
problem dynamically this increase can be attributed to
the radiation of real phonons by the moving localized
charged particle. This radiation appears when on in-
crease of the particle velocity the inequality

2Rsp >AZ=%;_T_(UZ_u% )1/2
1

becomes true, i.e., at the average carrier velocities
2
2R p ),

Py (15)

vi>ul+

(In Ref. 2 u, is supposed to be zero.) As in most crystals,
the threshold for the one-phonon processes in the Al,O,
crystals considered in Ref. 2 corresponds to velocities
higher than the threshold of “Cherenkov” radiation (15).
In addition the present analysis enables us to clarify
the question? of whether the quasiparticle representation
is applicable to the system near the threshold of radia-
tion. The authors of Ref. 2 proposed to use the free-
electron mass for this velocity region instead of the pola-
ron effective mass, using, however, the polaron wave
function, which was contradictory. From the present
analysis it can be concluded that coherent radiation
(characterized by the decrease of losses with the increase
of the carrier average velocity) takes place only if at such
velocities there exists a localized state of the carrier (SP).
The SP motion with such velocities can be described by
its effective mass caused by HV phonons, taking into ac-
count the influence of the LV polarization wave separate-

ly.

V. RESONANCE EFFECTS IN THE SCREENING
OF MOVING POLARONS

The model with two-component polarization will also
enable us to consider a different mechanism of dielectric
screening of the carrier leading to the formation of
different stationary states of the autolocalized carriers.
This mechanism takes place in specific types of motion of
the autolocalized carriers. These specific types can be
found using the results of Sec. III. There it was shown
that the divergency of polarization radiated by a
sufficiently rapid autolocalized carrier concentrates on its
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trajectory. Therefore, when the changes of the SP
motion direction are sufficiently large (for instance, due
to scattering) the interaction with the LV polarization
charge leads to a further change of the polaron trajecto-
ry. Thus straight-line motion of the autolocalized carrier
with sufficiently high velocity turns out to be unstable.
Moreover, it will be demonstrated below that there exist
stationary states of the polaron or even two polarons
moving in a circular orbit and coupled due to the interac-
tion with the coherent phonon waves radiated by them.

Indeed, we have seen in Sec. III that the state of the
carrier moving in a certain trajectory is determined by
the form of a specialized Green function for the motion
equation. This Green function represents the distribution
of the polarization charge radiated by a point-charge par-
ticle moving in this trajectory. The authors of Ref. 12
have found an exact solution to the motion equation for a
point-charge particle moving in a circular orbit in a po-
larizing medium. They have shown that there exist sta-
tionary solutions for this equation and even for the equa-
tion of motion of two charged particles (of the same sign
of charge) in a circular orbit. These stationary states
occurring due to the interaction with the radiated polar-
ization were found'? to correspond to a certain set of fre-
quencies of the motion. Using these results let us show
the possibility of analogous stationary states where the
role of localized charged particles is played by polarons.

To do this let us find the solution for the motion equa-
tions (6) and (7) corresponding to the SP motion in a cir-
cular orbit of radius Ry >>Rgp with frequency w. The
velocity of the SP vy=wR, is assumed to satisfy the in-
equality u, <<vy <u,. This allows us to make the follow-
ing simplifying suppositions. Since vy>>u,, the third
term in the left-hand side of (7a) is negligible. Equation
(7b) may be replaced by the simpler Pecar expression for
the polarization charge density in the polaron:
po(r,t)=—c,¥*(r,t). We shall denote the modified equa-
tions as (7a’) and (7b’).

In cylindrical coordinates with the origin at the orbit
center and the z axis perpendicular to the orbit plane the
specialized Green function for Eq. (7a’) corresponding to
periodic SP motion on the circular orbit can be obtained
as the solution for the equation

2
& 0}

atz Gl(l',l",t)

=8(r—r")8(z—2")0(p—@'—wt)/r' . (16)

For the case of the point-charge motion the solution is
shown to exist only at frequencies from the set!?

0,=20,/(21+1), [=0,1,2,.... (17)

In our case we shall also confine ourselves to considering
such frequencies at which the solution of (16) has the
form!?

