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The penetration and exit of magnetic Qux in type-II superconductors is investigated for the
realistic situation where a transverse magnetic field is applied to a square or rectangular plate or
film. In rectangular specimens the pattern of the sheet current and of the density of the perpen-
dicular Qux has some common features with the one-dimensional distributions in circular disks or
long strips. Other features, however, are characteristic for the rectangular shape, e.g. , the starlike
pattern of the penetrating Qux and, in the fully penetrated critical state, the discontinuity lines
at which the current stream lines perform sharp bends and at which the perpendicular magnetic
field H (z, y) exhibits sharp ridges. These typical features have to be calculated from a genuine
two-dimensional theory. Such a theory based on a highly nonlinear current-voltage law is outlined.
The field pat terns obtained by this general theory are compared with pat terns observed magneto-
optically at the surface of square and rectangular single crystals or films of high-T, superconductors
with homogeneous and inhomogeneous critical-current distribution. It is shown that the analysis
of the current-discontinuity lines is essential to understand the Qux dynamics in superconductors.
In samples with inhomogeneous critical current density j,(r), a strong concentration of flux motion
and electric field can occur along the lines where j changes abruptly. This may trigger Qux jumps.

I. INTRODUCTION

The penetration and exit of magnetic flux in realistic
type-II superconductors in a time-varying applied mag-
netic field H is a highly nontrivial problem. Recent in-
vestigations of the flux distribution in type-II supercon-
ductors show a preferential flux penetration along bound-
aries separating superconducting regions with different
critical currents ' or a cushionlike flux penetration into
homogeneous polygonal specimens. ' . These compli-
cated features can be interpreted by doing experiments
on simple and regularly shaped samples and the corre-
sponding model calculations. From a theoretical point of
view, the driven motion of flux (when H is increased
or decreased) or creep of flux (when H is kept con-
stant) is a nonlinear diffusion problem. i The nonlin-
earity arises from pinning and thermal depinning of the
Abrikosov flux lines and may be characterized by a non-
linear current-voltage characteristics, e.g. , a power law

E(j) = E,(j /j, ) where E is the electric field, j the
current density, and j, the critical current density. One
has n -+ oo at zero temperature (Bean model of rigid

pinning ) n )) I in the highly nonlinear regime of flux
creep, and n = 1 in the ohmic regime, namely, for &ee
flux flow, realized at large current densities j ))j,(T),
or for thermally assisted flux flow, realized above a de-
pinning temperature, and of course, in the normal con-
ducting state above the transition temperature T,. In
general, the flux diffusion coeKcient D is related to the
resistivity p = E/j by D(j, B,T) = p(j, B,T)/po.

In addition to being nonlinear, the flux diffusion be-
comes also nonlocal in the realistic experimental situa-
tion of thin plates or films in a perpendicular Geld.
This nonlocality arises in the limit of thin specimens. In
this limit the magnetic field H(x, y) at the specimen sur-
face and the sheet current J(x, y) (j integrated over the
specimen thickness) are taboo-dimensional (2D) functions
which are related by an integral; this 2D nonlocal rela-
tion [Eq. (2) below] follows from the 3D local relation
j = V x H (Ainpere's law). As a consequence, the 3D
diff'usion equation Bj /Bt = D(j, B)V'2j for the 3D current
density j(z, y, z, t) is replaced by an integral equation for
the 2D sheet current J(z, y, t) The situation . becomes
more complicated when the Gnite lower critical Geld H, q
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and finite reversible magnetization are accounted for;
in the present paper the reversible magnetization is dis-
regarded by putting the induction 8 = poH, which is a
good approximation for thin high-T, superconductors.

The present paper focuses on a further realistic compli-
cation, namely, on specimens of rectangular shape. In the
idealized geometries of a long strip or a circular isotropic
disk in perpendicular Beld, the problem of flux motion
becomes one-dimensional since the direction of current
flow is known and the sheet current J depends only on
one spatial coordinate, J = yJ(x) or J = PJ(r). For
calculations of flux penetration and exit in these simple
geometries see Refs. 18—24; magneto-optically measured
flux-density profiles nicely agree with these theories even
in the case of inhomogeneous superconductors. ' In
thin specimens of different shape, however, the flux mo-
tion is a genuine 2D problem. Moreover, there appear
now current discontinuity lines along which the current
performs more or less sharp bends and the perpendicular
flux density has a pronounced peak. In the limit of a
steplike current-voltage law, i.e., in the Bean model with
exponent n —+ oo, the current streamlines bend sharply
and the perpendicular field exhibits a logarithmic infinity
along these discontinuity lines. In the ohmic case n = 1,
discontinuity lines do not occur. In particular, in Blms
or plates of rectangular shape, these discontinuity lines
are straight lines starting at the four corners. For an
isotropic square the discontinuity lines coincide with the
diagonals.

