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Optimized variational calculations have been carried out for pure and doped clusters of He
atoms up to a cluster size of N=1000 particles. For small cluster sizes with less than or equal to
112 particles, where comparisons with existing di8'usion Monte Carlo results are possible, we find
excellent agreement for the ground-state energy, correlation, and structure functions. For larger
clusters, our ground-state energies extrapolate smoothly toward a bulk limit of —7.2 K with a
surface energy of 0.272 K A . The resulting ground-state densities show unmistakable oscillations,
confirming our earlier conclusions based on difFusion Monte Carlo studies. The present study of
large clusters allows us to bridge the gap between finite systems and the bulk limit. Specifically, we
show how the bulk limit of collective energies is reached as well as how the bulk Feynman spectrum
is reproduced in the 8-wave component of the dynamic structure function in large droplets. By
plotting the collective excitation energy of higher multipole modes as a function of an effective wave
number k = gE(E+ 1)/R, we show that the resulting spectrum can be directly compared with
experimental excitation energies determined for plane liquid surfaces and films. By summing up to
8 = 50 partial wave components, we show that the full dynamic structure function simultaneously
displays the phonon-roton and the ripplon excitation spectrum. In the case of helium droplets doped
with impurities such as rare gas atoms or the SF6 molecule, we show that the dipole collective
mode becomes unstable with increased droplet size, strongly indicating that these impurities are
delocalized inside large droplets. The microscopic character of the instability is revealed in the
excitation functions and transition densities of the dipole mode. The introduction of impurities also
profoundly alters the dynamic structure function, severely "fragments" the Feynman spectrum, and
obliterates landmark structures such as the maxon and the roton.

I. INTRODUCTION

A current theme in the study of quantum liquids,
both experimentally 9 and theoretically, is to un-
derstand how various bulk physical properties are mod-
ified in restricted geometries. A converse theme is to
understand how these various bulk properties actually
emerge from finite systems. Helium clusters are unique
in that they are the only known bosoni c, fully quantum,
finite bound state systems that can span the range &om
a few-particle bound state to that of the bulk limit. They
are therefore an excellent laboratory for studying the
finite-size dependence of physical properties. Moreover,
because of the relative simplicity of the helium-helium
interaction, helium clusters can be accurately solved by
Monte Carlo methods or by sophisticated variational the-
ory (as we will demonstrate below) without recourse to
phenomenology or ad hoc modeling. One is therefore
in an excellent position to concentrate on the physics in-
volved rather than be distracted by discussions of approx-
imate methods or modeling adequacy. The recent sug-
gestion that the Bose condensate in droplets may be de-
tectable via helium atom-cluster collision has given
further impetus to the study of helium clusters.

Recent calculations of the ground-state structure of
quantum liquid droplets have been based on varia-
tional and. difFusion Monte Carlo algorithms
and on density functional theory. ~ ' In this work,
we take a difFerent approach and apply the hypernetted-
chain/Euler-Lagrange theory (HNC/EL) to the study of
large helium clusters presently too time consuming for
exact diffusion Monte Carlo (DMC) simulations. This
theory has been shown to provide, for all cases stud-
ied so far, He in three and two ' dimensions, He-

He-mixtures, atomic impurities in He, hard-sphere
bosons, and the Fermi systems He and Dt, a predic-
tive power within a few percent of diffusion or Green's
function Monte Carlo (GFMC) calculations, but compu-
tationally about two or three orders of magnitude more
efIicient. The method avoids several difBculties that are
encountered in stochastic methods when quantities other
than the ground-state energy are of interest. For ex-
ample, in the calculations of excited states in Ref. 21,
it w'as necessary to calculate the partial wave expansion
of the two-body density by a two-dimensional binning
of approximately 4000 numbers. Reasonable statistics
on these 4000 numbers then required rather long run-
ning time. Aside &om statistical uncertainly, difFusion

and Green's function Monte Carlo calculations in prac-
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tice suffer &om extrapolation errors when computing ob-
servables other than the energy, such as the two-body
density. This error is particularly acute when the trial
function, though providing a reasonable estimate of the
energy, may nevertheless poorly model the exact wave
function in details. In contrast, the optimized variational
theory presented here is &ee &om statistical or extrap-
olation uncertainties which are crucial for deciding fine
structures such as the controversial density oscillations in
helium clusters. Finally, the theory is manifestly rnicro-
scopic in that it assumes no a priori information other
than the Hamiltonian.

In comparison with our optimized (and unrestricted)
variational theory, variational Monte Carlo (VMC) cal-
culations require a certain amount of physical intuition
to construct a sufBciently accurate variational wave func-
tion. Minimizing the total energy of the system with re-
spect to a few parameters gives some, but not necessar-
ily enough guidance for the construction of an accurate
variational wave function. In particular, in the present
case, the ground-state energy is, in the vicinity of the
bulk saturation density, a very slowly varying function of
the density which makes finding its true minimum very
dificult. Moreover, since the error in the ground-state
energy is only of second order in terms of the error in
the trial wave function, the ground-state energy is rather
insensitive to fine details of the wave function. As a con-
sequence, results other than the energy computed in this
manner may be strongly biased by the user's physical
intuition or prejudice. The problem is of immediate rel-
evance for the quadrupole excitation in large droplets,
which is a surface excitation. In cases where the vari-
ational wave function is not suFiciently Hexible, energy
minimization may well tune the wave function for a good
description of the bulk interior, but still leave the surface
area poorly described. The same problem also appeared
in our DMC calculations, where a variational wave func-
tion is used as a reference for extrapolation. As a con-
sequence, our extrapolation corrections were largest for
the quadrupole excitation.

On the other hand, density functional
calculations ' ' ' ' are computationally quite
straightforward. By construction, these theories rely on
phenomenological inputs Rom systems other than the
one under examination, and occasionally, as in the lo-
cal density approximation, on systems that do not exist
and cannot be produced in nature (uniform low den-
sity liquid helium). The validity of such an extrapo-
lation into unphysical regimes must always be scruti-
nized. In particular, when two-dimensional substructures
like layers or shells are part of the system under con-
sideration, presently available phenomenological density
functionals23, 3x have been proven to be unreliable.

By use of our optimized variational theory, we have
computed the ground-state energy, chemical potential,
collective monopole, dipole, quadrupole, and higher mul-
tipole excitations, one and two-body densities, and the
dynamic structure function for pure and doped (rare gas
atoms and SFs) helium clusters up to size N = 1000.
This allows us to address specific questions left unre-
solved by our DMC calculations:

(a) The difFusion Monte Carlo calculations of Ref. 21
have been carried out to a very high precision because
two-body densities with good statistics are essential for
applying the generalized Feynman theory of excitations.
These calculations have revealed, similar to the GFMC
calculations of Helmbrecht and Zabolitzky, an oscillat-
ing one-body density traceable to the "shell structure"
of the ground state. However, because of the intrinsic
statistical limitation of stochastic methods, this struc-
ture is still under dispute. Since questions of convergence
and extrapolation errors for such a fine structure can be
fairly diKcult or time consuming to address, it is useful to
have this issue resolved by an entirely different approach
with proven reliability. Our optimized variational results,
which are unbiased by any phenomenological input, leave
no doubt that density oscillations exist in helium clusters.

(b) Since precision in computing the two-body density
requires lengthy simulations, the Monte Carlo calculation
of droplet excitations, even on a supercomputer, is lim-
ited to rather small cluster sizes. This has prevented us
from seeing the actual emergence of bulk properties from
finite systems. In the HNC/EL method, the two-body
density is directly computed and the size of the clusters
under consideration is limited only by the available com-
puter memory for its storage. In this work, we have no
problem evaluating cluster properties with sizes on the
order of 1000 particles on a fast workstation. One of the
striking findings of this work is the emergence of both a
narrow phonon/roton spectrum and a ripplon spectrum
in large clusters with N & 240. Moreover, by systemat-
ically studying the ground-state and excitation energies
as functions of cluster size, one can reliably estimate the
regime of validity of the liquid drop model. In future
applications, it would also be possible to use correlated
basis functions (CBF) theory for calculating corrections
to the low-lying excitation spectrum in a manner similar
to our excitation calculations for helium films.

(c) In our previous DMC calculation, the computation
of low-lying collective excitations requires the input of the
partial wave amplitudes of the two-body density. Since
in Monte Carlo calculations, higher-E partial wave ampli-
tudes have lower signal-to-noise ratio, only the 8 = 0, 2
collective modes were studied. In this work, we can eas-
ily compute collective excitations up to E = 50 and can
therefore study in detail the high-E, surface excitation
of the helium droplet as well as the full, partial-wave
summed. , dynamic structure function.

(d) The introduction of impurity atoms and molecules
into helium clusters profoundly alters its excitation prop-
erties. In this case, the dynamics structure function re-
veals that the Feynman spectrum is &agmented to such
an extent that it is without recognizable features such
as the maxon and the roton. Furthermore, our system-
atic study of the excitations reveals an instability of the
dipole excitation, suggesting that the spherically sym-
metric droplet configuration is unstable against infinites-
imal translation of its center with respect to impurities
such as rare gas atoms or SF6 molecules. Such an in-
stability may signal the onset of spontaneous deforma-
tions of the droplet, leading to the possibility of delocal-
ization of the impurity. Such a delocalization scenario
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has been proposed in recent experimental findings, '

but has also been challenged. Current Monte Carlo
calculations ' ' on this question remain controversial
and inconclusive.

