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Microscopic derivation of magnetic-flux-density profiles, magnetization hysteresis
loops, and critical currents in strongly pinned superconductors
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We present a microscopic derivation, without electrodynamical assumptions, of B(x,y, H(t)),
M(H(t)), and J,(H(t)), in agreement with experiments on strongly pinned superconductors, for a
range of values of the density and strength of the pinning sites. We numerically solve the overdamped
equations of motion of these Bux-gradient-driven vortices which can be temporarily trapped at
pinning centers. The field is increased (decreased) by the addition (removal) of flux lines at the
sample boundary, and complete hysteresis loops can be achieved by using Qux lines with opposite
orientation. The pinning force per unit volume we obtain for strongly pinned vortices, J B
n~ f„,inte'rpolates between the following two extreme situations: very strongly pinned independent
vortices, where J,B n„f„, and the two-dimensional Larkin-Ovchinikov collective-pinning theory
for weakly pinned straight vortices, where J,B n„f„Here., n„and f„are the density and
maximuln force of the pinning sites.

I. INTRODUCTION

Flux distributions in type-II superconductors are com-
monly inferred &om magnetization and critical current
measurements and interpreted in the context of the
Bean model or its variations. The Bean model, which
has been widely used for over three decades, postulates
that the current density in a hard superconductor (i.e. ,
with strong pinning) can only have three values —J„
0, and +J, where J is the critical current density,
which is independent of the local magnetic flux den-
sity B(x,y, t). The Bean model and its many variants
make no specific claims with regard to the microscopic
mechanism controlling the trapping of vortices. Bean's
postulate, J, =const, was modiGed several times by
Kim et al. : J, ]./B, l ); J, 1/(bo +. B), i )'sl');

1/(bo + B + bqB + bsB + . .), ( ); where b; are
constants. On the other hand, Fietz et al.4 suggested
that J, exp( —B/bo), while Yasukochi et al. s suggested
J, 1/Bi~2. These and other proposals made during
the 1960s were followed by several other phenomeno-
logical modifications of J,(B) during the following two
decades. ' A microscopic description, without assum-
ing any particular B dependence of J, of these flux
distributions —in terms of interacting vortices and pin-
ning sites can be very valuable for a better understand-
ing of commonly measured bulk quantities.

One of the most effective methods of investigating the
microscopic behavior of flux in a hard superconductor
is with computer simulations (see, e.g. , Refs. 7, 8, and
references therein). In this paper, we present molecular
dynamics simulations of the evolution of rigid flux lines
in a hard superconductor. We first introduce our model
for vortex-vortex and vortex-pin interactions as well as
the corresponding antivortex interactions. We then in-
vestigate the flux proGle which results &om a varying
applied Geld; &om such flux profiles we obtain full hys-

teresis loops, indicating that our model has the essen-
tial microscopic ingredients underlying the experimen-
tally measured macroscopic quantities. We also inves-
tigate the behavior of J,(II) for a controlled range of
pinning parameters.

II. SIMULATION

Our simulation geometry is that of an infinite slab of
superconductor in a magnetic field applied parallel to the
slab surface. Thus, demagnetization eKects are unimpor-
tant. We also treat the vortices as perfectly stiK, so that
we need to model only a two-dimensional (2D) slice of the
3D slab. Our system is periodic in the plane perpendicu-
lar to the applied Geld, and we measure distances in units
of the penetration length A. Here, we present results for
a system of size 36A x 36%. The simulation, described in
further detail below, consists of slowly ramping an exter-
nal magnetic field. Flux lines enter the edge of the sam-
ple and their positions are allowed to evolve according
to a T = 0 molecular dynamics algorithm. The result-
ing vortex distributions at any external field can then be
deduced as a function of distance into the sample.