Glinr,)=200 sin 2L (g —0yt
1
X8(r—r")8(z—2") . (18)
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From (17) the conclusion can be made that the stationary
state of the charged particle motion appears as a result of
resonance with the vibrations of the LV phonon branch.
The motion of the localized charged particle plays here
the role of a periodic but not harmonic external force.
The frequencies (17) are half of the set of the parametric
resonance frequencies. The other half corresponds to an
infinite increase of the amplitude of the polarization
charge wave due to the transmission of the energy of the
polaron motion to the lattice.

To solve the system of equations (6), (7a’), and (7b’) we
can again apply a variational method. The wave function
of the ground state must minimize the functional

# o, e dr
+_
2m*Vr 2 f lr—r,]

J=—fd3r¢(r)[—

X c,fd3r2G(rl,r2)¢2(r2)

+C2'¢'2(r1)

}1/}(r) . (19)

As a test function we used a modified Pecar wave func-
tion

W, ) ~[@*+(1—Ry /P12 14ar)e —ar +69 |

(20)
r'=[(r—Ry)?+(r)?+z2]'"%, a=0.97%c, .

The expression for parameter a in (20) is the same as in a
Pecar wave function.” Besides a centripetal projection,
the forces acting on the SP in such a state have projec-
tions deforming the polaron. As a result the SP wave
function deviates from spherical symmetry. This devia-
tion determines the value of parameter 8 in (20) which
can be obtained by minimization of the functional (19).
The third parameter in the wave function (20), the orbit
radius R, cannot be varied independently. It is deter-
mined by the equilibrium condition for the projections of
forces acting on the SP onto the direction normal to the
orbit.

The numerical computation performed for the case of
[=0 in (18) has shown that the functional (19) has a
minimum in a wide range of the medium parameters.
The quasiparticle corresponding to this minimum is obvi-
ously a bound state of the SP and real LV phonons. The
binding energy of the quasiparticle with respect to the SP
energy can change from zero up to several hundredths of
eV for different values of the medium parameters. This
quasiparticle may be regarded as an excited state of the
DP because it includes real LV phonons whereas the DP
contains only virtual LV phonons.

As noted above, the polaron velocity in this quasiparti-
cle must satisfy the inequality u#, <<v <u, and the orbit
radius R, must exceed the SP radius. But even for the
minimum values of R, and Q, the polaron velocity in the
quasiparticle cannot be lower than approximately
2.6X10% cmsec ™! (if Q, is about 35 cm™!). Since there
are no crystals with higher minimum phase velocities of
phonons we shall not take into account this state in fur-
ther consideration. This state was analyzed here with the



52 BAND STRUCTURE IN AUTOLOCALIZATION AND BIPOLARON ...

methodological purpose of simplifying the consideration
of a stationary state of two polarons coupled by their ra-
diation.

The Hamiltonian for the system with two carriers is
obtained from (5) by adding the term

d’r'd’r

if W)W (r)e?W(r')W(r)
2 €,lr—r'|

corresponding to the interaction of carriers. It is con-

. 0 h?
ih a1 +E,— o

~Vi—e f[p,(r t)+p,(r, t)]|

Owing to the symmetry of the problem, the single-
particle wave functions satisfy the condition

Y (r,p—ot,z)=¢(r,p—owt+mz),
i,j=1,2, i#j . (2)

After this fact is taken into account the system of equa-
tions (21) becomes a pair of identical equations. Two
equations for the polarization charge distributions ob-
tained by a procedure similar to that used for Eq. (21) are
given by
1 @

24

0 3.2 pi(r,t)=—ec,[YUr,t)+¢¥r,t)], (23)

Hr,t)+43(r,t)] . (24)

Equations (21)-(23) form the system of equations which
can be solved as in the previous cases if the expression
(22) is taken into account.