A further difference between disks or infinite strips on
one hand, and rectangular plates on the other hand, is
that the penetration of flux occurs in a starlike pattern,
i.e. , the flux front is convex, penetrating first &om the
middle of the four edges ' rather than &om the cor-
ners. In contrast, the flux &ont in disks is circular and
thus concave. As an interesting nontrivial result from
our computations we Bnd that the starlike flux &ont
in rectangles appears only if the current-voltage law is
nonlinear, e.g. , E j with n ) 1; in the ohmic case
(n = 1) the flux front in rectangles and squares is con-
cave like with the disk. Another important difference
between linear and nonlinear current-voltage law occurs
for inhomogeneous samples, where for n &) 1 an unusual
concentration of flux motion and electric field appears at
boundaries separating regions with different j .

The presented magneto-optical visualization of the flux
density at the surface of square or rectangular thin super-
conductors in combination with the presented theory al-
lows thus to determine homogeneous and inhomogeneous
critical current densities and to check various model as-
sumptions and predictions for discontinuity lines and the
cushionlike penetration of flux.

The outline of this paper is as follows. In Sec. II the
equation of motion for the sheet current in rectangular
films is derived and a method for its numerical time in-
tegration is outlined. Our magneto-optical method and
the sample preparation are described in Sec. III. In Sec.
IV our experimental results on square and rectangular
high-T superconductors with homogeneous and inhomo-
geneous pinning are presented and. compared with theory,
and Sec. V summarizes our results.

II. THEORY

A. Plates with arbitrary shape

In this section we present a short outline of the general
equation of motion for the sheet current J(x, y, t) = jd in
a thin planar conductor or superconductor of thickness d
and arbitrary shape in a time-dependent perpendicular
applied field z H (t). A detailed derivation and further
applications to eddy currents, linear ac response, and flux
creep are given elsewhere. 28,29 The material will be char-
acterized by 8 = NOH and by a resistivity p = E/j or
sheet resistivity p, = E/J = p/d, which may be nonlin-
ear, e.g. , a power law p(j) = p, (j /j, ) (Ref. 30), or lin-
ear, complex, frequency dependent, p = p, (~) = p'+i p".
In general the nonlinear p may depend on B via j,(B)
and n(B), and the linear p via the factor B/B,2 in the
Hux-flow resistivity pFF = p„B/B,2, where p„is the nor-
mal resistivity. In our theory the sheet resistivity may
depend on the position, p, = p, (x, y), either directly
in a nonuinform specimen, or indirectly via J(x, y) and
B(x y).

In the present paper we shall apply this general
electrodynamic theory to rectangular plates with a
static highly nonlinear resistivity, also to inhomogeneous
(partly thinned down) plates, and calculate the qua-
sistatic penetration and exit of flux in a slowly cycled
applied field.

The equations for the sheet current J and for the per-
pendicular induction component B = poH, in the spec-
imen are obtained as follows. First, one has to express
the sheet current by a scalar function g(x, y) as

J(x, y) = —z x ")7g(x, y) = V' x zg(x, y) .

Next one determines the integral kernel Q(r, r') (r = x, y)
which relates the perpendicular field H, (x, y) in the spec-
imen plane z = 0 to the local magnetization g(x', y') by

g(') = f q '(, ') (Jl.(")—JI.] J* ', (4)

where the integrals are over the specimen area A and
Q i is the inverse kernel, see below. Finding the integral
kernel Q is a nontrivial task, since when one performs
the limit of zero thickness in the Biot-Savart law, the
kernel becomes highly singular, Q = —1/4m~r —r'~; this
form of the kernel thus applies only when r lies outside
the specimen, but inside the specimen area (where r = r'

This substitution guarantees that div J = 0 and that the
current flows along the specimen boundary if one puts
g(x, y) = const = 0 there. In general, the lines g(x, y) =
const coincide with the current stream lines. The physi-
cal meaning of g(x, y) is the local magnetization or den-
sity of tiny current loops. The integral of g(x, y) over the
specimen area yields the total magnetic moment

rn= — rx J(r)d r =gag(r)d r.
2
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1 . 2z —pQ(r, r') = —lim
4m s~o (z2 +. p2) &

(5)

with p = (x —x') + (y —y')2. The limit z ~ 0 in (5)
can be taken as follows. Noting that

can occur) one should perform part of the integration
analytically to obtain a well behaved kernel. Alterna-
tively, one may obtain this kernel numerically for a small
but finite height z above the specimen. Noting that the
Geld of a tiny current loop (or magnetic dipole) of unit
strength located at x = y = z = 0 with axis along z is