A. Sample geometry and time-dependent field

The actual sample region is heavily pinned, and ex-
tends from position x = 6A to x = 30A (Fig. 1). Outside
the sample itself is a region with no pinning which ex-
tends from x = OA to x = 6A and &om x = 30% to
x = 36A (with 36% = OA according to our periodic bound-
ary conditions). This sample geometry is shown in the
upper panels of Fig. 1. Here, the sample (pinned) region
occupies the central 2/3 of the system, and the unpinned
region the outer 1/3.
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FIG. 1. Top view of the region where flux lines, indicated by dots, move. (a) Snapshot during the initial ramp-up
phase, (b) snapshot of the remnant magnetization after ramping down the external field. The bottom panels show

B(x) = (36A) J +B(z,y), i.e., the Hux density profile versus x, averaged over the vertical direction y. The 24A x 36A
sample has 3456 pinning sites, and f„=0.9fp.

We simulate the ramping of an external field by the
slow addition of flux lines to the outside unpinned re-
gion. Because there is no pinning in this region, the flux
lines there will attain a fairly uniform density, and we
may define the applied Geld H as 4o times this density.
Flux lines from the external region will move into the
sample through points at the sample edge where the lo-
cal energy —as determined by the local pinning and vor-
tex interaction —is low. Thus, our simulation models the
real situation where vortices nucleate at such low-energy
regions at the surface.

Further, in a real superconductor, vortices near the
surface are not expelled by their interior neighbors be-
cause of a Geld-induced Meissner current flowing at the
surface. Again, our external "bath" of vortices simulates
this behavior by providing a balancing inward force, pro-
portional to the external field, on those vortices near the
sample boundary.

B. Equations of motion

The force per unit length between two vortices located
at r; and r~ is

gible eKects on the dynamics for the range of param-
eters investigated. Thus, the force (per unit length)
on vortex i due to other vortices (ignoring cutoffs) is

f, " = P "i f„K (iIr; —rz~/A) r",
z . Here, the r~ are

the positions of the N„vortices within a radius 6A,
r;, = (r, —r, )/Ir; —r, I, f„=+fp, and

@2

8ir2As (2)

The sign of the interaction is determined by f„; we take
f„= +fp for repulsive vortex-vortex interactions and
f„= fp for attr—active vortex-antivortex interactions. A
vortex and antivortex annihilate and are removed &om
the system if they come within 0.3A of one another.
Forces are measured in units of fp, lengths in units of A,
and fields in units of 4p/A . 4p ——hc/2e is the elemen-
tary flux quantum.

We model the pinning potential as N„short-range
parabolic wells at positions r&" . The equation of motion
for a vortex moving with velocity v is f = ilv, where il
is the viscosity (= 4pH, 2/p„, with p„being the normal-
state resistivity). Thus, the overall equation for the over-
damped motion of a vortex subject to vortex-vortex and
pinning forces is

f; =f, +f,. "=gv;,

We model the vortex-vortex force interaction in its exact
form by using the modified Bessel function Kq. This
force decreases exponentially at distances larger than
A, and we cut off the (by then negligible) force at dis-
tances greater than 6A. Further, we have cut oK the
logarithmic divergence of the force for distances less
than 0.1A. These cuto8's were found to produce negli-

where
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Here, 0 is the Heaviside step function, („ is the range
of the pinning potential, and fz is the strength (maxi-
mum pinning force) of each w'ell, measured in units of
fp F. or all the simulations presented here („=0.12%
and g = 1. The parameters we vary here are the pin-
ning strength f„a nd the average distance between pin-
ning sites d„(which determines the pinning density n„
via n„= 1/d„). Many other parameters can be var-
ied, making the systematic study of this problem very
complex. A more thorough investigation with difer-
ent pinning-potential ranges, pinning-potential shapes,
nonuniform strength distributions, and nonrandom pin-
ning positions will be presented elsewhere. Here, the pjn-
ning sites have uniform strengths and are placed in the
sample at random, but nonoverlapping, positions. The
pinning strength f„ is varied from 0.2fp fo 1 Ofp, a. nd d„
is varied from A/3 to A (i.e., the pin density n„v raies

from 1/A to 9/A ).

