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Josephson junction ladders: Ground state and relaxation phenomena
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This paper considers a Josephson junction array with the geometry of a ladder and anisotropy
in the Josephson couplings. The ground-state problem for the ladder corresponds to the one for
the one-dimensional chiral XY model in a twofold anisotropy field, which allows for a rigorous
characterization of the ground-state phase diagram and the relevant elementary excitations for
the system. The approach to equilibrium, which we study using Langevin dynamics, shows slow
relaxation, typical of systems whose energy landscape in the configuration space consists of a wealth
of metastable states, dynamically disconnected.

I. INTRODUCTION

Arrays of Josephson junctions (JJ) in the presence of
an external magnetic Geld are probably one of the best
examples of physical systems in which the ideas of compe-
tition between interactions (lustration), disorder efFects,
and complex (glassy) dynamics can be theoretically and
experimentally checked in a controlled way. Most of the
effort devoted in the last decade to these systems has
been addressed mainly to the study of two- and three-
dimensional arrays as models of extreme type-II super-
conductors in connection with some problems in granular
superconductors (as the high-T, materials). 2 In this pa-
per we will study a simple geometrical configuration of
links, a ladder, which nevertheless shows an interesting
nontrivial behavior, and present some results concerning
the equilibrium (ground-state) properties as well as the
dynamic approach to equilibrium using Langevin dynam-
1cs.

For two-dimensional arrays the ground state is in gen-
eral unknown for arbitrary values of the frustration pa-
rameter f (which is essentially the external magnetic
field in the appropriate units). Several approaches have
been attempted in order to get close to the truly ground
state. Halsey proposed a kind of one-dimensional so-
lution (Halsey's staircase) which gives correct configura-
tions but only for certain values of f He found .that
this solution provides a highly discontinuous function
for the ground-state energy versus f, which is in con-
tradiction with an exact result indebted to Vallat and
Beck. Another way is a numerical attack of the prob-
lem, by using either phase or vortex variables. Examples
of such approach are the pioneering works of Teitel and
Jayaprakash and more recently, the "editing method"
of Straley and co-workers. In all these methods it is as-
sumed that the ground-state for rational values of f, let
us say f = p/q, is periodic with periodicity q (or 2q in
some cases) and the density of vortices is equal to f.
However, for the geometry studied here, because of the
&ee character of the boundary conditions on the upper
and lower branch of the ladder, superconducting currents

on them are possible, allowing a ground-state vortex den-
sity difFerent from f

Different studies on superconducting networks with
a ladder geometry are found in literature. Fink
and co-workers and Simonin et al. have studied
a ladder of superconducting wires in the Ginzburg-
Landau approximation. Current structures commensu-
rate with the underlying lattice appear as solutions of the
Ginzburg-Landau equations.

Previous to our work, Kardar first and later Granato
have studied a ladder of JJ in the presence of a magnetic
Geld and charging effects. Kardar, by doing various ap-
proximations to the interaction potential connects the JJ
ladder and the Frenkel-Kontorova (FK) model with the
"dual Coulomb gas. " Granato focused his study in the
effect of small deviations &om a commensurate field as a
function of the charging energy and in the critical behav-
ior in the absence of external field (quantum XY model).

In the remainder of this introduction, the specific
model for the Josephson junction ladder will be intro-
duced, along with the notation used and the main ap-
proximations leading to it. In Sec. II, making a ju-
dicious choice of the gauge, is established the equiva-
lence, regarding the ground-state problem, with the one-
dimensional chiral XY model with anisotropy. Going fur-
ther, an important argument due to GrifBths and Chou
and Sasaki and GrifBths, allows the applicability of the
vast amount of rigorous results on the ground states of
models of spatially modulated structures with convex
interactions 2 to our system. This provides in a rigor-
ous way the main properties of the ground-state phase
diagram, some of which were already suggested by Kar-
dar and Granato. We also use the effective potentials
method for the explicit computation, with arbitrary
numerical accuracy, of the ground-state configuration for
any values of the model parameters.

In Sec. III we perform a linear stability analysis of
representative ground-state structures which reveals its
persistence as metastable states outside the domain of
f values for which they are ground states. Many other
metastable structures do exist in the system and the dy-
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namic approach to equilibrium, which we consider us-
ing Langevin dynamics, is characterized by a constrained
dynamics leading to slow relaxation. This is a remark-
able behavior in the absence of quenched disorder; i.e.,
no randomness in the Hamiltonian of the system.