H, (x, y, z) = (1/4vr) (2z' —x' —y') /(x' + y' + z') 't ',
one obtains for the kernel

for g(x, y, t), it is important to note that the required z
component

B, =zB= —z(VxE) = —(zx V')E
x—BE/By + y BE/Bx

g(r, t) = /Q '(r, r') [f(r', t) —H (t)]d'r', (10)

f(r t) = & (p &g)/~' (»)

does not depend on the (unknown) derivative BE/Bz.
With the sheet resistivity p, = p/d one may write inside
the sample E = pj = p,J = —p, z x V'g and thus B
(z x V')(p, z x V'g) = V'. (p, V'g). Inserting this into Eq.
(4) one obtains the equation of motion for g(x, y, t) in
the form

f 2z —p d p

(z2 + P2)5/2 4~
=0

I

~4vr r —r' 2 (6)

for r outside the specimen area A, and

is valid for all z g 0, one may subtract &om (3) with (5)
inserted this zero-valued integral times g(r). The limit
z ~ 0 can now be taken easily and one gets

This general equation, which applies also when p, = p/d
depends on r, J, and H, is easily integrated over time
on a personal computer. Since p/po has the meaning of
a diffusivity, Eq. (10) describes nonlocal (and in general
nonlinear) diffusion of the local magnetization g(x, y, t)
When the resistivity is anisotropic Eq. (10) still applies
but with modified f (r, t). For example, if E = p J
and E„=pyy Jy, one has

f(, t) = &*((p /d)&*glj+& ((p**/d)& gj

H, (r) —H = C(r)g(r)—,d2r' B. Rectangular plates

for r inside A, with

d2rl
C(r) =

~ 4vr/r —r'/2
'

The integral (8) is over the infinite area excluding the
specimen area. For example, a rectangular plate with
fx[ &a, fyf (b has

1
C(r) = —). ((a px) '+(b ——gy) 'j " (9)4'

J»v=+1

which for a long strip with ~x~ ( a (( b )) ~y~ yields
C(x, y) = C(x) = (ab/2vr)/(a —x ) ~2. For practical
purposes it may seem more convenient to use the integral
kernel Q in the original form (5) and choose a small but
finite distance z above the specimen plane z = 0.

From the integral kernel Q the inverse kernel Q may
be obtained by Fourier transform (see below) or by in-
troducing a grid with positions r, = (x, , y;), weights

the tables H; = H, (r;) and g; = g(r;), and the
matrix Q,~

= Q(r;, r~)io~. The integrals (3) and (4)
then are approximated by the sums H, = P Q;zgz and

g; = P. Q, H~ where Q, is. the inverse matrix of
15,16,8mij.

As the last step, the equation of motion for g(x, y, t) is
obtained from the (3D) induction law V' x E = —B (the
dot denotes B/Bt) and &om the material laws B = poH
and E = pj valid inside the sample where j = J/d =
—z x (V'g)/d. In order to obtain an equation of motion

For specimens of rectangular shape the boundary con-
dition that J Bows along the specimen boundary may be
satisfied by writing g(x, y) as a 2D Fourier series in which
each term vanishes at the edges. For a rectangle filling
the area 0 & x & 2a, 0 & y & 26, this series reads

g(x, y, t) = ) gK(t) sinK xsinK„y,
K

(12)

where the K are reciprocal-lattice vectors with compo-
nents

K = (2m —l)vr/2a

and

K„=(2n —1)m/2b, m, n = 1, 2, 3, ...;

H (x, y, t) = ) HK(t) sinK xsinK„y.
K

From (3), (12), and (13) one obtains the relation

HK(t) = ) QKK'gK' (t) t

Kl
(14)

where the QKKt are the 2D Fourier coefficients of the
integral kernel Q in (3),

the sum PK is over all m ) 1, n ) 1. For the field
H, inside the specimen area one formally may write a
similar Fourier series,
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Q(r, r') = —) QKK sinK x sin K„y
ab

x sinK'x' sinK„'y' .

Explicitly one obtains Rom (5) and (15)

2 K K'(1+ cos2ak )
vr2ab 0 (k2 —K2) (kz —K'2)

K„K„'(1+ cos 2bk„)
(k2 —K2) (k2 —K'2) (16)

C. Numerical method

The calculation of current and flux distributions in
a rectangular film proceeds as follows. One defines an
equidistant grid x„=(y, —2)a/N (p = 1.. . N ),
y„=(v 2)b/N„—(v = 1.. .N„).These N = N x N„
points r; = (x, , y, ) (i = 1.. .N) cover one quarter of the
rectangle, which suKces because of symmetry.