Finally, as a new formal development, which will also
be relevant for the application of variational methods to
nuclear and other finite systems, we show how the center-
of-mass motion can be treated in an optimized variational
calculation. The Jastrow-Feenberg ground state (2.2) is
translationally invariant only for very simple pair (and
triplet) correlations that depend only on the pair sepa-
rations of particles. However, the comparison between
DMC and VMC calculations raises doubt that such sim-
ple correlation functions describe the full physics.

The paper is organized as follows: Sec. II presents
our results on the structure and the low-lying collective
excitations of pure droplets. Section III carries out a
similar analysis for clusters doped with rare gas atoms
or a SF6 molecule. In Sec. IV we will carry out a sys-
tematic analysis of low-lying, high angular momentum
excitations, and Sec. V shows results on the dynamic
structure function for both pure and doped droplets. A
series of appendixes gives details of our treatment of the
center-of-mass motion, discusses some properties of the
Euler equations which are important for a careful calcula-
tion of excitation energies in finite systems, and describes
our treatment of triplet correlations.

II. GROUND AND EXCITED STATES
OF PURE 4He CLUSTERS

Our optimized variational theory begins with the
Hamiltonian,

(2.1)

where one normally uses the Aziz potential for the two-
body interaction. The method is approximate since it
is based on a variational wave function of the Jastrow-
Feenberg type,

ep(ri, . . . , r~) = exp — ) ui(r, ) + ) u2(r;, r~)
i&j

) us(r;, r, , ri ) (2.2)

and uses integral equation techniques to calculate the
physical quantities of interest. The one-body function
ui(r) impresses the nonuniform structure, the two-body
function u2(r;, r~) deals with the short-ranged repul-
sion, and the three-body function us(r;, rz, rg) describes
triplet correlations. The correlations are assumed to be
the most general ones permitted by the geometry; for
example, the pair-correlation function u2(r, , r~) depends
on the distance between these two particles, and on the
distance of both particles from the center of the droplet.
These correlations are determined by solving the Euler
equations

bEp =0,
bu„(ri, . . . , r„)

n= 1 2, 3 (2.3)

in an unrestricted function space [a slight modification of
Eq. (2.3) for a finite system will be discussed below]. The
energy expectation value Eo and a numerically tractable
formulation of the Euler equations (2.3) can be calcu-
lated using the hierarchy of hypernetted chain (HNC)
approximations. A rather simple, universal estimate of
higher-order "elementary" diagrams has proven to pro-
vide excellent results for all cases where experimental
data or exact calculations are available for comparison.

Besides the ground-state energy, quantities of interest
are the one- and two-body densities

(2.4)

(2 5)

and the coordinate-space representation of the static
structure function

(2 6)

@int —@ Tcm. (2.7)

T, is the expectation value of the kinetic energy con-
nected with the center-of-mass motion

(2.8)

The one- and two-body densities are necessary inputs to
the calculation of excitation energies and the dynamic
structure function.

The general theory of optimized correlation functions
has been discussed in suFicient detail in Refs. 38, 39,
and 27. In this work, we have implemented the theory
including elementary diagrams and optimized triplet cor-
relations as described in Ref. 27. The basic diff'erence be-
tween the present calculations and those presented in Ref.
27 is that we work in a spherical instead of a plane-surface
geometry. In the previous case, all two-body quantities
are functions of the distances z and z' of each of the
particles from the surface, and their distance rII in the
direction parallel to the surface; the Euler equations can
be decoupled in the momentum parallel to the surface.
In the droplet case, all two-body quantities are functions
of the distances r and r' of each of the particles from
the center, and the angle 0 between the coordinate vec-
tors. In this case, the Euler equations can be decoupled in
spherical partial waves. For the purpose of this work, it is
suKcient to concentrate on the only new technical aspect
of the theory, which is concerned with the treatment of
the center-of-mass motion. This modification of the the-
ory is essential since the most general Jastrow-Feenberg
wave function (2.2) is not translationally invariant.

For finite systems we must consider the "internal en-
ergy" rather than the total energy,
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A. Ground-state properties

The Euler equation resulting from the extremum con-
dition (2.3) can be formulated in terms of the local
particle-hole interaction

b2E
+p-h (ri, r2) (2.9)

and is conveniently solved in the normal-mode repre-
sentation (A18). Using the normal-mode representation
(A21) it is easy to demonstrate that the eigenvalues of
this equation are also the eigenvalues of the general-
ized Feyninan equation (A23). Furthermore, the normal-
mode decomposition is just the representation of the
static structure function as an energy integral of the dy-
namic structure function. The particle-hole interaction
is obtained iteratively, starting from an initial guess, by
solving Eqs. (A14), (A15), and (A17). Once convergence
is achieved physical quantities such as the one- and two-
body densities, Feynman spectrum, static and dynamic
structure function, etc. , are simultaneously determined.

where M = Km, is the total mass of the droplet.
At first glance, the issue appears to be academic since

we are mostly dealing with large droplets, and the center-
of-mass motion should be negligible. Moreover, the in-
homogeneous hypernetted chain equations are accurate
only to order 1/N; in other words, the expected accu-
racy of the theory is, at best (i.e. , even if all diagrams
were calculated exactly), of the order of 1/N. The subtle
point is that the inclusion of the center-of-mass energy is
essential for computing the excited states. Since the cal-
culation of the excitation spectrum is an integral part of
the numerical optimization of the correlations, some care
must be exercised to avoid spurious solutions or instabil-
ities. Of course, the expected smallness of center-of-mass
eKects will allow us to make significant simplifications.
The modifications of the theory and the resulting Euler
equations resulting &om the inclusion of the center-of-
mass motion will be described in Appendix A.

This is the essential diBerence from our previous DMC
based calculation, where the two-body density (2.5) and
the coordinate-space representation (2.6) of the static
structure function are the principal ingredients of input
upon which the generalized Feynman equation (A23) for
the excited states is solved.

Table I shows a comparison of our HNC/EL results
with some other calculations, mostly different versions
of our DMC simulations of Ref. 21. For complete-
ness and comparison, we show in the last rom of Ta-
ble I the results of the nonlocal density approximation
(NLDA) calculation by Casas and Stringari, based
on a nonlocal density functional (NLDF), and those
of a finite-range density-functional calculation (FRDF)
of Ref. 25. The results of our HNC/EL calculations
for both the ground-state energy and the unit radius
ro ——(5/3)i/2(r2)i/2N i/s agree with our earlier DMC
calculations better than expected. The best global fit
to the energy per particle for clusters with 70 or more
particles has been obtained by the form

E N
N

= —7.21 + 17.71N / —5.95N / K. (2.10)

Clusters with 20 and 40 particles are basically surface
dominated clusters whose central densities have not yet
reached the bulk value. They were therefore deemed un-
suitable for use in extrapolating the bulk limit. In Fig.
1 we show our HNC/EL results, together with the above
fit and the DMC results of Ref. 21. Equation (2.10) sug-
gests an asymptotic energy per particle of —7.21 K and a
surface energy of cr = 0.284 KA. . The asymptotic en-
ergy has the expected accuracy due to our treatment of
elementary diagrams, demonstrating that any simplifica-
tions of the numerical treatment imposed by the nonuni-
form geometry have no detrimental efI'ect on the bulk
energy. The surface energy also compares quite favor-
ably with the experimental value of 0.256 KA. . The
value of 0.284 K A. 2 is improved to O'HNC 0.272 K A
when the slightly lower calculated central density (0.02
A. ) is used instead of the experimental value of 0.02185
A.

—'.

TABLE I. Ground-state properties of He clusters as computed by various methods. eo = Eo/N is the ground-state energy
per particle in degrees K, ro ——(5/3) (r ) N is the unit radius defined from r, in units of A. . VMC-II and DMC-II
refer to our variational and diffusion Monte Carlo calculations of Ref. 21, NLDA to the nonlocal density approximation of Ref.
14, and FRDF to the finite-range density-functional theory of Ref. 25.

20
40
70
112
150
200
240
400
600
800
1000

HNC/EL
Ep

-1.677
-2.570
-3.273
-3.801
-4.095
-4.362
-4.521
-4.928
-5.211
-5.377
-5.503

'Pp

2.83
2.59
2.47
2.40
2.37
2.35
2.35
2.33
2.33
2.33
2.33

Ep

VMC-II

-1.522(2)
-2.344(1)
-2.966(1)
-3.427(2)

Tp

2.68
2.53
2.46
2.40

6p

DMC-II

-1.659(3)
-2.536(4)
-3.205(4)
-3.726(4)

Fp

2.68
2.53
2.43
2.42

NLDA
Ep

-1.27
-2.18
-2.93
-3.51

Pp

3.11
2.74
2.57
2.47

6p

-1.40
-2.27
-2.97
-4.28

-4.28

Pp

2.87
2.60
2.48
2.41

2.33
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FIG. 1. The HNC/EL energies of helium clusters (circles)
are compared with the DMC results of Ref. 21 (crosses). Also
shown is the fit (2.10) (solid line); recall that only the energies
for particle numbers N & 70 have been Gtted.