The system we consider is a ladder of superconducting
islands in the presence of a magnetic field perpendicular
to the plane of the ladder (see Fig. 1) and we assume
that each island is proximity coupled to its three nearest
neighbors. The interaction Hamiltonian for the system
is

H = — J;~ cos(0,. —0~ —A;~)
(ij)

) Jij cos pij
(ij)

where 0; denotes the phase of the superconducting order
parameter at the ith island or site; p;~, the gauge invari-
ant phase difference, is restricted to the interval (—7r, vr];
and A;~ is proportional to the line integral of the vector
potential A between the ith and the jth sites,

II. GROUND STATE AND PHASE DIAGRAM

H = —) [J cos(0; —0+i —mf)

~J cos (0,
' —0,'+, + 7t.f) + Jy cos(0, —0,') ].

Here 0; (0;) denotes the phase on the upper (lower)
branch of the ladder at the ith step. It is easy to see that
the phase configurations which minimize the Hamilto-
nian are such that 0,. +0,' = const, independent of i; then,
by fixing this constant to 0 and defining the anisotropy
parameter, h = J„/2J, one obtains the equivalence be-
tween the following Hamiltonian:

II = —2J ) [cos(0; —0;+i —7rf) + hcos(20, )] (4)

Among the different choices for the gauge one is par-
ticularly convenient: A;z ——+7rf for the upper links,
A;z —— m —f for the lower ones and A;~. = 0 for vertical
links, which corresponds to a vector potential parallel to
the ladder and taking opposite values on upper and lower
branches. Thus

(2)

ii' J
y

A A
e.

1

0 )( O

FIG. 1. Schematic picture of the JJ ladder. The gauge
choice is shown in the right-most plaquette. Equation (3)
gives the interaction Hamiltonian of this system.

It is required that P A,~
= 27rf, where f is the

ratio of the flux caused Ry the external field with the
superconducting magnetic flux quantum and is a mea-
sure of the &ustration. This relation expresses the dis-
cretized Maxwell equation for the vector potential and
the sum is taken in a clockwise direction over the bonds
surrounding the plaquette p of the lattice. Because the
phases are all defined in the interval (—vr, vr], we have

P„p;~ = 2m(n —f) where n is the integer that defines
the vorticity in each plaquette. Associated to this value
we define the vortex density u as the mean value of n in
the ladder.

The Hamiltonian [Eq. (1)] is the sum of the Josephson
coupling energies between the neighboring islands. Here
we are neglecting screening currents by assuming that A;z
is fully determined by the external magnetic field. This
assumption is correct whenever the penetration length is
much greater than the island width. In this situation,
there is no flux quantization, the vortex density being
not a flux quanta density, but a fluxoid quanta density.
Also we consider that no charging effects are present. For
the coupling constants, J;~, we will assume that J;~ = J~
for horizontal links and J,.~ = J„ for vertical ones.

and Eq. (3), regarding the ground-state configurations
(and other local minima for the energy).

The Hamiltonian [Eq. (4)] describes a one-dimensional
chiral XY model in a twofold anisotropy Geld. It be-
longs to a general class of one-dimensional models of spa-
tially modulated structures, the simplest of them being
the FK model, extensively studied by Aubry. The equi-
librium properties of these models depend crucially on
the convexity of the interaction potential. In the model
defined by Eq. (4), the nearest neighbor interaction po-
tential is nonconvex. However, it can be proved ' that
only the convex part of the interaction term plays a role
in determining the ground-state configurations, so that
the ground-state properties are those of a convex model;
of course, the situation may be different if one consid-
ers different aspects of the model, other than the ground
state.

The essential physics of the model is the competition
between the anisotropy term (coming from the verti-
cal Josephson couplings) which tends to pin the phases
value to 0 or m, and the interaction term (coming from
the horizontal Josephson couplings) which tends to fix
0; —0;+i ——vr f, that is, it tries to keep the value of
the vortex density at the f'rustration value, cu = f The.
ground-state phase configuration at given values of the
parameters (h, f) is the result of the compromise between
both competing tendencies. In order to compute them we
use the effective potentials method which has become
the standard method to obtain the phase diagram for
these type of models. When used in combination with
Newton and relaxation techniques it gives the ground-
state configuration with arbitrary accuracy. The com-
puted phase diagram is shown in Fig. 2 where, for clarity,
only a few transition lines are represented. Characteriz-
ing a ground state by the value of the vortex density (w),
we see in Fig. 3, as predicted by the rigorous arguments
mentioned above, io'ii that w(f), for fixed h, is a devil' s
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with no change in the vortex (Huxoid) density. In the case
of the ground-state for zero vortex density, it is tempting
to speak of this effect as a sort of Meissner effect, but
one should notice that no flux is expelled &om the lad-
der, and one cannot interpret the value of f for which the
ground state changes as an analog of the critical field for
superconductors: it is the fluxoid density what changes
&om zero at that value, not the flux density.