The specialized Green function for Eq. (23) satisfies the
equation

palr,t)=—ec,[

|

fd r¢,(r)

We minimized it numerically, using the test function (20)
and equality (22). The parameter [ in the wave function
was determined by the minimization of functional (28).
The orbit radius R, is to be obtained from the equilibri-
um condition for the SP (the sum of normal projections
of all forces acting on the SP must be equal to the cen-
tripetal force m % Q3R,). Figure 4 shows this equilibri-
um condition as the curve in the coordinates Ry, —c, cal-
culated numerically for a certain set of the medium pa-
rameters. As seen from Fig. 4, the equation for the orbit
radius has two solutions or it has no solution at all, de-
pending on the medium parameters. The analysis shows
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venient to use the self-consistent-field approximation sup-
posing that the states of the carriers in such a system can
be described by single-particle wave functions ¥,(r,¢) and
,(r,t). The functions ¥, and 1, are orthogonal to each
other because they do not overlap. Supplementing them
to obtain the complete set, substituting the expansion in
terms of this set into the motion equation for ¥, and
averaging this equation over the state of the system in
which only two carrier states characterized by ¥, and v,
are filled, we obtain the following system of equations for

1,’1 and ¢2:

] +e /e, [VAr, t)l | ]1/},(r,t) i,j=1,2, i#j .
21)
—
1 9 ,
[65-8—2—4'1 G(r,r',t)
=Lstr—r8(z—2")
.
X[8(g—¢' —wt)+8(p+T—¢' —wt)] . (25)

Myasnikov and Martynyuk'? have found that it has sta-
tionary solutions of the form

G,(r,r',t)= 2"2:1 sin|(2n +1)(@—¢')— Q1]
X8(z—2z")8(r—r') (26)

at the frequencies

0=0,=0,/2n+1), n=0,1,2,... . 27)

We shall confine ourselves to the consideration of the
case of n=0. The single-particle wave function corre-
sponding to the bound state is to minimize the functional

f 'd r 7 [c2¢v (r’)——zﬁ%(r’)/ew-i-c,fGo(r',r1)¢f(r1)d3r1] ]1!’1(') . (28)

that the left branch of the parabola in Fig. 4 corresponds
to the solutions stable under the influence of perturba-
tions such as switching on and off the magnetic field,
whereas the right one may correspond to unstable solu-
tions. So we shall consider the quasiparticles with radii
from the left branch.

The quasiparticle corresponding to the minimum of the
functional (28) can be called a Bose quasiparticle (BQ) to
emphasize its statistical properties and to distinguish it
from the quasiparticle containing one SP. The BQ is a bi-
polaron but of an entirely different type. Indeed, the BQ
contains real phonons (of the LV branch) and is coupled
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0.080
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Q
[

0.076

13 15 17 R (R)

FIG. 4. An example of the calculated curve (in coordinates of
BQ radius R, and inverse effective dielectric permittivity c¢,) on
which the sum of forces acting on the SP in the BQ is equal to
the centripetal force m & Q3R .

due to the radiation and absorption of the waves of these
phonons by the SP’s, which can be regarded as the ex-
change with real phonons between two SP’s. We shall
also call the BQ a resonance polaron. As is clear from
the comparison of (17) and (27), the velocities of the SP’s
in the Bose quasiparticle vy=wyR, are two times lower

E (eV) 0.350 0.355 0.360 c

-0.22

¥

FIG. 5. Energies of the autolocalized carrier states in the
medium with two-component polarization (with respect to the
conduction-band bottom). Curves 1, the BQ energy; 2, the dou-
bled SP energy; 3, the doubled DP energy; 4, the energy of the
conventional bipolaron.
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than those in the quasiparticle formed by one polaron so
that in crystals with high dispersion of at least one pho-
non branch the BQ state can occur.

Figure 5 represents the minimum energies of all the au-
tolocalized states occurring in a medium with two-
component polarization versus the inverse -effective
dielectric permittivity c=e_'—¢e; !=c,+c,. Zero ener-
gy corresponds to the bottom of the free-carrier band.
The parameters of the medium in the demonstrated case
are the following: Q,=34 cm~!, Q,=360 cm™!,
m*=m,, €,=2.2, and the ratio £,/£,=0.557 is fixed.
Curve 1 in Fig. 5 corresponds to the BQ energy calculat-
ed numerically; curves 2 and 3 show the doubled
minimum energies of the DP and SP, respectively. Curve
4 demonstrates the energy of the most energetically
profitable conventional bipolaron. It is a one-center bipo-
laron considered taking into account a nonzero average
distance between the electrons in the potential hole. It
was considered in semiclassical approximation in Ref. 13
and in many other works it was analyzed using quantum
consideration of the polarization field (for example, Ref.
14). Its energy (calculated from the results of Ref. 13) is
shown in order to compare it with the energy of the BQ.