FIG. 3. The ground-state density profiles of He droplets
with particle numbers N = 20, 40, 70, 112, 150, 200, 240,
400, 600, 800, and 1000 as obtained from the HNC/EL the-
ory.

For the density profiles (cf. Fig. 2), the agreement
between our HNC/EL calculations and the DMC results
is less quantitative. They are systematically too low in
comparison and appear to converge towards a central
density slightly larger than 0.02 A. 2 (cf. Fig. 3). Such
a small deviation is easily understood &om the fact that

the ground-state energy of bulk He is, in the vicinity
of the saturation density, a very weakly varying func-
tion of the density. If the 6tted bulk liquid equation of
state by de Bruyn Ouboter and Yang is extrapolated
to p = 0.02 A, the ground-state energy only increases
by a mere 0.07 K per particle. We do not claim that
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FIG. 2. The ground-state density profiles of He droplets from the HNC/EL theory (solid lines) are compared with the DMC
results of Ref. 21 (asterisks and diamonds with error bars).
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HNC/EL is sensitive to this level of accuracy. While it
would have been easy to produce a better match between
ours and the DMC densities by judiciously choosing our
treatment of elementary diagrams, we have decided not
to do so and are using the theory exactly the same way as
in our calculations of bulk quantum liquids and quan-
tum liquid films. We suspect that the slight mismatch
between the equilibrium density of the bulk liquid and
the central cluster density is due to some numerical sac-
rifices that were made in the calculation of the so-called
elementary diagrams, which were calculated in a spheri-
cally averaged approximation.

In our previous DMC calculation in Ref. 21, we
have found persistent ground-state density oscillations
in smaller clusters attributable to geometric "shell struc-
tures. " Our present calculations clearly demonstrate that
the one-body densities are indeed not smooth. More-
over, Fig. 3 shows that the outermost shell structure
in smaller clusters has developed into a broader shoul-
der in the density profile of larger clusters, suggesting a
two-dimensional "skin" of He surrounding each cluster.
A similar shoulder in the profile has been found in our
calculations of thick absorbed films. 32

These density oscillations &om our HNC calculations
are somewhat smaller in amplitude and out of phase with
those found in DMC, but they are undeniably present
and are rather similar. For each N, they have about the
same number of oscillations. The reduction in amplitude
may be due to the lower density of our HNC/EL clusters.
This is supported by the fact that when we ignore the el-
ementary diagrams and triplet correlations, the theory
reproduces the well-established lower saturation density
of the HNC approximation of po 0.017 ~~, andHNC

the density oscillations disappear altogether. The fact
that these density oscillations are dictated by elemen-
tary diagrams and triplet correlations may well explain
why they cannot be seen in VMC calculations with sim-
ple trial functions. These oscillations are most promi-
nent near the surface and are less conspicuous as one
moves toward the center. (The large density fiuctuations
near r = 0 in DMC droplets are artifacts of binning and
should be discounted. ) Similar density oscillations have
also been seen recently in an improved density functional

42calculation of Dalfovo, Lastri, and Stringan.
A comparison of the energetics and the global structure

of the physical system, such as the one-body density, is
normally insufficient to document the efficiency and ac-
curacy of a given theory for describing the physical sys-
tern. Other quantities that must be considered are the
pair density, pair distribution functions, and the static
structure function. For all of these quantities, Monte
Carlo results exist for small clusters and experimental
data are available in the infinite bulk limit. By com-
paring these with our theoretical findings, one can judge
both the quality of our theory, and, once that is estab-
lished, the systematics of its predictions in approaching
the bulk limit.

The pair-distance distribution p2(r) is defined by

2.0

1.5

1.0

0.5

0.0—
0 10

r (Al
15 20 25

FIG. 4. The pair-distance distribution function as defined
by Eq. (2.11) for cluster sizes (from bottom to top) N =20,
40, 70, and 112 particles. The diamonds are DMC-II results
from Ref. 21, and the solid lines are results of the present
work.

P2(rl r2) = Pl (rl)P1(r2)g2(rl r2). (2.13)

In the bulk limit N ~ oo, g(ri, r2) ~ g(~ri —r2~),
which is identical to the above g(r ). However, even when
N g oo, one can still extract an averaged pair-correlation
function g2(r) via

1 s s p2(ri r2)g2(r):—— d ri d r2b(r —~ri —r2~)V P&L+&)P& ~»
(2.14)

Figure 4 shows a comparison between our HNC/EL result
with those of DMC in Ref. 21. Note that even small
details, such as the height of the second-neighbor peak,
are well reproduced. The first peak height is slightly
below that of DMC, which again may be attributed to
our lower central droplet density.

In order to study how the bulk limit is approached
in larger clusters, the normalization of the pair-distance
distribution function (2.11) must be modified to ex-
tract the usual pair-correlation function. In the bulk
limit, the two-body density has the form p2(ri, r2)
p g2(~ri —r2~), and hence p2(r) = Npg2(r), where p is
the bulk density. We therefore define

g2(r) —=
N P2(r),

1
(2.12)

Np

which has the virtue of being simply proportional to the
pair-distance distribution. The resulting g2(r) is shown
in Fig. 5. It certainly has the qualitative feature ex-
pected of a pair-correlation function. However, its ap-
proach toward the bulk limit is rather slow. To illustrate
the fact that the convergence to the bulk limit can de-
pend strongly on one's definition of the corresponding
quantity in the finite system, we start &om the tu)o body-
correlation function g2(ri, r2) defined by

p ( ) = f d~rrd rr6(r —~rr —rr~~)pr(r, , rr). (2.11) which is in general different from g2(r). V is the norma—
ization volume. The resulting g2(r)'s are shown in Fig.
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FIG. 5. The normalized pair-distance distribution function
as defined in Eq. (2.12) is shown for cluster sizes (from bot-
tom to top) N =20, 40, 70, . . . , 1000 particles. The peak of
the pair-density distribution function increases with increas-
ing particle number. The dashed line is the pair distribution
function of the bulk liquid calculated at the same density from
Ref. 26.

FIG. 7. The static structure function S(k) [Eq. (2.15)] is
shown for cluster sizes of 20, 40, 112, and 1000 particles (solid
lines). The three dotted lines are the results of the DMC
calculation of Ref. 21 for 20, 40, and 112 particles, and the
dashed line is the bulk S(k) at the calculated central density
from Ref. 26.

S(k)= —f d rdrr'/pr(r)pr(r')r'"'~' '~S(r, r')

= 1+ —(P, (k) —[P, (k)['j, (2.15)

where pz(k) and pi(k) are Fourier transforms of the pair-
distance and one-body densities, respectively.

1.5

1.0—

0.5—

6 and compared with the bulk limit at the same density.
The convergence here is obviously much more rapid and
in excellent agreement with the bulk result.

While the pair distribution functions g2(r) and g2(r)
reBect the short-range structure of the system crucial for
a physical reliable description, it is the static structure
function that is directly measured in scattering experi-
ments. The static structure function can be obtained ei-
ther by a &equency integration of the dynamic structure
function, as described below, or by a Fourier transform
of the pair-distance distribution (2.11),

In Fig. 7 a representative set of our HNC/EL static
structure functions is compared with available DMC
results and with the bulk limit. Except for some slight
difFerences (not too visible in the graph) near the "knee"
region (k = 0.3) and for the particular case of N = 20,
the overall agreement is again excellent. However, even
for a very large droplet, the cluster S(k) has yet to attain
the full peak height of the bulk static structure function
at the same density. Since S(k) is related to g2(r), and
specifically the peak in S(k) to the the long-range oscil-
lations of g2(r), this slow convergence is not unexpected.
Another region of slow convergence is the existence of the
"knee" at small A:, which is clearly a finite-size efFect that
systematically diminishes with increased cluster size. For
a finite system, one can easily show4 that S(k) oc k in
the limit of k —+ 0. In the bulk limit, however, S(k) oc k
as k ~ 0. Thus S(k) must change from the former to
the latter as N =+ oo. This change is achieved by con-
tinuously shrinking the region where S(k) oc k, whose
border forms a characteristic "knee. " This region extends
roughly from k = 0 to k = 2m /D, where D is the diame-
ter of the droplet. Since the latter goes as the cube root
of N, the convergence is, not surprisingly, slow.

