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Single-hole properties in the t-J and strong-coupling models
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We report numerical results for the single-hole properties in the t-J model and the strong-coupling
approximation to the Hubbard model in two dimensions. Using the hopping basis with over 10
states we discuss (for an infinite system) the bandwidth, the leading Fourier coefBcients in the
dispersion, the band masses, and the spin-spin correlations near the hole. We compare our results
with those obtained by other methods. The band minimum is found to be at (z/2, z'/2) for the t J-
model for 0.1 ( t/J ( 10, and for the strong-coupling model for 1 ( t/J ( 10. The bandwidth in
both models is approximately 2J at large t/ J, in rough agreement with loop-expansion results but in
disagreement with other results. The strong-coupling bandwidth for t/ J ) 6 can be obtained from
the t-J model by treating the three-site terms in 6rst-order perturbation theory. The dispersion
along the magnetic zone face is Hat, giving a large parallel/perpendicular band mass ratio.

I. INTRODUCTION
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here sites i + b and i + b' are distinct nearest neighbors
of site i, (ij) are nearest-neighbor pairs, and J = 4t /U.
The t-J and strong-coupling Hamiltonians operate in the
reduced Hilbert space with no doubly occupied sites; this

Anderson's suggestion that the copper-oxygen planes
of the high-temperature superconductors are strongly
correlated systems has sparked renewed interest in the
two-dimensional Hubbard model. Much of our under-
standing of the strong-coupling limit of the model, and
the related t-J model, has been obtained by numeri-
cal work (reviewed in Ref. 3). Although the single-
hole properties have been studied extensively, exact-
diagonalization studies of small systems are hindered by
large finite-size effects in the parameter region of interest,
and Monte Carlo studies of larger systems are hindered
by the minus-sign problem; other methods have also been
used, but there is still no general agreement on these
properties, particularly for t/J values in the physical re-
gion. For this reason, we have studied the single-hole
properties using the hopping basis of Trugman4'5 and
compared them with results obtained by other methods.

In the limit U )) t, the Hubbard Hamiltonian can
be approximated by the strong-coupling Hamiltonian
H„= Hq J + H3, this differs &om the t-J Hamiltonian
IIt z (which has its own justification) by the three-site
terms in H3.

restriction is implicit in the above. Validity of the strong-
coupling approximation requires U )) t; the parameter
range believed appropriate to the high-temperature su-
perconductors is 2 ( t/J ( 10, or 8 ( U/t ( 40. We
present results for the t-J model in the region 0.1
t/J ( 10 and for the strong-coupling model in the re-
gion 1 ( t/ J ( 10.

The single-hole properties in the t-J and strong-
coupling models have been studied previously, the first
having received more attention. Methods include exact-
diagonalization studies of small lattices, studies of in-
finite lattices using a restricted basis set, ' ' Monte
Carlo methods, and other methods. Proper-
ties discussed include the ground-state energy, the band-
width, the dispersion, the band masses, the nearest-
neighbor spin-spin correlations and the spectral function.
As well, there is an extensive literature on the Hubbard
model itself, including recent finite-temperature Monte
Carlo results.

This paper studies the one-hole properties on an. infi-
nite lattice, using a restricted basis set (in effect a vari-
ational method). Section II describes the basis, and
Secs. IV—VI give results for the bandwidth, the disper-
sion, the band masses, and the nearest-neighbor spin-spin
correlations, respectively. For both models, the band
minimum is at k = (m/2, vr/2) and the maximum at
k = (0, 0) for the t/ J values investigated. The bandwidth
is approximately 2J at large t/ J, in agreement with loop-
expansion results ' and in disagreement with other
results. 2i At large t/J, the effects of three-site terms on
the bandwidth are well described by first-order pertur-
bation theory using the t-J ground-state wave function;
that is, the three-site terms appear to have little effect on
the ground-state wave function at large t/J. The band
mass parallel to the zone face is much larger than the per-
pendicular mass. The spin-spin correlations are reduced
relative to the starting state, but remain antiferromag-
netic.
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II. HGPPINC BASIS

We study a system of N —1 electrons on a square lat-
tice of N sites with periodic boundary conditions; the
Hilbert space is restricted to the S, = 1/2 sector with no
doubly occupied sites. We use the same basis for both
models, namely the hopping basis ' which has been used
previously. This method allows the study of infi-
nite systems (eliminating finite-size effects), but only cer-
tain properties, like the bandwidth and the band masses,
can be studied.