As is seen from Fig. 5, for typical values of the medium
parameters the binding energy of the BQ exceeds the
doubled binding energy of the SP. Then, although the
binding energy of the conventional bipolaron exceeds
that of the resonance bipolaron the former states cannot
be formed in most media with two (or more) components
of polarization characterized by a significantly different
retardation. This occurs because the adiabatic condition
for conventional bipolaron formation is not satisfied in
such media. Indeed, the conventional bipolaron with two
polarization “clouds” is formed in such a medium as a re-
sult of screening of a bipolaron having one “cloud” (of
fast HV polarization) by a comparatively slow LV polar-
ization. Thus, in the discussed medium the adiabatic
condition for the conventional bipolaron coincides with
the adiabatic condition for the bipolaron formed due to
HV polarization only. This condition is much more
difficult to satisfy than the adiabatic condition for the SP
which, at the same time, is the condition for the BQ for-
mation. Finally, as seen from Fig. 5 the doubled binding
energy of the DP exceeds the bipolaron binding energy.
However, below we are going to demonstrate that the
concentration of polarons is limited due to the limitation
on their momenta so that at a carrier concentration of
the order of 10?! cm ™! the band of resonance bipolarons
proves to be significantly filled.

VI. THE SYSTEM WITH MANY-COMPONENT
POLARIZATION AT HIGH CARRIER
CONCENTRATION AND HIGH-TEMPERATURE
SUPERCONDUCTIVITY

The above analysis (taking into account the spatial
dispersion of lattice polarizability) has significantly
changed our knowledge about the carrier spectrum and
effects of the carrier motion in ionic crystals with inter-
mediate and strong electron-phonon interaction. It is
natural that the demonstrated small width of the bands of
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autolocalized states influences the properties of the sys-
tem with high carrier concentration. In particular, it will
be shown below that the limited width of the polaron
bands causes a limitation on the polaron concentration in
the system.

We should take into account that the carriers must
obey Fermi statistics. Since the carriers in the polaron
states are localized in coordinate space they can have the
same momenta, if their positions are different. In the op-
posite case the momenta of carriers must be different in
accordance with the Pauli principle. Let us consider the
process of increasing the carrier concentration when the
polaron wave functions become significantly overlapped.
Obviously, the new carriers appearing in the system with
such a concentration must have average momenta
exceeding the uncertainty of the carrier momentum in
the polaron. However, this is impossible because the
maximum velocity of the polaron is much lower than the
uncertainty of the carrier velocity in the polaron states.
Thus the maximum concentration of polarons is deter-
mined by the degree of degeneracy of the polaron state
due to the possibility of the carrier localization in
different regions of coordinate space.

This concentration can be obtained as the inverse
volume of the polaron. The polaron volume can be es-
timated using the model of a polaron with constant prob-
ability of finding the carrier inside some spheres in coor-
dinate and momentum spaces and zero probability out-
side them. The radii of these spheres Ar and Ap are
determined from the condition of equality of the carrier
coordinate and momentum uncertainties in the polaron
(we used Pecar’s form of the polaron wave function) and
in the model. Taking into account that the volume occu-
pied by the carrier in coordinate and momentum spaces
is (277%)3 the maximum concentration of polarons can be
given by

(Ap DP )3

29
(2m#)> @9)

4
pol _2

where 2 is due to spin. For the typical medium parame-
ters the value of nJ, is of the order of 5X10%° cm ™.