An alternative way to calculate the static structure
function, which gives some more information on the phys-
ical processes contributing to it, is to start from the two-
body density. The determination of the full two-body
density p2(r, r') is an integral part of our optimization
procedure and will be discussed in the next section. Fun-
damental to our algorithm and the solution of the opti-
mization problem is the partial-wave analysis of all quan-
tities involved, for example,

0.0
0

r (A)

10
p2(r, r') = ). p2 '(& &')&~(r . r')

e

(2.16)

FIG. 6. Same as Fig. 5, but for the averaged pair distribu-
tion function (2.14). from which we obtain the partial-wave components of the
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V»(r)~ (r) = ~p (r) (2.24)

to the adjoint states. As discussed in Appendix B, a
rigid translation corresponds to an excitation function
f (r) = c r, whereas a constant excitation function cor-
responds to a renormalization of the wave function. For
a variational ground-state wave function 4'o, Eq. (2.22)
follows from the extremum condition (2.3). In our previ-
ous works on collective excitation based on DMC results,
the generalized eigenvalue equation (A23) resulting from
(2.22) was solved by a partial-wave expansion with inputs
of one- and two-body densities. In our current varia-
tional theory, the calculation of excitation energies and
excitation functions is a part of the minimization proce-
dure. The random-phase aproximation (RPA) equation
(A18) solved in this procedure is, up to algebraic manipu-
lations and the application of center-of-mass corrections,
identical to the linear response equation used in Refs. 14
and 25.

Our results for monopole and quadrupole excitation
energies are compared with our previous DMC energies
and a few more recent calculations in Figs. 10 and
11. Overall, we find satisfactory agreement between our
HNC/EL calculations and our Monte Carlo results. Both
exhibit the same trend as a function of the cluster size.
The fact that the present results are, for smaller parti-
cle numbers, somewhat below the Monte Carlo results is
presumably due to the lower density of the systems —the
droplets are "softer. " At higher particle numbers, espe-
cially in the case of the quadrupole, Monte Carlo results

ll I I ) I I

HNC/EL
VMC-I
VMC-II
DMC-I
DMC-II
FRDF
NLDA

1.0

0.5

0.0
1000 240 112 70 40

-I/2
N onN scale

I

20

FIG. 11. Same as Fig. 10 for the quadrupole excitation
energies. No extrapolation towards a "liquid drop limit" has
been attempted in this case.

are less reliable due to extrapolation uncertainties in the
one- and two-body densities.

We have also attempted an extrapolation to a liquid
drop model limit. In the case of the monopole, the ex-
citation energy appears to have approached such a limit
quite well, albeit with a difFerent slope. From the bulk
equation of state, one would expect an asymptotic form
for the monopole energy in the limit of large particle
numbers,

HNC/EL ~
VM( -I +

VMC-[I a
DMC-I x

DMC-II
KW

3 FRDF
NLDA

X
(3

1000 240 112 70 40
-I/3

N onN scale

I

20

FIG. 10. The monopole excitation energies of droplets with
up to 1000 particles (heavy solid line with diamonds) are
compared with the results of our earlier DMC calculations
(VMC-I, VMC-II, DMC-I, and DMC-II), those of Krishna
and Whaley (Ref. 15), and two density functional calculations
by Casas and Stringari (Ref. 14) and Barranco and Hernan-
dez (Ref. 25). The long-dashed line is the continuum limit
—p(1V). The upper short-dashed line is the liquid drop pre-
diction as calculated from the bulk equation of state, and the
lower dashed line is what appears to be an "extrapolated"
liquid drop limit from the microscopic calculation of the exci-
tation energies. Our VMC-II results have been extrapolated
to the result of Krishna and Whaley through the dash-dotted
line.

(2.25)

whereas Fig. 10 suggests a coefficient of 21. This num-
ber is actually in quite good agreement with the pre-
diction from the calculated equation of state, which
yields, at the calculated central density, a coefficient of
20. Some mismatch between the compressibility obtained
from the equation of state and from the low-lying exci-
tations is to be expected: It is quite well known that,
within a microscopic theory, the compressibility obtained
from the equation of state agrees with the compressibil-
ity obtained from the long-wavelength excitations only if
all (Feynman or Jastrow-Feenberg) diagrams are calcu-
lated. Thus, the mismatch between the liquid drop limit
as calculated from the excitations and as calculated from
the bulk equation of state may be used as a quantitative
measure of the quality of our variational calculation.

We note, however, that the convergence to a liquid
drop limit in agreement with a bulk calculation is a mere
consistency test of the calculation and not a prediction of
the theory for the behavior of a finite system. A true pre-
diction is how rapidly the liquid drop limit is approached
as a function of the particle number. In that respect,
both Monte Carlo and the present calculation indicate a
significantly slower convergence towards the liquid drop
limit than density functional calculations. This is consis-
tent with our finding of Ref. 28 on liquid films.

In the case of the quadrupole excitations, the DMC
calculations sufI'ered from significant extrapolation un-
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certainties as alluded to earlier. It is again important
to know to what extent a "liquid drop limit" has been
reached for cluster sizes considered here. Figure 11 seems
to indicate that one is still far from such a limit. However,
one can extract further information on "how close" one is
to the liquid drop limit by considering higher multipole
excitation modes. We will consider these primarily sur-
face excitations in Sec. IV. As we shall see, for somewhat
shorter wavelengths, the agreement between the disper-
sion relation of the surface modes calculated from the
Feynman theory and the one calculated from the surface
energy extracted from the mass formula (2.10) is indeed
excellent.

III. GROUND AND EXCITED STATES
OF DOPED He CLUSTERS

After some initial studies of pure clusters, attention is
now focused on the use of atoms and small molecules as
probes of clusters properties. ' ' For this purpose,
one must fully understand the energetics and structural
changes caused by the impurity. The change in energet-
ics is measured by the helium chemical potential in the
presence of the impurity and it is sensitive not only to the
bare impurity- He interaction, but is also greatly influ-
enced by the shell-like distribution of He atoms near the
impurity, similar to the formation of layer structure of ad-
sorbed helium films on a plane substrate. ' Obviously,
the formation of such spherical layers can be similarly
visualized by plotting the one-body density. The struc-
tural changes caused by impurity clearly depend on the
location of the impurity. Whereas unbound atomic im-
purities like He, or alkali atoms, should be located at the
surface, rare gas atoms and molecules that are strongly
attracted to He atoms are expected to be dissolved in the
interior of the droplet. In very small clusters, such impu-
rities will be localized at the cluster center. As the clus-
ter grows in size, suKcient in number to completely cover
the impurity and shield it &om other helium atoms, the
localization of the impurity, which depends on details of
the many-body bound state formed between the impurity
and the helium host, becomes less well de6ned.
In our theory, such a delocalization process is reflected
dynamically in the "softening" or even instability of the
cluster's collective dipole excitation.

We will consider clusters doped with a single rare gas
at;om or a SF6 molecule. The stronger the impurity- He
interaction, the more pronounced will be the arrange-
ment of helium particles in spherical "shells" around the
impurity. It is also possible that they exhibit shape in-
stabilities similar to those found in adsorbed liquid films
on sufBciently strongly attractive substrates. ' ' Our
approach is well suited to address the questions con-
nected with the impurity energetics, localization, and
the shell structure of the doped droplet. The impu-
rity theory has been applied successfully for the case of
deuterium and tritium impurities. The inhomogeneous
variational theory has also been applied for the study of
layered structures in adsorbed films, including the
two-dimensional limit.

In all cases where a comparison with experiments or
Monte Carlo data is possible, the theory provides excel-
lent accuracy. There is therefore every reason to expect
that our approach should be accurate for other impurity
atoms and molecules. Additionally, we have shown in
the preceding section how the excitation spectrum of our
clusters is a by-product of the ground-state calculations.

A. Structure and energetics
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FIG. 12. The HNC/EL energies of helium clusters doped
with a rare gas atom or a SF6 impurity. Also shown are the
HNC/EL energies for pure clusters, the corresponding DMC
energies from Ref. 21, and the VMC energies (diamonds) and
DMC energies (triangles) for SFs-doped clusters from Ref. 22.

As in Refs. 24 and 25, we neglect the zero-point mo-
tion of the impurity and treat it as a fixed, spheri-
cally symmetric, external potential added to the Hamil-
tonian (2.1). The interaction between the helium parti-
cles and the impurity is taken to be the Tang-Toennies
potential. The center-of-mass corrections derived in
Appendix A are not applied. This can have quantitative
consequences on some of the excitation energies, which
will be discussed further below.

The energy per particle for Ave different impurities, Ne,
Ar, Kr, Xe, and SF6, is shown in Fig. 12. The energies for
pure clusters are also shown for comparison. The intro-
duction of impurities increases, as expected, the binding
energy of the droplets in accordance to the strength of
the impurity attraction. For large N, if the droplet re-
mains stable, the energy approaches the bulk value, as it
must. In the case of SF6, the VMC and DMC calculations
of Barnett and Whaley are also shown for reference;
note, however, that these calculations were carried out
with a more recent version of the Aziz potential. Our
HNC/EL results have clearly a lower energy than their al-
ready substantial VMC calculation. Our results, though
having the correct trend, are still systematically higher
than their DMC energies. This is not unexpected since
our treatment of elementary diagrams has been tested
in the physically accessible range of the bulk liquid;
there is a priori no reason to expect that this treatment



52 SYSTEMATICS OF PURE AND DOPED He CLUSTERS 10 415

of elementary diagrams and triplet correlations should
maintain its accuracy up to four times its intended den-
sity. The fact that it did work so well so far from its
initial normalization point gives further credence to our
approach.