Then one calculates the N Fourier coefBcients QKK
(16) for N values K and N„values K» i.e. for m =
1.. .N, n = 1.. .N„.These N2 double integrals (16) are
computed rapidly by two one-dimensional integrations
(or matrix multiplications) if appropriate grids for the k
and k„arechosen. Note the symmetry QKK = QK K.
Next one calculates and tabulates the N x N symmetric
matrix Q;~ = Q(r, , rz)(ab/N) = Q~, &om the Fourier
series (15). Finally, the inverted matrix Q, is computed
and tabulated; this inversion requires —2 x N floating-
point operations and takes typically a few seconds to a
few minutes on a personal computer if N~ Ny 12
to 24 is chosen. For a square specimen the additional
symmetry reduces the size of the tabulated matrices by a
factor of 4. All these computations have to be performed
only once for a given side ratio b/a and grid size N x N„.

Using the tabulated matrices Q;~ and Q, , the equa-
tion of motion (10) for the vector g, (t) = g(x, , y, , t) is
easily integrated over time, starting with g;(0) = 0. We
have done this for various sweep rates H (t), for cy-
cled H (t), and for creep problems (H = 0), choos-
ing several current-voltage curves or resistivities p(H, J).
From the resulting g(x, y, t) one obtains the sheet cur-
rent J(x, y, t) = —z x Vg and the magnetic field H;(t) =
H(x, , y, , t) = g. Q;~ g~. Both J = ~V. 'g~ and H are
required at each time step since they enter the resis-
tivity, which was chosen in the form p = p(x, y, t)
po[J/J (H)j, where J = jd and J = j,d. Even for
large n = 99 the numerical method is quite stable when
the spatial derivatives in (11) are calculated from Fourier
series of the form (12).

The integrand in (16) is sharply peaked at K = K' and
K„=K„'.Without the common factor k = (k2 + k2)i~2
the double integral (16) would separate and would ex-
actly equal zhKK . Therefore, at large K or K' one ap-
proximately has QKK = b'KK K/2. This highly useful
approximation allows to write down the inverse kernel
explicitly as QKK, ——8KK12/K and obtain useful ap-
proximate analytic expressions.

A useful check of the accuracy of this numerical
method for large exponents n is the vanishing of the mag-
netic Geld in a wide region inside the rectangle before flux
has penetrated. This is a very sensitive test; the central
Geld vanishes only when the numerical solution yields a
shielding current which exactly compensates the applied
field in the Geld-free region. Any flaw or inaccuracy in
the numerics would destroy this compensation. Another
test of the achieved accuracy is the constancy of the sheet
current in the penetrated region when Bean's assumption
J,(H) =const is used. A further useful check of the nu-

merical results is the known analytical solution for a thin
rectangular superconductor in the critical state described
in the next section.

D. Critical state in rectangular superconductors

For the particular choices J,(H) = const and n )) 1,
our computation reproduces the results of the Bean
model. In this model the current density in the entire
specimen takes its maximum possible value ~j~

= j, if
the sample is in the critical state, i.e. , fully penetrated
by magnetic flux. In addition, the current density has
to satisfy the continuity condition divj = 0 and has to
flow parallel to the surfaces. For superconductors with
a rectangular cross section it follows from these condi-
tions that the current stream lines have sharp bends;
this is a characteristic feature of vector Gelds with con-
stant modulus. As discussed in the review by Campbell
and Evetts, these sharp bends form discontinuity lines

(d lines) which divide the superconductor into domains
with uniform parallel current flow; see the upper plots in
Figs. 1 and 2. One distinguishes two types of d lines:
At d+ lines the orientation of j changes discontinuously
but the magnitude of j remains the same. At d lines
the magnitude of j, changes, e.g. , at the specimen surface
or at inner boundaries where regions of diff'erent j meet
(see Sec. IVC). At such boundaries the current lines
have to bend sharply in order to satisfy the condition of
continuous current flow. In superconductors which are
isotropic in the x-y plane, the d lines run along the bi-
section lines starting from the sample corners and on a
section of the middle line parallel to the longer side as
shown in the middle plots in Figs. 1 for a square and 2
for a rectangle with side ratio b/a = 1.4.

Characteristic features of the d+ and d lines are the
following.

(1) Whereas the d lines occur at internal and external
boundaries of the sample (local sample geometry), the d+
lines form in homogeneous regions and are determined by
the shape of the sample.

(2) Flux lines cannot cross the d+ lines since during
increase or decrease of the applied magnetic Geld the flux
motion is directed towards or away from the d+ lines,
respectively. In contrast, the d lines can be crossed,
e.g. , when flux lines penetrate from the surface. When
the current does not flow parallel to the d line, a strong
flux motion is directed along the d line.