III. MAGNETIC-FLUX-DENSITY PROFILES

Several general features of our simulations are shown
in Fig. 1. In the upper frame of Fig. 1(a), we show a top
view of the vortex positions after the external field has
been ramped up from zero. As we have stated, this ex-
ternal field is represented by the vortices in the unpinned
regions to the left and right of the central, pinned, sample
region. Here, vortices have been added to the unpinned
region to a final density of about 1.2 vortices/A; since
each vortex carries a Aux 40, this corresponds to a mag-
netic field of 1.2 4p/A . For a real superconductor with
a penetration depth of, e.g. , 1000 A, this corresponds to
H = 2.5 kOe.

We note in Fig. 1(a) that many of the vortices added
to the unpinned region have been forced into the central
sample region at this stage. They do not do so uniformly
due to the presence of 3456 pinning sites (not shown),
with a typical intersite distance of A/2 and fz ——0 9fp.
We see the characteristic density gradient determined
by a balancing of the vortex-vortex forces with the lo-
cal pinning forces. Since this gradient was achieved in
our simulation solely by the slow ramping of an exter-
nal magnetic field, we have obtained the field profiles
inside a pinned superconductor using only microscopic
information such as vortex-vortex and vortex-pin inter-
actions. We should also contrast our simulations with
those modeling current-driven vortices. In such simula-
tions the driving force on each vortex is somewhat artifi-
cially modeled by an externally imposed "uniform" cur-
rent. Our simulation correctly models the driving force
as a result of local interactions.

The lower frame of Fig. 1(a) shows the resulting flux
density profiles, found by averaging the vortex density
over slices parallel to the sample edges. Such profiles
clearly show the essentially constant Aux density in the
external regions, and the detailed nature of the Aux gra-
dient within the sample. Of course, these profiles may be
obtained at any value of the external field. Figure 1(b)
shows the system after the external field has been ramped
down from a high value to zero. The small Geld outside
the sample is an artifact due to the smearing of the vor-

tex fields. Now, Aux remains trapped within the sample
and the field gradient has changed sign. We notice that
near the sample edges, where the field is small, the gradi-
ent in the Aux density is quite large. Thus our simulation
correctly models the increase in flux gradient (or, equiv-
alently, critical current) at low fields, where intervortex
interactions are weak and pinning dominates.

In Fig. 2 we show Aux density profiles for a complete
cycle of the field, with the same sample parameters as
in Fig. 1. During the initial ramp-up stage (Fig. 2, left),
we increase the external field from zero to a final value
of about 1.9 4p/A . We see the evolution of the internal
Aux profile &om first penetration at low Belds, to the
first complete penetration at a field II* —0.8 C'p/A,
to higher values of B at larger H. We again note that
the Aux gradient is quite high at low fields, but becomes
Aatter —and less field dependent at high fields.

Of course, in real superconductors no vortices will en-
ter the sample until II ) II,i --(lnr/4a) (4p/6A ),
where r = A/(. However, for z's in the wide physically
relevant range &om 2 to 100, H i varies &om 0.05 to 0.36
@p/A . Thus, II,i is small in the range of fields we ex-
plore. In any event, since we are only interested in the
mixed state and not the Meissner phase, we will work in
the approximation where H i is negligible.

During the ramp-down stage (Fig. 2, center), the field
is lowered through zero to large negative values. The
ramping down is initially effected by simply removing
vortices from the unpinned region. However, after the
external field reaches zero, it is reversed by the addition
of antivortices in the unpinned region. During the begin-
ning of this ramp-down stage, we note the appearance of
the characteristic "gull-wing" Aux profile as the internal
remnant Aux located close to the sample edges begins to
be removed. Notice that at external fields near zero the
internal field hardly changes at all as the external field
is swept. This is again because of the very steep gradi-
ents possible near zero field, where pinning dominates.
Thus, the efFect of a change in an external field near zero
propagates only a very small distance into the sample.

As the field decreases below II = 0 (in Fig. 2, center),
B(z) continues to have its A-shaped profile. We note that
for small negative Belds the sample contains both vortices
and antivortices. However, the pinning for both types is
attractive, and so they remain locally trapped and anni-
hilate only when their mutual attraction overcomes the
pinning. This only occurs when they are closely spaced,
within 0.3A. Finally, in the last ramp-up stage (Fig. 2,
right), the full cycle is completed by increasing the field
from the large negative value up to a large positive field,
where the Aux profile looks identical to the initial ramp-
up stage of the cycle.