The solvation energy of an impurity X can, in princi-
ple, be computed by calculating the energy difference,

O. IO
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FIG. 13. The HNC/EL solvation energy (3.1) of a rare gas
atom and a SFs impurity in helium clusters (marked lines).
Also shown are the corresponding density functional calcula-
tions of Ref. 24 (unmarked lines).

in the limit of N —+ oo. However, as will be discussed
in detail below, all doped clusters considered here are,
in that limit, unstable against the delocalization of the
impurity atom. In other words, the assumed configu-
ration where the impurity atom remains at the center
of the droplet is energetically unfavorable, and the limit
lim~~ p~(X) in principle does not exist. For the sta-
bte cluster sizes, the energy difference (3.1) is shown in
Fig. 13 as a function of particle numbers. It is seen that
all curves change relatively little for particle numbers
N ) 70. If the additional energy gained by the impurity
delocalization is small, these results can still be reason-
able estimates for the solvation energies. Density profiles
for a sequence cluster size with a SF6 impurity are shown
in Fig. 14 and compared with available DMC results of
Barnett and Whaley. The profiles show the anticipated
shell structure and the overall agreement with the DMC
profiles is good. For the case N = 112 one sees the effect
discussed earlier that the HNC/EL approximations pro-
duce a slightly lower saturation density, which leads to a
more rapid filling of the shells. The density in the first
shell of atoms is, due to the strong impurity attraction,
approximately four times that of the bulk density. In
the case of large droplets, one can clearly see out to the
third and fourth shells. Our calculations indicate that the
density of the first shell of particles around the impurity
atom should increase with cluster size. This is consistent
with the behavior of liquid films on plane substrates.
Barnett and Whaley's DMC calculations appear to show
the opposite effect. The difference may well be due to
the fact that Barnett and Whaley do not treat the impu-

0.02—

0.00
0 10

r (A)

15 20

FIG. 14. Density profiles for SF6-doped clusters. Shown
are the particle numbers N =20, 40, 70, 112, 150, and 240
(solid lines) and the DMC calculations of Ref. 22 for N =
20, 39, 69, and 111 (dashed lines). Error bars on the DMC
calculations are not shown for clarity.

rity as an infinite-mass particle, but rather allow for its
zero-point motion.

In order to provide comparison with Dalfovo's density
functional calculations, we have extracted these results
from Ref. 24; the results for rare gas atoms are shown in
Fig. 13. A direct comparison of Dalfovo's SF6 solvation
energy is not possible since, in order to allow for a com-
parison with Whaley's DMC calculation, we have used
the spherically symmetric He-SF6 potential by Pack et
a/. , whereas Dalfovo followed Scoles's suggestion and
reduced the attractive well depth. We have carried out a
test calculation with a similarly less attractive potential
and concluded that the energy difference of about 100 K
is due to the differences between the potentials used.

A comparison between the density functional and our
results shows essentially the expected behavior: For the
smaller clusters, the density functional theory predicts
somewhat too high energies. This is not unexpected due
to the inaccuracies of density functional theory for two-
dimensional systems and atomic monolayers. The rel-
evant point here is that the formation of the solvation
shell of helium atoms around the impurity is essentially
a two-dimensional phenomenon. However, the effect here
is less severe than in helium films simply because fewer
particles (12, 17, 19, 21 for Ne, Ar, Kr, and Xe, respec-
tively, according to Ref. 24) are located in the quasi-
two-dimensional solvation shell. For larger droplets, the
density functional appears to overbind slightly compared
to our calculation, which is a bit unexpected since the
energy functional was fitted to the bulk saturation value.
A more revealing comparison is that of chemical poten-
tials, which are derivatives of the energy. This will be
discussed below.

A family of density profiles of doped droplets with
N=70 4He atoms is shown in Fig. 15. All of these contain
basically two shells of helium atoms around the impurity.
We can clearly distinguish three categories: Ne-doped
droplets show the weakest shell structure, followed by
Ar, Kr, and Xe which are very similar, and finally SF6,
which not only has the highest density in the first shell,
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FIG. 15. The ground-state density profiles of He droplets
doped with a rare gas atom or a SF6 impurity molecule lo-
cated at the center of the droplet. Shown is the particle num-
ber N = 70. Also shown are the profiles for the pure droplets
with N = 70.

but also the most pronounced minimum between the first
and the second shell. It is also rather surprising that, de-
spite differences in impurity size and range of attraction,
the final doped cluster radius is virtually independent of
the type of impurity.

B. Collective excitations and stability

One of the most interesting aspects of our calculations
of doped clusters is the instability which favors the de-
localization of the impurity atom. We have encountered
this instability in an earlier and preliminary calculation
on SF6-doped droplets. Here we will present a system-
atic study of the mass dependence of the instability and
a more extended discussion. In treating the impurity as a
static external field embedded in a spherically symmetric
helium droplet, we cannot directly address the question
of localization by following the motion of the impurity.
However, the HNC/EL theory gives us a dynamical way
of answering this question. In its unrestricted search for
the energy minimum, the HNC/EL equations will not
have solutions if the assumed geometric configuration is
incompatible with physics dictated by the Hamiltonian.
For example, if the helium atoms were not distributed
spherically around the impurity (as is the case for a sHe
or alkali metal impurity), then the assumed geometry of
fixing the impurity at the cluster center would not yield
solutions. In other words, the HNC/EL equations have
solutions only for a relative minimum of the energy func-
tional within the permitted function space.

Our treatment of the impurity particle as an infinite
mass object in no way compromises this special sensitiv-
ity: While the droplet can certainly not move the impu-
rity, the helium atoms are &ee to move themselves away
from the impurity. Such an effect would be manifested
in our calculation as an instability of the dipole exci-
tation, which essentially describes a relative oscillation
between the impurity and the helium atoms. A dipole
instability indicates that the spherically symmetric con-

1.5

1.0 -,
C)

0.0
20 30 40 50 60 70 80 90 100

N

FIG. 16. The dipole excitation energies of droplets doped
with a rare gas atom or a SF6 impurity are shown as a function
of particle number.

figuration with the impurity at the cluster center is no
longer energetically favorable.

We have found, indeed, for doped clusters with sizes
N + 50—90, depending on the particular impurity, an
instability of the dipole collective mode. Figure 16
shows the dependence of the dipole excitation energy
on the cluster size and the impurity type. All doped
clusters studied here display a dipole excitation energy
that plunges through zero. The maximum stable cluster
size depends essentially on the strength of the impurity-
helium interaction. Weaker interacting impurities desta-
bilize at smaller cluster sizes.

In principle, one can imagine two types of delocaliza-
tion. The first is the conventional understanding that
when the droplet becomes larger, the spherically sym-
metric droplet configuration with the impurity located
at its center remains a relative energy minimum. Such
an energy minimum necessarily becomes wider as the size
of the droplet increases, since the surface is further away.
Accompanied by this effect is an increase of the zero-
point motion of either the impurity within the droplet,
or, if the impurity is fixed, the droplet around the im-
purity. This zero-point motion corresponds to delocal-
ization. In this scenario, the location of the center of
mass of the droplet would be a broad but slightly peaked
distribution about the location of the impurity. In our
calculation, such a scenario would appear as a gradual
convergence of the dipole excitation energy towards zero.
This asymptotic value might manifest itself, due to nu-
merical inaccuracies or approximate diagram summation,
in a small positive or negative constant, but would be
asymptotically, for N —+ oo, Hat.

A second, Chfjerent scenario occurs when the spheri-
cally symmetric configuration of the droplet as described
above is no longer a relative energy minimum. In that
case, the center of mass of the helium atoms would not
necessarily coincide with the location of the impurity,
i.e. , the center of mass of the helium droplet is displaced
from the impurity. Our theory is in principle able to deal
with such asymmetric situations ' with significant ad-
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ditional effort. The present implementation addresses
only the simpler question of the stability of spherically
symmetric configurations with respect to infinitesimal de-
formations, i.e., the stability of the dipole and higher
multipole modes.

Figure 16 shows no sign that these dipole energies ap-
proach an asymptotic value; in other words, our results
suggest that the spherically symmetric configuration is
dynamically unstable, suggesting the possibility of the
second scenario.

In an approximate theory, one can never guarantee
the absence of inconsistencies. In particular, in the
variational/parquet-diagram theory it is known that
the particle-hole interaction obtained from the second
derivative of the energy with respect to the one body d-en-

sity is not identical with the particle-hole interaction ap-
pearing in the Euler equation, which stems from the
first derivative of the energy tvith respect to the ttvo

body density. Such inconsistencies normally provide use-
ful convergence tests; we have already commented about
this feature in connection with the monopole excitation
above. In order to rule out that our instability is due
to such an inconsistency, we have repeated the calcula-
tions for the pure droplets with the center-of-mass cor-
rections turned off; in other words, we have done exactly
the same calculation for pure droplets that was done for
doped droplets. If the dipole instability were an arti-
fact of the approximation, one would have expected, in
that case, that an instability similar to the one appearing
for doped droplets should occur, for even smaller particle
numbers. Moreover, since the center-of-mass corrections
affect only the dipole mode, one would also expect an
unstable quadrupole mode for sufIiciently large particle
numbers. Quite the contrary, we observed that, for ex-
ample in a pure cluster of 70 particles, the dipole mode
is raised to approximately 0.5 K when the center-of-mass
corrections are turned off. Moreover, the energetics of all
multipole excitations is in very good agreement with the
excitation of surface modes, as will be discussed in the
next subsection.