(3) The electric field E is largest at the d lines,
whereas we have E = 0 at the d+ lines. This is discussed
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of the rectangular current pattern takes a more com-
plicated form which depends on d in a nontrivial way,
see the comprehensive paper by Forkl and Kronmuller.
For thin specimens d « a & b, the magnetic Geld again
becomes independent of the thickness. Prom the Biot-
Savart law one finds the following perpendicular field
component in the specimen plane z = 0 inside and out-
side the superconductor 4'

H (x, y) = H + —' ) f(px, qy),
p, @=+1

~2P+ a+ b —x —yf(x, y) = g21n
~2Q —a+ b —x —y
(P+ y —b)(y —b+ a)(P+ x —a) x+ln (y-b)(Q+y-b+ )(*- )(Q+*)

(18)

wi'h P = Ku —x)'+(b —y)']' ' Q = [x'+(b o y)'—]'"—
This result is different from the field pattern obtained by
the sand model which is valid for long samples. In gen-
eral the sand model gives the local magnetization g(x, y)
even for thin specimens. For long samples we have then
g(x, y) H(x, y). The field pattern (18) is depicted in
Figs. 1 and 2 for the side ratios b/a = 1 and b/a = 1.4.
The "neutral line" H, (x, y) = H is emphasized as a bold
line in the contour plots. On this line H stays approxi-
mately constant during flux creep away &om the critical
state. '4

lution of about 4 pm.
The external magnetic Beld is generated by a copper

solenoid coil, which is cooled with liquid nitrogen and
produces a maximum Geld of 0.55 T. The observations
were performed in the optical cryostat described. in Refs.
37 and 38. All images can be observed directly via the
microscope or be transferred to an image processing sys-
tem for analyzing. The image processing system allows
one to determine the grey level pixel by pixel along a
user-defined line.

B. Sample preparation

The YBa2CusOy g (YBCO) single crystals were pre-
pared at the Universitat Karlsruhe by the self-flux
method described in Ref. 40. All crystals have a
distinct twin structure which was revealed by polar-
ized light microscopy. The c-axis-oriented YBCO thin
films were produced at the Max-Planck-Institut fiir
Festkorperforschung in Stuttgart, Germany, by a laser-
ablation technique. The thin Blms were patterned
chemically to squares with a lateral length of 1.5 mm.
The experiments on superconductors with inhomoge-
neous pinning were performed on partly thinned down
YBCO single crystals.

IV. RESULTS AND DISCUS SION

III. EXPERIMENTS
A. Square

A. Faraday efFect

We visualize the magnetic Geld distribution of a
superconductor by magneto-optics. Since the high-
temperature superconductors (HTSC) themselves have
no significant magneto-optical effect, the sample surfaces
have to be covered by a magneto-optically active mate-
rial. For our investigations we use the magneto-optical
Faraday effect. The flux penetration is imaged by de-
tecting the rotation of the polarization plane when lin-
early polarized light passes a magneto-optically active
layer exposed to the magnetic Geld of the underlying su-
perconductor. Prom flux-fLee regions the light is reflected
without rotation of the polarization plane; this light thus
cannot pass an analyzer which is set in a crossed position
with respect to the polarizer. In this way the Shubnikov
phase (with a flux-line lattice) will be imaged as bright
areas, whereas the flux-&ee Meissner phase remains dark.
For the experiments presented in this paper we used fer-
rimagnetic iron-garnet films with an in-plane anisotropy
as magneto-optical indicators.

The iron-garnet film was grown by liquid phase epitaxy
onto a gallium-gadolinium substrate with a thickness of
about 3.5 pm (commercial firm Gamma Scientific Pro-
duction, Russia). ss This kind of indicator allows the flux
penetration into HTSC samples to be observed directly in
the whole temperature regime of superconductivity with
a magnetic sensitivity of about 1 m T and a spatial reso-

To point out the excellent qualitative agreement be-
tween theory and experiment we compare calculated
distributions of the normal field component H with
magneto-optically determined flux patterns for rectan-
gular samples. First we show that our theory holds not
only for flux penetration but also for flux exit and reverse
of the external magnetic Beld.

In Fig. 3 the left column shows the calculated current
pattern in a square for different flux-penetration depths.
The density of the stream lines gives the magnitude of
the current density. In the middle column the contour
plots of the corresponding field distributions are plotted.
The right column shows magneto-optically detected flux
distributions in a thin YBCO film for the three differ-
ent perpendicular external magnetic Belds ppH = 54
mT (top row), 92 mT (middle row), and 151 m T (bot-
tom row); the same H values were used in the theory.
The experiments were carried out at T = 50 K using a
ferrimagnetic iron-garnet indicator. The white areas cor-
respond to the Shubnikov Phase, into which the flux lines
have already penetrated, whereas the flux-free Meissner
phase remains dark. The Geld distributions in the middle
column were calculated only inside the sample.