Although u( f) shows such complex aspect the ground-
state energy is a continuous function of the &ustration
(Fig. 3). This is also the case for a 2D JJ array, as proved
analytically in Ref. 4.

The vortex configuration n; corresponding to a ground
state of vortex density u(( 1) is explicitly given by

FIG. 2. The phase diagram of the JJ ladder obtained using
the method of effective potentials. Each phase is de6ned by
the value of u and, for clarity, only a few of the transition
lines are represented. The sketches of the ladders show the
vortex con6gurations of the simplest commensurate states.

n; = y (iur+ a),

where a is an arbitrary constant and y (x) = y (x + 1)
is the characteristic function of the interval [0,u):

(6)
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FIG. 3. cu( f) for the ground-state con6gurations when
6 = 0.2. This function is a devil's staircase: a continuous
function with an step for each commensurate value of u. The
inset shows the continuity of the ground-state energy as a
function of the frustration.

staircase: a continuous function but such that for each
rational value of the vortex density there is an interval of
values of the field for which u remains constant.

This phase diagram is quite difFerent &om the one ex-
pected for the isotropic (h = 0.5) two-dimensional JJ
arrays. For the 2D system, though there is no rigor-
ous proof for it, it is assumed that there are no inter-
vals of stability for rational values of ~, that is, u = f
everywhere. ' In the case of the ladder, however, the
vortex density is not equal to the field. If we move
along inside a step, the ground-state configuration for
the gauge invariant phase difFerences do change with f,
while the vortex configuration remains unchanged; cor-
respondingly, supercurrents along the links of the ladder
keep varying to compensate for the increase of the field

Then, n,; is a periodic sequence (with minimal period)
for rational values of u and a quasiperiodic sequence for
irrational values of the vortex density; it is traditional
to speak of commensurate and incommensurate ground
states, respectively.

Commensurate ground states are, for any value of the
parameter h, pinned and defectible. A configuration is
pinned when there exists a finite value Ig (depinning cur-
rent) such that if a current I ( Ig is injected into each is-
land on the upper branch and extracted &om each island
on the lower branch, the vortex configuration remains un-
changed. In this case the phases change to a new equilib-
rium configuration and no voltage appears on the links
(the ladder remaining superconducting). For values of
the external current greater than the depinning curr nt,
the phases configuration varies with time and a vojtage
can be measured. A defectible configuration admit' dis-
commensurations (defects), that is, there exist minimum
energy configurations of the same vortex density which
are not ground states. An elementary discommensu-
ration in a commensurate configuration corresponds to
a domain wall separating equivalent ground-state vortex
configurations which are shifted relative to each other,
with minimum increase (or decrease) of the local vortex
density (see Fig. 4 for an example). Notice that the vor-
tex configuration of an elementary discommensuration,
though only locally different &om the underlying com-
mensurate vortex configuration, cannot be obtained &om
this through a Gnite number of local changes, but entails
the whole rearrangement of a semi-infinite part of the
system. It is important to keep this point in mind when
dynamic approaches to equilibrium are studied. The cre-
ation energy of an elementary discommensuration goes to
zero at the value of the frustration parameter where the
ground-state vortex density changes, and a C-IC transi-
tion takes place.

Incommensurate ground states show two different
regimes, separated by an Aubry transition (transition by
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FIG. 4. (a) An elementary discommensuration (DC) in a
cu = 0 state. We show the DC from both phase and vortex
points of view. (bl) The two possible vortex sequences for the
ur = 1/2 ground state. (b2) Elementary DC in the u = 1/2
commensurate con6guration.

action potential, one can conjecture that the main gap
of the hull function for golden irrational vortex density
behaves as A = (Ii —h )~, with ( = 0.712, the critical
exponent obtained by Mackay for the Aubry transition
in the standard FK model. The depinning current, Id,
for the golden incommensurate structure has been esti-
mated using simulations in the RSJ approximation. It
has been shown that Id scales as (h —Ii,)" with v = 2.75
close to the estimation, v = 3.011, of MacKay for the
standard FK model.