We also note that a similar instability has been
observed by Barranco and Hernandez in their den-
sity functional calculation of Xe-doped droplets for the
quadrupole excitation. These authors have found an
instability of the quadrupole excitation for Xe-doped
droplets on the order of 700 particles and have left blank
an entry for the case of N = 728 in their table of
quadrupole energies. Since they have not considered
dipole excitations which are expected to have a lower
energy, we suspect that their critical value overestimates
the regime of stable clusters. Their work thus supports
our view that the dipole instability is not specific to our
variational theory.

Our calculation cannot proceed, without some artifi-
cial modification of the equations, beyond the cluster size
where the dipole excitation energy becomes zero. It is
therefore legitimate to ask how the ground-state struc-
tures and energies were obtained for clusters which are
dipole unstable. Such considerations are important to
ensure that this instability is not an intermittent effect
that disappears for large particle numbers as one would

0.05 I I ~ I

/

0.04

0.03
I

o

0.02

I

I
I
I

I

I

I

I I
I I
II
II
II

0.01

I/

0.00

0

r (A)

10 15

FIG. 17. The doped cluster density (solid line), the dipole
excitation function (long-dashed line), and the dipole transi-
tion density (short-dashed line) are shown for two represen-
tative helium clusters doped with a Ne impurity.

have expected for a "shell layering effect" as described
above. For cluster sizes not much greater than the "criti-
cal" size where the dipole instability occurs first, we have
simply omitted the unstable dipole mode from the mode
sum (A21) in the step where the static structure func-
tion needs to be computed. This can be carried out suc-
cessfully for cluster sizes about 20—30 particles above the
critical size. While the process is not entirely justifiable,
it had little effect on other calculated quantities such as
the ground-state energy, densities, or properties of the
monopole. A minor consequence of this artificial stabi-
lization is seen in the chemical potential of the Na impu-
rity (cf. Fig. 13) which increases slightly for N ) 50.

However, above the critical cluster size, continued
increase in particle number eventually results in the
quadrupole excitation also becoming unstable. To ob-
tain solutions for even larger N, the Euler equation (2.3)
was discretized and solved inside a spherical cavity that
was slightly "too small" for the size of the droplet. Ef-
fectively, this shifted all excited states slightly upward
to avoid the dipole instability. The necessary confine-
ment size depends on the size of the droplet: For exam-
ple, to obtain a solution for SF6 He24o it was sufIicient
to confine the droplet in a box of about 20 A. radius.
At this radius, the density has dropped to 10
Thus the total energy and the density profile of the clus-
ter are essentially unaffected. However, the dipole and
the quadrupole energies are increased by just enough to
make the calculation feasible. Although this procedure
is rather ad hoc with questionable physical relevance, it
nevertheless yielded very reasonable energies as shown in
Fig. 12. Thus ground-state energies by themselves are
poor indicators of correct underlying physics.

A good illustration of the physical mechanisms of the
dipole instability is provided by the excitation functions
and the transition densities introduced in Appendix B.
Figures 17 and 18 show the excitation functions and tran-
sition densities for two Ne and SF6 doped droplets. One
case is very stable, and the other is close to being un-
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FIG. 18. The doped cluster density (solid line), the dipole
excitation function (long-dashed line), and the dipole transi-
tion density (short-dashed line) are shown for three represen-
tative helium clusters doped with a SF6 impurity.
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FIG. 19. The monopole excitation energies of droplets
doped with SF6 and rare gas impurities are shown as a func-
tion of particle number (marked lines). Also shown are the
chemical potentials (unmarked lines) and the monopole exci-
tation energy of the pure clusters is also shown for compari-
son (dash-dotted lines). The two filled circles for N = 40 and
70 in the lower half of the 6gure are chemical potentials for
Xe-doped droplets from Ref. 25, and the two 6lled circles in
the upper half of the 6gure are the corresponding values, for
the same droplets, extracted from Ref. 24 as described in the
text.

stable. The excitation functions show basically the same
picture: The first shell appears to be rigidly connected to
the impurity, while particles &om the second shell out-
ward show rigid translation. As the clusters approach
the critical size, the transition densities begin to develop
a pronounced maximum near the very outer surface.

The discussion of other excitations must be viewed in
light of our results for the dipole mode. Figure 19 shows
the cluster size dependence of the chemical potential and
the monopole excitation energy. Figure 20 shows the

FIG. 20. Same as Fig. 19 for the quadrupole excitation
energies. Also shown are the liquid drop limit (dash-dotted
line) and the quadrupole excitation energies of pure clusters
(dash-dotted line with crosses). The short-dashed line marked
with 6lled squares are the quadrupole excitations calculated
in density functional theory (Table III of Ref. 25).

same dependence for the quadrupole energy. In compar-
ison with the pure cluster case, there is an apparent lack
of convergence to a "bulk limit" common to both excita-
tions. In particular, the quadrupole excitation, which is a
surface mode, should be little affected by a localized im-
purity at the center of the droplet. Instead, one observes
in each case a clear crossover between the excitations of
the doped and the pure clusters. The excitation energies
of the doped clusters drop significantly below those of the
pure clusters and show no sign of a bending towards the
larger pure cluster values.

An interesting feature, particularly pronounced in SF6
doped droplets, is that the chemical potential has appar-
ently a relative minimum for particles numbers N 40.
Such a minimum would indicate that clusters of this size
should be produced preferentially.

Figure 19 also shows, for the sake of comparison, chem-
ical potentials of the He atoms in xenon-doped clusters
from the two density functional calculations, Refs. 25 and
24. The He chemical potentials attributed to Ref. 24
were extracted from the data shown in Fig. 13 by adding
our mass formula (2.10) to Eq. (3.1) and numerically dif-
ferentiating. The results therefore have an uncertainty
of about 0.2 K, which was estimated by trying differ-
ent Gts to the data. These two calculations use density
functionals that differ only in details and are both fitted
to reproduce the same bulk data. The resulting large
discrepancy is rather inexplicable and certainly warrants
further investigation.

It would, of course, be extremely interesting to see
which of the features discussed above persist in the case
where the impurities were allowed to move. Roughly,
one would expect the monopole and the quadrupole ex-
citation, which do not involve the motion of the cen-
ter of mass, to be relatively unaffected. The dipole, on
the other hand, which describes the relative motion be-
tween the impurity and the helium, should be substan-
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tially modified. The effect can be estimated by scaling
the excitation energy by a reduced-mass ratio. However,
the point where the dipole mode becomes "soft" does not
change since the excitation frequencies go to zero at this
point.

IV. HIGH MULTIPOLE EXCITATIONS

One advantage of the present variational theory is the
ease with which higher multipole collective excitations
can be studied. Monte Carlo methods for extracting
higher-E partial-wave components of the two-body den-
sity become increasingly time consuming because of poor
signal-to-noise ratio. This is because higher-Z partial-
wave components require weighting with higher-order
Legendre polynomials, whose rapid oscillations produce
very weak signals for Monte Carlo binning. As a part
of the optimization process, we have computed all dis-
crete excitation energy for all angular momenta Z & 2.
Since the excitation function is generally given by r~,
these high-8 excitations are essentially surface vibrational
modes. In general, one expects the droplet excitation en-
ergies to depend on both N, the droplet size, and E, the
multipolarity or angular symmetry. However, if a surface
mode E were to be excited by a projectile with momen-
tum hk, then by conservation of angular momentum, k
must be on the order of

k = gE(8+1)/R, (4 1)

= 12.399 k'/'+ 0.043 K. (4 2)

Comparing this fit with the familiar ripplon dispersion
relation,

a~'(k) = (4.3)

where we can take the droplet radius to be the equiva-
lent hard-sphere radius B = g5/3r, , This then sug-
gests that, instead of viewing the excitation energies as
separately depending on both S and N, one should plot
them in terms of a single variable, k. The validity of this
picture is dramatically demonstrated in Fig. 21. The ex-
citation energies for all droplets, ranging from N = 20 to
1000, nearly fall on a universal curve. The only two no-
ticeable deviations are the lowest 8 =2, 3 excitation ener-
gies of cluster size N = 20. This is a classic case of scaling
behavior, where the a priori joint dependence of E and N
collapses down to just k. Moreover, the surface excitation
energies are in excellent agreement with the experimen-
tally obsemed surface excitations of helium films. It is
perhaps to be expected that the surface excitations of a
spherical droplet must be qualitatively similar to that of
a film or a plane surface; what is surprising is the ex-
tent of the quantitative agreement even for cluster sizes
of only about 100 atoms. This good agreement in turn
allows us to infer and check on the droplet excitations
by use of experimental film data. At small k ( 0.30, the
spectrum can be well fitted by a characteristic "ripplon"
dispersion relation,

0.0 0.2 0.4 0.6

k (A )