One clear advantage of our simulation is that we can
obtain direct spatio-temporal information on the distribu-
tion of Aux inside the sample. However, experimentally
this is quite dificult, especially for bulk samples. In-
stead, average quantities, like magnetization curves, are
typically obtained. From the field cycles shown in Fig. 2,
we can easily obtain such magnetization loops from our
simulation. Further, in our simulation it is simple to vary
microscopic parameters such as pin density and strength.
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1) Increase Field 2) Decrease Field 3) Increase Field

30 30 30
Position (in units of &)

FIG. 2. Magnetic fiux density profiles B(2:) for the (1) initial ramp-up phase, (2) ramp-down stage reaching a negative field,
and (3) final ramp-up phase, for the same sample described in Fig. 1 and the text. The fiat plateaus on either side of the sample
show the density in the unpinned region, mimicking the external field, and the jagged V- and h-shaped profiles correspond to
the Qux density in the pinned region.

Thus, our simulations allow for a systematic study of
the dependence of macroscopic measurements, such as
the magnetization, on microscopic system parameters. It
may also be possible to use our results in the reverse
problem, so that some understanding of the microscop-
ics of the pinning may be obtained &om experimentally
determined macroscopic measurements.

IV. MAGNETIZATION HYSTERESIS LOOPS

be larger for large f„. For instance, the remnant M is
larger for stronger pinning. The M(H) loops all show
a maximum when the external field is small (H & H*)
and close to H*. This again is due to the pinning be-
ing most efFective for low fields (H ( H*). Figure 3(b)
shows magnetization loops obtained for several pinning
densities. Experimentally, one may systematically vary
this parameter by the introduction of columnar defects
using irradiation. '

Experimentally, what is typically measured is the av-
erage magnetization over the sample volume. In our sim-
ulation, we thus calculate the average magnetization

M = (H —B) dV.
47t.V

In Fig. 3 we construct magnetization loops as two key
sample microscopic parameters —the pinning density and
strength —are varied. Figure 3(a) shows coinplete mag-
netization loops obtained with the density of pins held
constant at 4/A, but at three difFerent values of the pin-
ning strength fz. One can see clearly that by increasiiig
the pinning strength the hysteresis loops become much
wider. This is because a large pinning force yields a
large field gradient. Thus M, which is essentially the
difference between the external and internal fields, will

V. CRITICAL CURRENT VERSUS
PINNING DENSITY AND STRENGTH

Although magnetization loops are very useful for com-
parison with experimental data, we have emphasized that
our simulations allow us to directly compute the local
fIux distribution inside the sample. Thus, we may di-
rectly measure the local critical current density J using
Maxwell's equation dB/dx = po J. At every point on
fIux density profiles such as Fig. 2 we may compute the
local slope (= dB/dx) and the corresponding local field
B. This allows us to determine a large number of values
of J (B). We then bin these values to obtain suitably
averaged curves of J vs B.

As we have discussed, there are in the literature a
great variety of functional dependences of J on B, cor-
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FIG. 3. Magnetization hysteresis curves M(H(t)). In (a)

the maximum pinning force is varied (f„= 0 9fp, 0.5.5fp,
0.2fp) for a fixed average distance between randomly dis-
tributed pinning sites, d„= A/2 (i.e. , A n„= 4). In (b) the
pinning-site density n„ is varied while f„=0 55fo. A .higher
value of f„and/or n~ increase J, [ width of the M(H) hys-
teresis loopI in the manner shown in Fig. 4. For each M(H)
loop shown, the maximum number of Hux lines inside the
pinned sample is about 1000.