To consider the system at a temperature different from
zero it is also necessary to take into account changes in
the filling numbers of the polaron states. It will be natu-
ral to use for this purpose Fermi’s expression in which
the filling numbers are determined by the state energy
and temperature. But polarons of the same type can have
different energy only if their momenta are different. As
the momentum of the polaron is proportional to the aver-
age momentum of the carrier we must use the latter as
characteristic of the state. In addition, we must take into
account the possibility of simultaneous existence of some
quantity g, of carriers having the same average momen-
tum but localized in different regions in coordinate space.
This statistical weight of the polaron state g, can be
found from the condition of equality of the maximum po-
laron concentration given by (29) and that obtained by in-
tegrating the distribution function over the interval of
average carrier momenta corresponding to the polaron
states:
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28501 m “2

0 po

n 2dp
pol 2 ﬁ)3 f TTP

(The distribution function is supposed to correspond to
the complete filling of the polaron band.) Thus the sta-
tistical weight of the polaron state can be expressed as

(APDP)
—_— . 30
gpol (meu2)3 (30)

We have shown that the polaron concentration in the
system is limited by the value nJ; of the order of 5X 10%°
. As is clear from Fig. 5, when the band of DP’s is
ﬁlled further increase of the carrier concentration leads
to filling the resonance bipolaron band. Thus the extra
carriers above the maximum polaron concentration ap-
pear in bipolaron states. (It should be noted that at
sufficiently high temperature when the filling numbers of
the polaron states are different from unity the polaron
concentration can even be considerably lower.) The con-
centration of bipolarons in the system can be calculated
from the ordinary Bose distribution function with the
only difference that as bipolarons are autolocalized states
their impulses are also limited. So the bipolaron concen-
tration can be expressed as

N gblp fmblpvk pde
bip 223 2 —
Th exp[p”/(2my;, T)—2p/T]—1

(31

where the energy is supposed to be zero at the bottom of
the BQ bipolaron band and u is the chemical potential of
the carrier. If we suppose that the bipolarons are reso-
nance bipolarons the statistical weight g, is equal to 4
(because for the resonance bipolaron the singlet and trip-
let states have the same energy) and the velocity v in the
upper limit of the integral is the minimum of two veloci-
ties: the minimum phase velocity of phonons of the LV
branch u; or the difference between the polaron velocity
in the BQ v, and u,: (u,—v,). For the conventional bi-
polaron v, is the lower of the two minimum phase veloci-
ties of phonons.

Since bipolaron theories of the superconductivity have
attracted much attention of late it will be interesting to
consider how the spatial dispersion influences the condi-
tions of bipolaron Bose condensation. It is easy to obtain
from (31) the bipolaron concentration ngc necessary for
their Bose condensation at a certain temperature T
presuming in (31) the Bose- condensatlon condition b= =0.
In the ordinary case of mpqu; 2 /T <<1 the exponent is ex-
panded so that the distribution function is easily integrat-
ed to give us the resulting expression

npc="—33m g To - (32)

-
The contribution of free carriers is negligible because of a
large gap. So the carrier concentration necessary for the
bipolaron Bose condensation is ny=2ngc+ P pol max-

As seen from (32), ngc depends on the new parameter
of the theory v, which is determined by the phonon
dispersion and can be very small. This fact enables us to
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predict not high n, values (for example, of the order of
10! cm™!) for high condensation temperatures T
(100-200 K) even if the bipolaron effective mass is high.
In other words, the condensation temperature T, found
from (32) can be high (for example, 100-200 K) at carrier
concentrations typical for the superconducting oxides
even at a sufficiently high effective mass of the bipolaron.
Since the question of experimental observation of pairs
" in high-T, superconductors at temperatures above the su-
perconducting transition temperature T, is still open, it
will be useful to study the change in the bipolaron con-
centration with the temperature at 7> T, taking into
account the small width of the bipolaron band. For sim-
plicity let us consider the case when the bottoms of the
SP and BQ bands coincide: 2Egp=Ep,. Taking into ac-
count the significant width of the SP band in comparison
with the BQ one and the large gaps between these two
bands and other bands, we can assume that the number
of bipolarons will decrease with increase of temperature
mainly due to the increase of the SP number. Thus,
denoting Angp=ngp(T)—ngp(Ty) and Ango=npqe(T)
—npo(Ty) we can write the following approximate equal-
ity:

An SP = —ZAnBQ . (33)
The SP concentration in the system has the form
2g 1 m,u, 2d
nep(T)= 503 f 2 i
2ok Y me4y exp(p®/(2m, T)—u/T]+1

(34)

Expressing the u(T) function from (33) in which (31) and
(34) are taken into account we can substitute it into (31)
and easily find the relation

Angq _ &pol mlu3 T—T,

ngc  28uip 80mdv, T, T
Depending on many values (g%, ) which are deter-
mined by the medium parameters the value of this rela-
tion can vary in a very wide range. In particular, it can

be of order of 10. In such a case bipolarons cannot be ob-
served already at the temperatures T=1.1T,.