I

0.8 1.0

FIG. 21. The lowest excitation energies with an angular
momentum up to E = 9 are shown, for all pure He droplets
considered here, as a function of an effective wave number
k = gt(t + 1)/R, where we have taken R = g5/3r, , The
droplets with N & 150 are marked with diamonds, N = 112
with asterisks, N = 70 with crosses, N = 40 with triangles,
and N = 20 with squares. Only energies corresponding to
discrete modes are shown. Also shown is the lowest excita-
tion energy of a helium film adsorbed to a graphite substrate
(dashed line, from Ref. 34). The figure is from Ref. 66.

allows us to extract from the dispersion relation a surface
energy of o = 0.279 K A, in excellent agreement with
the one obtained from our mass formula (2.10). This
clearly demonstrates the consistency of our theoretical
descriptions of both the ground and excited states. Since
ours is a variational calculation, it is not too surpris-
ing that the entire fit is shifted upward by an amount
0.043 K. The smallness of this constant shift also gives
us some sense of the systematic error involved. Since the
calculation is a priori not an upper bound, we are par-
ticularly gratified for this indication that it is. The fitted
curve (4.2) is plotted as a solid line in Fig. 21. Both the
droplet excitations and the ripplon dispersion relation
Eq. (4.2) also agree very well with that of a film of liquid
helium atoms adsorbed onto a plane substrate. ' The
Feynman spectrum for a film of three layers' thickness is
shown in Fig. 21 as the upper dashed line. The accu-
racy of the Feynman approximation can be assessed by
allowing for time-dependent pair correlation func-tions in
the trial function (2.21); this generalization produces sig-
nificant improvements of the excitation spectrum in the
vicinity of the roton minimum, ' but produces no sig-
nificant change of the ripplon dispersion relation within
the "bandwidth" of the universal curve.

At shorter wavelengths, the excitation spectrum of the
surface mode in helium has been measured in neutron
scattering experiments. Data from these measurements
are shown as solid markers in Fig. 21. The considerable
overlap between theoretical droplet energies and experi-
mental film data suggests that the latter can be inverted
to yield information on the excitations of even very small
droplets with —100 atoms. This experimental connec-
tion is highly significant in view of the fact that very little
is known experimentally about the energetics of pure he-
lium droplets.
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which clearly show that SF6 at least delocalizes in the
conventional manner, i.e., the center-of-mass distribu-
tion of the droplet becomes increasingly broad with
droplet size, but remains slightly peaked about the impu-
rity. More exact DMC calculations attempting to verify
the second scenario by directly computing the droplets'
center-of-mass distribution have so far, due to the latter's
slow convergence and strong trial function dependence,
remained inconclusive and controversial. ' Our result
that the maximum stable cluster size should decrease
with weaker impurity attraction may serve as a guide
for selecting desirable doped clusters for future investi-
gations. In any case, our study of the dipole instability
has reopened the discussion on the localization of im-
purities in helium droplets. Whereas prior to our work,
it seems to have been generally accepted that the SF6
should be fairly rigidly localized at the droplet center,
now attention is shifted to understand the precise sce-
nario and the extent of delocalization. Such theoretical
efForts are just in time to con&ont growing experimental
data ' on the infrared absorption spectrum of SF6 in he-
lium clusters. In particular, deciding the extent of SF6
delocalization in helium droplets will help to understand
whether or not the splitting of the spectrum will have a
simple explanation, such as the SF6 molecule is located
near the surface.

(c) In computing the full dynamic structure function
by summing up to 8 = 50 modes, we found that even
for a N = 1000 droplet, the surface and the volume ex-
citation are still of comparable strength. Thus if the
dynamic structure function of a "fog" of helium droplets
could be measured, this would provide a cleaner labo-
ratory than adsorbed films to detect surface excitations.
This could also provide important feedback for the anal-
ysis of neutron scattering experiments in helium films.
As the droplets become smaller, we have shown how the
relative overall strength of the phonon/roton branch was
reduced.

Note added in proof. (a) We have since carried out
extensive difFusion Monte Carlo calculations on the SF6
impurity with much improved importance sampling func-
tions (Ref. 35). The resulting DMC density profiles
beyond the first peak are in very good agreement with
HNC/EL results, much better than is shown on Fig.
14 when compared to an earlier DMC calculation (Ref.
22). Recent DMC calculations s using our improved trial
function or longer running time are also in much bet-
ter agreement with HNC/EL results. (b) In further dis-
cussions with S. Hernandez and M. Barranco, we have
learned that their chemical potentials for xenon-doped
droplets of Ref. 25 (as shown in Fig. 19) are unlikely to
be correct.

ACKNOWLEDGMENTS
This work was supported, in part, by the National Sci-

ence Foundation Grant Nos. PHY92-13502 (to S.A.C.),
PHY91-08066 and INT90-14040 (to E.K.), and PHY89-
04035 to the Institute for Theoretical Physics (ITP) in
Santa Barbara. E.K. thanks the ITP for the warm hospi-
tality and support during the spring of 1994. Our paper
profited &om discussions with R. Barnett, M. Barranco,
C. E. Campbell, D. Ceperley, W. Kohn, M. Saarela,
and B. Whaley. We thank R. Barnett, M. Barranco,
D. Ceperley, F. Dalfovo, M. Saarela, S. Stringari, and B.
Whaley for communication of unpublished material. The
computations have been carried out on an IBM RS/6000-
590 which was provided by IBM for benchmarking pur-
poses. We would like to thank IBM for providing us with
this opportunity.

APPENDIX A: CENTER-OF-MASS MOTION
AND THE EULER EQUATION

For the manipulations that follow, we ignore triplet
correlations since these do not lead to any further insight.
Using the usual Jackson-Feenberg integration by parts,
one obtains for the center-of-mass energy (2.8)
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(A1)

where

U = ) u, (r, ) + ) u2(r, , r, ). (A2)

The first term in Eq. (Al) is structurally identical to the
kinetic energy expression for nonuniform geometries; it
causes a reduction of the ordinary Jackson-Feenberg en-
ergy expression by a factor 1 —m/M. Only pair (and pos-
sibly triplet) correlations contribute to the second term,
which can be written as

h2
—,M ).(+ I

['7. &,U]
I
+.)

(A4)
where

qF( i, 2) = v(~ri —r2~) — [D(1) + D(2)] u2(ri, r2)

The Born-Green-Yvon equation is employed, as usual,
to eliminate the one-body correlations ui(r), which leads
to the total energy expression

2
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is a center-of-mass corrected version of the Jackson-
Feenberg effective potential. Here, 1/m, * = 1/m —1/M,
and D(i) = p (r;)V' [p(r;)V']. Thus, the only modifi-
cations induced by the subtraction of the center-of-mass
energy are a reduced mass and the term V'1.V'2u2 (rl, r2).

The Euler equation is conveniently derived using the
prime-equation technique:

8m* D(1) + D(2) —2 V'1 . V'2 p2(rl, r2)

= p2(rl, r2), (A6)

where

bp2(»»)
p2(rl, r2) = d lsd r4 V~F(rl, r2)

F2 Fy, Fy
(A7)

A(rl, r2) = gp(rl)A(rl, r2) gp(r2) (A8)

and the convolution product,

[A *B](r„r2) = d rsA(rl, rs)B(rs, r2). (A9)

The static structure function S(rl, r2) [Eq. (2.6)] is re-
lated to the direct correlation function X(rl, r2) through

S(»,») = 1 —X(», r2) (A10)

where both the unit operator and the inverse in Eq.
(A10) are to be understood in the sense of the convolu-
tion product (A9). Further useful quantities are a local
one-body Hamiltonian,

is formally defined the same way as in the case of an
infinite system. The remaining operations are identi-
cal to the ones carried out in the nonuniform, infinite
system and do not need to be repeated here. The es-
sential steps are to use the HNC equation to eliminate
the pair-correlation function u2(rl, r2) in favor of the
pair-distribution function g(rl, r2), and to reformulate
the Euler equation in terms of a "particle-hole interac-
tion" Vp h(rl, r2) and the "direct correlation function"
X(rl, r2). Useful abbreviations are the "tilde" notation,

s Hl + S (rl, r2) = Hl + 2Vp h(rl, r2), (A14)

where

Vp-h(rl r2) —g(rl r2)U(+12) + t(rl r2)

+h(», r2)~1(», r2)
h2
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with the kinetic energy
62 2
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2m

h2
(&1+&2)d~(»»)2M

and the induced potential

jul(rl, r2) = —Vp h(rl, r2)

H,* * 6 + 6 * H,* (rl, r2)
2
h2 V'1. V2P2(rl, r2)

4M /pl(rl) pl(r2)

2

(A16)

h2

4MM "/Pl (rl)Pl (r2)71 ' 72~(rl r2) .

(A17)

H,*+2Vp h *Hip (A18)

The above generalization of the HNC/EL equations
to a system with center-of-mass motion is algebraically
somewhat unpleasant, but should be tractable if neces-
sary. For our purposes it is important, however, to keep
in mind that for almost all features the center-of-mass
motion is a negligible eKect, and normally produces cor-
rections to the equations that are smaller than the antic-
ipated accuracy. Before we turn to a numerical applica-
tion of the theory, we therefore study the Euler equation
in order to determine those features of the center-of-mass
motion that are essential to keep.