B (c, /z')

FIG. 4. (a) 1/ J,(B) for several values of the pin density n„
(and fixed pinning-site strength f~); (b) 1/J, (B) for several
values of f„(and fixed n„). The insets show the dependence
of the maximum pinning force n on f~ (solid triangles) and
on n„(open circles) The values of n are obtained from the
(solid line) linear fits shown in the larger panels.

responding to difFerent ad hoc electrodynamical assump-
tions. The original Bean model predicts J to be indepen-
dent of B. The varying slopes of the Aux density in Fig. 2
show that this prediction is not borne out in our simu-
lation (except at relatively high-fields where the vortex-
vortex force dominates, e.g. , for weak-pinning samples
with A nz ——4.0, f„=0.2fp). Kim et al. s have proposed
that the critical current depends on B as

n = J,(B+bp),

where o. is field independent and has units of force per
unit volume. In this model, plots of 1/J, vs B should
appear as straight lines with slopes 1/n and intercept
bp/n. The physical interpretation of the constant bp in
the model of Kim et al. is unclear.

In Fig. 4 we plot 1/J, vs B, with J, determined from
our fIux density plots during the initial ramp-up phase.
We plot 1/J, for several realizations of the pinning den-
sity n~ and strength f„. Figure 4(a) shows 1/J vs B
for four difFerent field sweeps with the pinning density
varied from 1.0/A to 9.0/A in2Fig. 4(b) we vary the
pinning strength from 0.2fp to 0 9fp Over a large. reg. ion

of the field, we find that 1/J, is indeed linear in Beld,
as in the model of Kim et al. We can then fit the linear
portions of each curve to straight lines as shown, and ex-
tract the inverse slope o, . For fields such that B )) bo,
the relation of Kim et al. reads n J,B which is the
Lorentz force per unit volume. Since this force is exactly
balanced by the pinning force, we can interpret o, as the
maximum pinning force per unit volume. 60 is typically
in the range of 0.4 to 0.7 4p/A, but even below bp, n
is clearly a measure of the relative efFectiveness of the
pinning.

In the inset to Fig. 4(a), we plot the values of n deter-
mined from the slopes of the 1/J, curves as a function of
the pinning strength f„or density n„. The pinning force
per unit volume has an approximate linear rise with n„,
and the curve with dark triangles follows n f„(if
we assume that n = 0 when f„= 0). Even though
the vortex dynamics in our samples is not dominated
by elastic Bow and collective weak pinning, it is inter-
esting to compare these results with the predictions of
the Larkin-Ovchinnikov (LO) collective-pinning theory,
where weakly pinned vortices interact elastically inside
a typical correlated volume. The 2D LO prediction for
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rigid vortices becomes

J,B npf„,

which is somewhat different from

J,B n„f„

(7)

obtained &om our strongly pinned vortices. The oppo-
site regime of the LO weakly pinned collective vortices is
given by the very strongly pinned independent vortices
where

Thus, our results indicate that our vortices are in an
intermediate state between the two extreme regimes de-
scribed above.

We plot our values for J in practical SI units. The
weakest pinning in our simulation occurs at our highest
fields, where 1/J, is about 100poA /@o. For a A of 1000
A. , this corresponds to a critical current J, = 1.6 x 10s
A/cm, which is in practice a very reasonable value.
Our highest critical currents, at low fields and high pin
strength or density, are about a factor of 10 higher. Thus,
our parameters generally appear to model realistic ma-
terials.

VI. CONCLUSIONS

To summarize, we have perfomed molecular dynamics
simulations of vortices and antivortices interacting with
a controlled range of pinning strengths and densities. In
these simulations we have only considered vortex-vortex
and vortex-pin interactions; no extra force was needed
to simulate a Lorentz force. Thus, our results show that
the Lorentz force can be considered as a consequence of a
flux gradient arising strictly from the interactions of vor-
tices and pins. We compute the flux density profile that
develops with a varying applied field, for both vortices
and antivortices as the external field is cycled through a
loop. Our computed complete hysteresis loops show real-
istic behavior with varying pinning strength and density,
indicating that our model contains the essential physics.
We have obtained J,(H) by focusing on the fiux gradi-
ent that develops naturally from the vortex-pin interac-
tions and find that it monotonically decreases with an
increasing external field with the fall off determined by
the microscopic pinning parameters.
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