In zeroth order, the basis (denoted Hp) consists of a
single state (denoted ~cN)), the Neel state with a miss-
ing down-spin electron. Higher-order bases are generated
by repeatedly applying the t term in the Hamiltonian
(which hops the hole to a nearest-neighbor site). The
first-order basis Bi contains the ~cN) state plus the four
states generated by hopping the hole. The nth order ba-
sis B consists of the states in the basis B q plus those
generated by applying the hopping operator to the states
in the difFerence B„ i —B 2. The basis size (values are
given in Table I) grows exponentially with order. The
hopping basis, which emphasizes states differing &om the
~cN) state only near the hole, cannot give a good value
of the ground-state energy (because, for example, it does
not generate spin interchanges far &om the hole in rea-
sonable order); the expectation is that it describes well
properties like the dispersion and the nearest-neighbor
spin-spin correlations near the hole.

We have used the bases &om B6 to Bq3 for most
quantities, going to such large bases because some prop-
erties were still changing significantly; even with basis
Bis ( 2 x 10 states), however, some properties are
incompletely converged. Various extrapolation schemes
were considered but judged unreliable, and so we usually
present values for the three largest bases to provide an
estimate of the error due to the truncation of the basis.

The system size (16 x 16; the lattice constant a is
unity) is efFectively infinite since there are no paths which
wrap around the system even in 13th order. Since the
hole moves in an antiferromagnetic background, the Bril-
louin zone is reduced to the square formed by the points
(+sr, 0) and (0, +sr). The symmetries of the lattice re-
duce the independent part of the Brillouin zone to the
triangle with corners at (0, 0), (vr, 0), and (vr/2, vr/2), de-
noted I', M, and S, respectively. Each state ~n) in the
basis is a Bloch state, an eigenstate of the translation

operator corresponding to an allowed value of the mo-
mentum. For each basis, and each value of the momen-
tum k, the lowest eigenvalue and eigenvector were found
using a conjugate-gradient method to minimize the func-
tion (@~II~4')/(ill ~iII) with respect to the expansion coeffi-
cients in ~iII) = a ~n); this method is reported to converge
more rapidly than others commonly used, but gives the
eigenvector to only single precision. Where necessary, the
eigenvector was improved by a Lanczos method.

The dispersion (in the energy as a function of k) results
&om several processes. The Trugman paths ' trans-
late the hole to a next-nearest-neighbor site or a third-
nearest-neighbor site on the same sublattice, restoring
the original configuration. In the lowest-order path, the
hole hops six times around the smallest square to a next-
nearest-neighbor site; as a result, matrix elements like

(B2~c,.+& c, ~Bs) are momentum dependent. Momen-
tum dependence can also arise from the J term in H;
for example, the basis B2 contains states with the hole
translated by 2a and a pair of Hipped spins, and so matrix
elements like (Bo~S; . 8~~B2) depend on k. The results
show odd-even effects in the order of the basis; as the
basis size increases, Trugman paths of higher order, and
also states differing &om the starting state by nearest-
neighbor spin interchanges, are generated.

Related bases were also studied, in an effort to de-
termine which states are important for the hole proper-
ties. The hopping basis can be described symbolically as
B = g& o

It" ~cN), where It is the hole hopping opera-
tor. We define also operators 88, Sq2, and 820, the first
scrambles the eight spins at distances a and ~2a from
the hole (giving 70 states when operating on the ~cN)
state), the second these spins plus the four at distance
2a, and the third the 20 spins inside a 5 x 5 square minus
the four corner sites. If hole properties like the band-

~---- g

TABLE I. Number of states in the hopping basis versus
order of the basis.