The Euler equation (A14) is most conveniently dis-
cussed and solved by normal-mode decomposition. In
the present case, one solves the eigenvalue problem,

1 1
H,*(r) = — 7'pl(r) . V'

2m* pl (r) pl (r)
(A11)

Adopting the normalization

(vP i
H,

i @ ) = hcub (A19)

and a center-of-mass correction term and defining

71 +2P2(rl r2)
x(1'x &2) =—

V Pl (»)Pl (»)
(A12)

1
(r) = Hl@ (r), (A20)

Hl(rl, r2) = Hl8(rl —r2) + bH1(rl, r2). (A13)

such that a total "one-body Hamiltonian" has the form
one can represent the static structure function as

S(»») =) &-(»)&-(») (A21)

The "one-body Hamiltonian" (A13) is the same as the
one derived in the translationally invariant Feynman the-
ory of collective excitations; it also plays a central role
in the optimized HNC theory. In terms of the quantities
introduced above, the Euler equation can be cast, after
some algebraic manipulations, into the form

and its inverse as

s-'(.„.,) =) q. ( (A22)

The summation in Eqs. (A21) and (A22) is to be under-
stood as an integration when the spectrum is continuous.
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An immediate consequence of the normal-mode decom-
position (A21) is that the eigenfunctions also satisfy the
relation

(A23)

which is identical to the Feynman relation derived in
Ref. 21. This relation also shows that the eigenfunctions

(r) are related to the Feynman excitation functions,
and that the (t (r) are related to the transition density;
cf. Eq. (Bl).

APPENDIX B:PROPERTIES
OF THE EULEK EQUATION

In order to discuss the mathematical properties and
physical interpretation of the Euler equation, we first
show that the particle-hole interaction as defined above
can indeed be identified with the second variational
derivative of the internal energy with respect to the one-
body density. The same precautions apply as in the infi-
nite system: we need to carry out the variation for fixed
pair correla-tion functions u2(ri, r2), and not assume any
approximation like HNC. Keeping u2(ri, r2) fixed, and
varying ui(r), we obtain

pr(ri)= p](rr)dur(rr)+ f d r[pr( i, r) —pr( i)pr( r)] r( r)

= gpr(rr) f d r S'(r&r, rr)Vpr(rr)du&(rr). (B1)

To calculate the second variation of the energy, we first carry out the variation with respect to ui (r), assuming that
the pair-correlation function has been optimized. One obtains the familiar Feynman expression,

1(@e
I 9&1 [T —& ~ui]]

I @')
(+. I

~.)
h2 ) 7';bui (r;) 'kr)

h

2M
&ld r2P2(rl r2)7~&1(rl) +()&1(r2)

rid r2 +Pl(rl)b&1(rl)~1(rl r2)~iil(r2) QP1(r2) (B2)

Using Eq. (Bl) and the Euler equation (A14) now indeed shows that

b2E;„t = vp h(ri, r2) for ri g r2. (B3)

An important property of the one-body Hamiltonian is that it has two zero-energy eigenfunctions. These are the
monopole solution go ()(r) = /pi(r) which corresponds to a renormalization of the wave function, and the dipole
solution @0 1(r) = c rgpi(r), where c is a fixed vector. Only the second statement requires proof:

Hi 00,1(r)=—
2m*

2m*

h2

2m*

1 h2 s, v' cp2(r, r')
'I7 - cpi r P

c 7'pi (r) h2 c . v
d r'p2 (r, r')

pi (r ) 2M pi (r )
c.V'pi(r) 52(N —1) c.V'p, (r)+ =0
gp, (,) 2M gp, (,)

(B4)

where the sequential relation Hi* II1+2Vph P =her P (B6)

was used. The excitation function Po 1(r) = c . rgpi(r)
corresponds to a rigid translation of the droplet.

It is also interesting to see how the invariance of the
internal energy under rigid translation appears as a zero-
energy eigenfunction of the adjoint Euler equation,

Note that +pi(r)P (r) = hpi(r). An infinitesimal rigid
translation pi(r) ~ pi(c + r) would correspond to a
density change hpi(r) = c . 9'pi (r); in other words,

P()(r) = c V gp(r) should be a zero-energy eigenfunction
of Eq. (B6).

To see that, recall that the one-body density is calcu-
lated by minimizing the internal energy E;„& with respect
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to the density, which leads to a Hartree equation,

h2 V'+ V„(r) V'p(r) = ~V'p(r),

where p, is the chemical potential, and

(B7)

only those consequences of the center-of-mass motion
which lead to the specific features of the Euler equation
discussed above. The eigenvalue problem (A18) can be
decoupled and solved by expanding the excit;ation func-
tion and the two-body density in partial waves,

bE;„,
VH(r) =— (as)

&-(r) =—4-,=(&)Ye,-(r)

and, for example,

(B13)

VH [Pl(r + c)](r) =
VH [Pl(r)](r + c). (B9)

Expanding the Hartree potential to erst order in c, we
obtain

VH(r + c)= VH(r) + c V'VH(r)

= Vrr(r) + f d 'V (r r')c. 12pr(r'), (B10)

c.e. ,

21Vrr (r) = f d r'Vr (rr, r') 12p(rr') . (B11)

From Eq. (Bll) and the Hartree equation (B7) it fol-

lows that 9'/pi(r) is a zero-energy eigenfunction of the

operator H& + 2Vp h l e. ,

is a generalized Hartree potential.
An important identity in this geometry follows, in a

manner similar to the free surface ' by considering a
rigid displacement of the density as above. The Hartree
potential VH(r) must move with the density, i.e. ,

.2)+1
V~ h(r, r') = ) Ve(» )&e(r" . r').

e

(B14)

APPENDIX C: TRIPLET CORRELATIONS

In this representation, the zero-energy modes appear
only in the monopole and the dipole channels. Since
generally center-of-mass corrections are expected to be
smaller than the anticipated accuracy of our calculation,
in particular for the larger droplets, we have therefore
included the center-of-mass term SHi [Eq. (A12)] only
for E = 1. To guarantee that any inconsistency between
the particle-hole interaction and the Hartree potential
does not cause spurious excitation energies, we have, for
the pure clusters, projected the operator Hy + 2Vp h into
a subspace orthogonal to the zero-energy eigenfunction
V'+pi(r). In passing, we note however, that the matrix
element of the (unprojected) operator with the function

V'/pi(r) is very small (typically 10 1 K) compared with
all of its eigenvalues in the orthogonal subspace.

(VB/ (rp)r+ 2f d r' (Vr,rrr') V(1')p=r0. (B12)

The relationship is easily verified by calculating the gra-
dient of the Hartree equation (B7) and using the property
(all).

There is an important; difference between the identity
(812) and the zero-energy properties of the operator Hi
discussed above. The properties of H~ depend only on
the sequential relation (B5); they are therefore satisfied
with numerical accuracy if the pair density is computed
by optimization. The property (B12) depends, on the
other hand, on the feature (83), which is normally satis-
fied only in an exact theory. On the other hand, violating
the property (B12) may lead to spurious "excitations"
and possibly instabilities of the variational problem.

For practical calculations, it is necessary to include

The general theory of optimized triplet correlations
has been described in Ref. 27; it is sufhcient here to
concentrate on the specifics of the spherical geometry.
The formulation of the three-body correction given there
has been turned towards the normal-mode analysis for-
mulated in Appendix A. Adopting the partial-wave de-
composition (B13), the full S(ri, r2) is represented as a
bilinear combination of angular momentum and energy
eigenfunctions,

S(ri, r2) = ) 4'a, e(&i)ka, e(r2) Ye,~(ri)Ye* (r2). (Cl)

The key ingredient of the theory is a triplet matrix ele-
ment V g, where each of the state labels a, 6, c, is a triple
of quantum numbers (~,l, m }.Adopting the working
formulas of Ref. 27 [Eq. (A.29)], the triplet vertex is

h2
Vabc d rid r2d r3 /P(ri) gp(r2) gp(r3)4' (rl)yb(r2)4 c( r)3

2m

x [V1X(ri, r2) V'1X (ri, r3) + cycl.]

= —V~.e.~,e&~.e. "~&e.,~ r Ye„~, r Ye ~ r", (C2)

with
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V~.e.~be, ~.e. — « ~.e. " ~,e, " ~.e. "
1

[g (P + 1) —Pt, (l&+ 1) —I.,(ir, +1)]g,e, (r)( e (r) + cycl

where, as in the surface case,

and

( )
V-,e. (r) —4-.e. (&)

v't( )
(C4)

Inserting this into the triplet energy gives

(-.e (r) = rV'p(r)4-. e. (&). (c5)

1 . Ivy, I'
24 5(Ld&z + (db + ld~)

2 2

) . ' ' ). d~&e. ,~ (r)Ye„m(r"i)Ye„~ (r)

( rr) )- I&~.e.~,e,~.e. I
(~&a+ 1)(2&b+ 1)(2f., + 1) (a b c l

24 h(ar + ar + ar, ) (4rr) ( 0 0 0) (C6)
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