In our transversal geometry the shielding currents flow
in the whole sample to ensure B = 0 in the Meissner
area, in contrast to the longitudinal geometry, where the
shielding currents flow only in the penetrated regions.
Comparing the three current distributions one Gnds that
during magnetization the shielding currents change their
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magnitude and their direction until the critical value j
is reached. At places where the shielding current has
reached j the current Qow stays parallel to the sample
edges. The current streamlines turn monotonically from

the initial concave shape during full screening parallel to
the edges. During virgin Aux penetration the streamlines
never become convex as was supposed in Ref. 6. We And
that the regions with j = j grow from the mid. Ale of

5
5

7q

500 pm;.

FIG. 3. Calculated current pattern (left column) and perpendicular field H (middle column) distribution of a square sample
for three diferent steps of Aux penetration. Right column: Magneto-optically detected Aux distributions in a square YBCO
thin film at T = 50 K and psH = 54 mT (top), 92 mT (middle), and 151 mT (bottom). The Ilux distributions were detected
using a ferrimagnetic iron-garnet indicator. The black spots are defects in the indicator film. The film thickness is d = 800
nm. In the calculations the unit of the magnetic field (one fit parameter) is chosen such that best agreement is found with the
observed Bux distributions.
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the sample edges. The current-generated magnetic Beld,
which is oriented with the external magnetic field out-
side the sample, superimposes to the external magnetic
field such that a large field enhancement is observed at
the sample edges. This overshoot is maximum in the
middle of the sample edges. As a result, the magnetic
flux penetrates the samples in a cushionlike pattern, i.e. ,
from the middle of the edges rather than &om the sample
corners as could be expected naively. The neutral line,
where the flux profile intersects the value of the external
field, is emphasized as a bold line in the contour plots of
the magnetic-Beld distribution. The flux-&ee white zone
in the sample center is the Meissner phase. The numer-
ically calculated Hux distributions agree not only with
the magneto-optical images in the right column in Fig.
3 but the critical state also coincides with the analytical
solution shown in Fig. 1. The above-referenced d+ lines
are visible in the magneto-optical images of the critical
state as dark lines running along the diagonals.

In decreasing external field the flux lines exit the sam-
ple due to the reversal of the driving I orentz force. This
is shown in Fig. 3 for peH = 88, 30, and 0 mT (re-
manent state). The reversal is caused by the flip of the
current &om +j to —j, which occurs near the sample
edges. As soon as the direction of the change of H is
reversed, the current density falls below j everywhere;
relaxation will therefore stop electively. The turn of
the current direction is seen &om the loops in the cur-
rent pattern in the left column in Fig. 4. At the zero line
of the current the current-generated magnetic fields of
both domains of opposite current direction are oriented
parallel to each other. This leads to a maximum in the
magnetic-Geld distribution there; see the loops in the con-
tour plots of the magnetic-field distribution depicted in
the middle column and the magneto-optical images in the
right column in Fig. 4. The exiting Hux lines cause a dark
zone of reduced flux-line density which spreads &om the
edges into the sample. On reaching the remanent state
(H = 0, bottom row in Fig. 4) flux lines with opposite
sign, as compared to the pinned ones, start to penetrate
the sample and partly annihilate with the pinned flux
lines. The boundary between regions containing flux
lines of opposite polarity is indicated by the bold line
H = 0 in the middle plot in the bottom row in Fig. 4.
In the remanent state the d+ lines are visible as bright
lines since the logarithmic infinity of H there changes its
sign during field decrease. In the magneto-optical image
in the bottom row in Fig. 4 d+ lines in the sample center
are however dark because the critical state was not yet
reached in the maximum applied Beld; see bottom row in
Fig. 3.

When the external magnetic Beld is decreased further
the &ont of the flux lines with opposite sign and the
domain of reversed current How are shifted towards the
sample center. This situation is depicted in Fig. 5 for
poH = —24 mT (top), —42 mT (middle), and —80 mT
(bottom row).

The good agreement of the experimental and theoret-
ical pictures demonstrates the validity of our electrody-
namical description of a thin square superconductor in a
transverse magnetic field during the whole magnetization

loop. In the following we present results for rectangu-
lar and inhomogeneous samples during flux penetration.
The behavior during flux exit is not shown but exhibits
equally good agreement.

B. Rectangle

As can be seen from Fig. 6 the results obtained for a
rectangular sample are similar to the ones of the square.
The main difference is the occurrence in the critical state
of a central d+ line running in the middle of the sample
parallel to its longer sides (right column). This d+ line
is caused by the collapse of the central current loop to
a straight line where two regions of opposing currents
meet.

From Fig. 6 one can see that the flux begins to pene-
trate into the isotropic sample faster from the long than
&om the short edges. Note that this flux distribution is
not caused by an anisotropic current distribution. The
ratio between the Hux penetration depths in the middle
of the short and long edges changes &om 0.85 (left col-
umn) to 0.92 (middle column) to 1 in the critical state
(right column). Naively one might expect faster lux pen-
etration &om the short edges because the magnetic-field
lines have to make a bigger detour there and thus exert
a higher pressure on the short edges. But in reality the
field lines take the shorter path and preferentially flow
around the middle of the longer edges. Furthermore we
observe that the Hux front moves towards the loci where
the d+ lines will appear and the vortex motion has come
to a halt because these important lines cannot be crossed.
From this observation the convex shape of the flux &ont
follows naturally.