(35)

VII. CONCLUSION

In conclusion it seems to be useful to discuss in what
crystals and experiments the predicted effects can be ob-
served. We pointed out that for the effects of the autolo-
calization band structure to take place the medium must
possess two or more branches of polar phonons of
different dispersion. Such a medium turns out to corre-
spond well to complex oxide crystals which are one of the
broadest classes of ionic crystals. They have many ions
in the unit cell so that there are many branches in their
phonon spectrum. To observe the effects of carrier brak-
ing by the coherent radiation and polarons pairing under
resonance conditions with the medium vibrations, one of
these branches must have sufficiently strong dispersion.
Although there are very few data of phonon dispersion
measurements in complex oxides high dispersion of some
branches in complex oxides was nevertheless reported.!>
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There are many papers on the computation of phonon
dispersion in these crystals. They also report high disper-
sion for several phonon branches at least in a region of
small wave vectors'® k <7/(2a,) where a, is the lattice
constant. (This region is essential in our consideration
since the polaron radius is 2-3 times larger than a,.)
The other source of high dispersion in the region of small
wave vectors can be the vicinity of a phase transition
with softening of one phonon mode, which frequently
takes place in complex oxides. Thus such crystals can be
expected to exhibit the effects predicted above.

In particular, the effect of “Cherenkov’ radiation of a
coherent polarization wave by the polarons can reveal it-
self in measurements of the carrier loss as a function of
its velocity and carrier mobility (or equilibrium velocity)
versus the applied electric field. In such experiments the
carrier concentration is usually low so that polarons obey
Boltzmann statistics.” Therefore, to observe these effects
we need the temperature T <mgpu3/2, ie, T <10 K.
Moreover, at the temperature T < mppu 5 /2 which is less
than 1 K the effect of the loss of the LV polarization
“cloud” by the DP can be observed in the carrier mobili-
ty. The carrier transition from the DP band to the SP
one can manifest itself in the temperature dependence of
infrared absorption at high carrier concentration. Pho-
toinduced ir absorption measurements enable us not only
to demonstrate the presence of autolocalized carriers at
low temperature but also to determine their binding ener-
gy and effective mass.’> The autolocalization band struc-
ture can be observed also in the normal-to-normal-state
tunneling spectra of such crystals. But it is difficult to
work out predictions for the results of such experiments
because a large number of additional circumstances must
be taken into account.

As there is the possibility of high-T, superconductivity
by means of resonance bipolarons it is important to com-
pare their properties with experimental data on the pairs
in high-T, superconductors. The size of the resonance
bipolaron is determined by the orbit radius in the orbit
plane and by the SP radius in the perpendicular direction.
These values and anisotropy of the BQ size correspond
well to the coherence lengths measured in superconduct-
ing complex oxides.!” The isotopic effect in our model
must be, of course, different from the BCS one since here
the Bose-condensation condition depends on two phonon
frequencies and dispersions.

We have shown that the condition of the bipolaron
Bose condensation is strongly determined by phonon
dispersion. From this viewpoint it would be useful to
check the correlation between the dispersion of relevant
phonons, carrier concentration, and the temperature of
the superconducting transition in complex oxides and
compare it with their relation given by (32). The concen-
tration of carriers necessary for the Bose condensation of
the resonance bipolarons coincides in order of magnitude

b, . . . .
with carrier concentrations in superconducting complex

oxides. In addition, we have demonstrated that in the
considered model the decrease of the bipolaron concen-
tration above the superconducting transition temperature
can be so quick that it may be difficult to observe the
pairs as in the superconducting complex oxides.
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