III. METASTABILITY AND RELAXATION
PHENOMENA
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FIG. 5. 2m module representation of the hull function for
the gauge invariant difference of phase in the vertical links for
the u = 13/34 ground state. This state reflects the behavior
of true incommensurate (irrational u) phases. Above a critical
value of h the function develops in6nite discontinuities being
analytic for values of h lower than the critical one. In this
case h 0.24.

breaking of analyticity) (Ref. 12) at a critical value h,
of the parameter h, which depends on the irrational vor-
tex density, u. Below this critical value, the ground-state
configuration is unpinned (any external current produces
the appearance of voltage on the links) and no defects
can be sustained. In this regime the sequence of gauge
invariant phase differences p,~ can be expressed in terms
of an analytical hull function. Thus, in the case of a
vertical link p, = 0, —0,' = g( i2mu)—+ P), with P an
arbitrary constant (Fig. 5). The situation changes when
h grows above the critical value h: the hull function de-
velops infinitely many discontinuities and the incommen-
surate ground-state there becomes pinned and defectible.
Our estimate of h for a golden incommensurability ratio,
ur = (3 —~5)/2, is h, = 0.245. .. . This estimate should
certainly be improved, for we have used rather poor ra-
tional approximants of u. On the basis of the plausible
irrelevance of the deviations from quadratic of the inter-

One of the characteristics of frustrated models is the
existence of a large number of metastable states, a fea-
ture which influences dramatically the dynamic approach
to equilibrium. Those states are local minima of the en-
ergy (i.e. , stable solutions of the equilibrium equation,

= 0). For the model we are considering, it seems
plausible that the existence of truly chaotic metastable
states could be justified, as an extension of the results
obtained in Ref. 21, for the FK model. In order to illus-
trate the nature of metastability in the 3J ladder, we will
consider the linear stability of a very restricted class of
configurations, namely those vortex configurations which
are ground state for some values of the model parameters.
To analyze the stability of such states we have worked out
the spectrum of small linear perturbations. The proce-
dure has been the following

(a) First, by fixing the model parameters at values in-
side the tongue (see phase diagram) corresponding to the
selected particular value of u, and using the method of
efFective potentials, the ground-state phase (and vortex)
configuration is obtained.

(b) Now we vary finely the parameter f (typically
Af 10 ) and using a Newton method to solve the
system of (nonlinear) equilibrium equations s&sH = 0, we
determine the evolution of the equilibrium vortex config-
uration under quasistatic changes in f, along with the
energy variation.

(c) At each value of f, the spectrum of the small per-
turbations matrix, (&& && j, around the corresponding

i j
equilibrium phase configuration, is computed.

In all the cases, a zero eigenvalue is found, which cor-
responds to the (continuous symmetry) invariance of the
Hamiltonian (3) under uniform rotation of all the phases.
If the rest of the eigenvalues are all positive, the configu-
ration is linearly stable, and the state is a local minimum
of the energy for the fixed value of u under consideration;
when the lowest eigenvalue takes on a negative value, the
configuration is linearly unstable, usually corresponding
to a local maximum of the energy.

In Fig. 6 we show the evolution of the (nonzero) lowest
eigenvalue of the stability matrix for some simple values
of the commensurability ratio w = 1/2, 1/3, 1/4, 1/5, 2/5
when f is varied between 0 and 0.5 and h = 0.5 (J
J&). Not surprisingly, the range of stability is much wider
than the interval of f values for which a given state is a
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FIG. 6. Lowest of the nonzero eigenvalues of the matrix
of stability of a state when f is varied. The picture shows
the cases of some simple commensurate states when h = 0.5.
Open circles show transition from a minimum to a maximum
of the energy when f is decreased.

FIG. 7. Energy diagram of some commensurate states as a
function of f The .lowest envelope is the ground-state energy.
Open circles mark the limit of stability of each state, see Fig.
6. The dotted line is for f = 0.25, the value of the field we
choose in the relaxation calculations we present in Sec. III.
I =0.5.

ground state: a C-IC transition does not have associated
a lack of stability of the commensurate state (which re-
mains a local minimum of the energy), but it corresponds
to the vanishing of the creation energy of elementary dis-
commensurations, a feature that cannot manifest itself
through a linear stability analysis. At the edge of the
stability intervals, marked by the negative sign of the
lowest eigenvalue, the extremal character of the config-
uration changes &om a minimum to a maximum of the
energy. An interesting feature is that, at the border of the
stability interval, the gauge invariant phase configuration
is always such that there is a link where the supercurrent
reaches its maximum (critical current) value, which in
turn coincides with the interaction potential leaving its
domain of convexity. At this point any small change in
the field cannot be sustained by an increase of the cur-
rents. The vortex structure becomes unstable and. the
nearer (in configuration space) stable phases possess a
diferent value of w.