C. Inhomogeneous critical-current distribution

In this section we show that our theoretical description
also works for samples with an inhomogeneous critical-
current distribution. For the experiments we used a rect-
angular YBCO single crystal with side ratio 6/a = 3 and
thickness d = 40 pm. The sample was partitioned into
three equal parts with square shape. In order to induce
an inhomogeneity in the critical sheet current we thinned
down both outer parts to about (2/3)d. For the calcula-
tion of the current and field distribution we used the same
geometry and a ratio of the critical sheet currents in the
central and outer parts J;/ J, = 1.5. Figure 7 shows the
calculated current and flux patterns and experimentally
determined flux distributions for this crystal at T = 20
K for three difFerent magnetic fields of @OH = 128, 213,
and 299 mT (from top to bottom). The experimental im-
ages were obtained by magneto-optics using a ferrimag-
netic iron-garnet indicator. The black spots on the im-
ages are defects in the indicator Blm. For each magneto-
optic image (right column) the corresponding calculated
current pattern is depicted above the contour plot of the
theoretical flux distribution (left column). The contour
B = poH is emphasized as a bold line. The difFerent
sheet currents are indicated by different streamline den-
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sities. In the region with J the central streamline loops
do not intersect the boundary, at which J jumps.

Since the streamlines bend not only at the sample cor-
ners but also in the central area near the jump of J,
we observe a complicated d-line structure in the critical
state (bottom row in Fig. 7). In addition to the d lines
at the sample edges we have a d line running along the

boundaries at which the sheet current changes from J; to
J . In the central region additional d+ lines run along the
lines which connect the bending points of the streamlines.
The other d+ lines within the sample are due to the rect-
angular geometry of the whole crystal. For clarity, the
d-line structure is drawn in one half of the sample in the
bottom row in Fig. 7. The central d+ lines in the thinned-
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FIG. 4. As Fig. 3 but in decreasing magnetic field. Top: @OH = 88 mT, middle: Bp mT, bottom: p mT (remanent state).
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down sample regions are hardly visible in the magneto-
optical image in the bottom row in Fig. 7, since H is
increased above the full penetration Geld of these areas
H* (J, /2) 1n(4o, /d) to H*' (J;/2) 1n(4n/d). The
calculated Qux patterns nicely agree with the magneto-
optically determined Hmc distributions.

In the critical state the ratio J;/J, can be determined
from the angle o. between the d line along the boundary

and the d+ line running into the central region, see Fig.
8, via J;/ J, = 1/ cos 2n = 1.5 (Ref. 27).

If we determine the ratio J;/ J, &om the different fjux
penetration depths ' on both sides of the boundaries
separating regions with diferent J, we obtain a value of
about 2, which is larger than the thickness ratio of 1.5.
This apparent contradiction can be resolved by consider-
ing the current How through such a boundary: The larger
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FIG. 5. As Fig. 3 but in reverse magnetic field. Top: poH = —24 mT, middle: —42 mT, bottom: —80 mT.
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FIG. 6. Calculated current pattern (top) and field H (middle row) in a rectangular sample for three difFerent steps of 8ux
penetration. Bottom: Magneto-optically detected Qux distributions in a rectangular YBCO single crystal at T = 30 K and
yoH = 85 mT (left), 171 mT (middle column), and 256 mT (right). The flux distributions were visualized using a ferrimagnetic
iron-garnet indicator. The black spots are defects in the indicator 61m. The crystal thickness is d = 20 p,m.
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FIG. 7. Calculated current and Qux patterns and magneto-optically determined Aux distributions in a rectangular YBCO
single crystal with inhomogeneous critical current distribution for three different magnetic fields of poH = 128, 213, and 299
mT (from top to bottom). The critical sheet current in the left and right part is about a factor 2/3 lower than the critical
sheet current in the central region. For each magneto-optic image (right column) the calculated current distribution is located
above the contour plot of the flux pattern (left column). Note the agreement between theory and experiment.
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sheet current J, coming from the central part bends in
order to satisfy the continuity equation div J = 0, such
that the normal component of J through the boundary
equals the lower sheet current J . The resulting jump of
the tangential component of J along the boundary then
produces a sharp positive ridge of the magnetic field H,
on top of the smooth field which is generated by the en-
tire current distribution and by the external coil. By
the same token a depression of H occurs at the two d+
lines adjacent to this boundary. Combined, these three
negative-positive-negative ridges of H, mean a concen-
tration of Hux which is seen in Fig. 7 as a deeper Hux
penetration along the boundary, particularly into the re-
gion of lower J .

Another interesting eÃect which can be concluded di-
rectly from the d-line structure in the fully penetrated
critical state, concerns the velocity of the penetrating
flux, which diverges along the boundary where J changes
abruptly. The region around the boundary where J
jumps is depicted enlarged in Fig. 8, in which we have
chosen a ratio of 2 between the sheet currents (1.5 in Fig.
7) in order to get a larger angle n = 30' for clarity. The
streamlines are drawn as bold lines. Our area of inter-
est is the enclosed triangular region where the current
does not flow parallel to the sample edge. This triangle
is bounded by d+ lines at the sample center (top) and
at the right (solid line) and by the d line running along
the boundary at the left. The flux lines move perpendic-
ular to the current How towards the d+ lines but do not
cross these lines as indicated by the dashed arrows. This
means that the flux lines can penetrate into the triangu-
lar region only along the boundary and &om there along
lines perpendicular to the current streamlines towards
the right and upper d+ lines. The density of the dashed
lines along the boundary is proportional to the velocity
of magnetic flux ~Bv~ or to the induced electric field E.
The velocity of the inagnetic flux (the height of the ridge

of E) at a given point on this boundary is proportional
to that partial area of the triangle which is filled by the
Hux passing through this point. For example, all Hux
lines which How into this triangle have to pass through
the point where the boundary hits the specimen edge,
but less Hux lines pass through the inner points of the
boundary and no flux passes through the midpoint. As
a consequence, E varies along this boundary like an S
shape, composed of two parabola, beginning and ending
with slope zero; see the right plot in Fig. 8.

A 3D plot of the electric-field distribution E = ~E~

calculated by the method of Sec. II (see also Refs. 28, 29)
is depicted in Fig. 9 for the critical state of our sample in
further increasing H . The ridge of E along the boundary
nicely agrees with the S shape depicted in Fig. 8. We find
that E is maximum at the d lines, while at the d+ lines
we have E = 0. This is in agreement with the statement
that flux lines can cross only the d lines but not the
d+ lines. Note that the high and narrow ridges of the
electric field or of Hux How at internal boundaries where
J changes abruptly cause enhanced dissipation which
may trigger Hux jumps.

V. CONCLUSION

In this paper we have investigated by theory and ex-
periment the penetration and exit of magnetic flux, and
the circulating sheet current induced by a cycled applied
field H, in superconducting Hat rectangles with uniform
or nonuniform pinning. Our theoretical description of
Hux motion in perpendicular geometry is based on clas-
sical electrodynamics in the planar approximation, as-
suming H q

——0. The magneto-optically observed cush-
ionlike flux penetration in rectangular samples is repro-
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FIG. 8. Visualization of the enhanced Qux Bow or electric
Geld along the boundary where the critical current density

j or the critical sheet current J, abruptly change; cf. also
Figs. 7 and 9. The bold lines denote the current How and the
dashed lines the Bow of the magnetic Bux in form of 8ux lines.
The S-shaped Bow density profile is depicted in the plot to
the right and coincides with the high narrow ridge of E in
Fig. 9. The point of inHection in the How-density profile is
marked by a dotted line.

FIG. 9. 3D plot of the electric-field distribution of the in-

homogeneous sample shown in Fig. 7 when H is increased
further after full penetration. The straight lines along the
sample edges mark E' = 0. The physical meaning of the de-

picted quantity is the velocity of magnetic 6ux ~Bv ~.
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duced only if a nonlinear current-voltage law is assumed.
In contrast to surface shielding currents in longitudinal
geometry, the shielding currents in Hat samples Qow im-
mediately across the entire superconductor when a trans-
verse magnetic Beld is applied. In rectangular samples
the streamlines of the shielding currents are always con-
cave for j ( j and parallel to the edges in the penetrated
regions with j = j . In ohmic rectangles the streamlines
are all convex.

We observe that in rectangles the Hux begins to pen-
etrate from the long edges faster than from the short
edges. This Gnding is attributed to the partly expelled
magnetic-Geld lines, which concentrate in the middle of
the long edges and avoid the short edges.

In inhomogeneous samples the unexpected Qux pene-
tration at the boundary separating regions with different
critical currents is well reproduced by our model. The
deeper Qux. penetration along this boundary can be ex-
plained by ridges of the magnetic field induced by the

discontinuity of the tangential component of the current
at the boundary, or by the concentration of the electric
field along the boundary. An electric-Beld concentration
means a high Qux-How rate and dissipation of energy.
This can trigger thermal Hux jumps, which should be
avoided in high-current applications of superconductors.
In all considered cases we found qualitative agreement be-
tween our theoretical and experimental Hux-density pro-
Gles.
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