In Fig. 7 we represent, as a function of the &ustration,
the energy of some simple commensurate states. The
ground-state energy corresponds to the lower envelope of
these (and infinitely many other) curves. The stability
transition points are marked by open circles. We can ob-
serve that near the borders f = 0 or f = 1/2 the energies
of these commensurate states are well separated while at
intermediate values of f they are very close. The ener-
gies of other (commensurate and incommensurate) stable
states, not included in the figure, also lie around. Besides
all those stable states corresponding to minimum energy
configurations which exist as ground states for some f
values, one can construct other metastable states, corre-
sponding to almost arbitrary rearrangement of vortices,
with energies also lying about. Then, for intermediate
values of f, the energy landscape consists of an extremely
complex set of local minima, with comparable energies,
corresponding to phase configurations which are, gener-

ically, rather separated in configuration space and, from
a dynamic perspective, almost disconnected, a situation
which is sometimes referred to as constrained dynamics.
We remind the reader that most of the states are un-
reachable &om a given one. The dynamically reachable
states are those which come from the annihilation (or
creation) of a finite density of vortices and not from the
rearrangement of part of the lattice. This fact introduces
a hierarchy of states in the relaxation dynamics which is
relevant in the glassy properties of the model. We can
conclude that this model presents ingredients of systems
with glass behavior: a complex structure of metastable
states and constrained dynamics. It is worthwhile to em-
phasize that here there is no quenched disorder in the
Hamiltonian. As we will see such a scenario is strongly
confirmed by numerical simulations of the dynamics in
the presence of noise.

The existence of strong dynamic constraints in con-
Bguration space is a microscopic feature which leads to
the macroscopic phenomenon known as slow relaxation.
Such behavior has been observed. in many systems like
spin glass compounds, polymers, granular superconduc-
tors, etc. In order to check this phenomenon in the JJ
ladder we study the Langevin relaxational dynamics

where II is defined by Eq. (3) and we use I' = 1 and
J = 1; A, is an additive thermal noise in the phases and
satisfies (A;(t)) = 0, (A;(t)A (t )~)

= 2Th;zb(t —t ).
We look for the relaxation of commensurate as well as

random vortex configurations for diferent values of the
temperature T. For each one we have computed the den-
sity of vortices as a function of time and followed the
time evolution of the corresponding vortex spatial con-
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FIG. 10. Time evolution of a vortex configuration in the
ladder, ni(t), showing nucleation processes. Such processes
dominate the "low temperature" relaxations of ordered struc-
tures. Here the n(t = 0) = 1/2 ordered state decays to a
disordered metastable state, see Fig. 8. In the picture a black
mark represents a vortex. (h = 0.5, f = 0.25, T = 0.01.)

FIG. 11. Time evolution of a vortex configuration in the
ladder, ni(t), showing slow relaxation. Such processes dom-
inate the "mean temperature" relaxations. Here the ini-
tial state is a n(t = 0) = 1/2 ordered state which de-
cays quickly to a disordered metastable state, see Fig. 8,
in the manner shown in Fig. 10~ Then, such states decay
slowly towards the corresponding ground state, in this case
(b, = 0.5, f = 0.25, T = 0.1) and ms, ——0, not one vortex in
the ladder.

hull function develops discontinuities and a nonzero pin-
ning force appears. Modern microlithographic techniques
along with methods to detect vortices may check the
above results in large JJ ladders.

Relaxation of arbitrary vortex configurations fits to
a "slow dynamics" function although no structural dis-
order is present in the model. Disorder is introduced
via initial random configuration and thermal Auctua-
tions. The existence of a complex structure of multiple
metastable states and a strongly constrained dynamics in
the configuration space are the essential ingredients for
this "glassy" dynamics.

The results summarized above have several conse-
quences. Due to commensurability eKects, Gnite size in
the ladder direction can produce changes in the dynamic
response under dc and/or ac currents. 2s Mismatch in the
boundary condition generates defective vortex configura-
tions with a peculiar dynamics. This is an important ef-
fect in order to interpret correctly dynamic results in the
ladder. Though the equilibrium properties of the JJ lad-
der are those of a FK model with convex interaction, this
equivalence does not hold when dealing with the dynam-
ics of the model. For instance, the dc driven dynamics in

the ladder does not, in general, show a unique V(I) as it
should occur for a convex model. Finally, if screening
currents are considered, the anisotropic JJ ladder can be
a good model for long Josephson junctions and stacked
JJ. In this way, an extensive study of the Josephson
junction dynamics under dc + ac driving currents is in
progress.
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