Order
of basis

0
1
2

3
4
5
6
7

Number
of states

1
5

17
49

141
405

1 177
3 389

Order
of basis

8
9

10
11
12
13
14

Number
of states

9 786
27 990
80 196

228 196
650 022

1 842 326
5 225 938

0
0

B,3
B,2

Bii

FIG. 1. Bandwidth R', in units of J, for the t-J and
strong-coupling (sc) models as functions of t/ 1 for the three
largest bases used. The lines merely connect the points, here
and in following figures.
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width are determined primarily by configurations which
differ from the ~cN) state only near the hole, then the
bases g& h"8 ~cN), or (likely better) 8 g& h" ~cN),
should converge more rapidly than the hopping basis; we
find the opposite: when the bandwidth is plotted against
the inverse of the log of the basis size, these modified
bases behave like the hopping basis, except that proper-
ties are shifted toward larger basis sizes. We considered
also two other bases, both of which reduce the impor-
tance of string states (in which the hole wanders without
looping): (i) the basis P& M h" ~cN) where the opera-
tor M removes states in which the Manhattan displace-
ment (~x~ + ~y~) of the hole relative to its initial position
is greater than ma, and (ii) the basis P& o(I Ii)"~cN),
where the operator I removes states with more than n
"bad bonds" (that is, it filters states according to their
Ising energy relative to the ~cN) state; the limit oo means
that the hop-filter combination is applied until the basis
no longer grows, for given n). Neither the Manhattan
nor the Ising filters improved the convergence. We con-
clude &om these numerical experiments that the single-
hole properties are determined not so much by the spin
configurations near the hole as by loop and string paths.
It appears that the hopping basis, whether in its original
form or in the modified forms we have investigated, is
capable of only limited accuracy even if carried to very
high order.

III. BANDWIDTH

Because the lattice is effectively infinite, the lowest
energy can be found for any k. For both models, we
found E(k) at 81 independent k values of the form
(27m/L, 27rm/L) with n and m integers and I, = 32,
for t/J values in the range 0.1 ( t/J ( 10 for the tJ-
model and in the range 1 ( t/J ( 10 for the strong-
coupling model (for which the lower values of t/J are of
little interest).

For the t-J model, the energy is a minimum at k = S
(and a maximum at I') for O. l ( t/J & 10, for all bases
used (Bs to Bis), in agreement with all previous work.

For the strong-coupling model, the energy is also a
minimum at k = S (and a maximum at I') for all t/J
in the range 1.0 ( t/J & 10, but only for the largest
bases at small t/J; this result disagrees with predictions
(based on fits to exact-diagonalization results for small
systemsis) that the minimum is at M for t/J & 5. For
the smaller bases, particularly for the smaller values of
t/J, the minimum can be at M or elsewhere along the
zone face; for example, the minimum is at S only in 11th
order and higher for t/ J = 1.

Figure 1 plots the bandwidth W = E(1') —E(S) for
both models as found using the bases Rii, Rq2, and B'q3.
The convergence is good for the t Jmodel at all t/J -in-
vestigated; it is moderately good for the strong-coupling
model at larger t/J, but worsens at smaller t/J. The
t Jbandwidth is app-roximately t for t/ J ( 2 and 2J for
t/J & 2, but decreases weakly at large t/J. The strong-
coupling bandwidth is also about 2J (though about 20%
larger) and also decreases as t/J increases. The hopping-
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FIG. 2. Bandwidth W, in units of J, for the t-J model as
functions of t/ J The s.olid line gives the hopping-basis results
(for the basis Bis) and the dot-dash lines other results: (a)
Ref. 21, (b) Ref. 28, (c) Ref. 29, (d) Ref. 32, and (e) Ref. ].4.

basis results are incompletely converged, however; the
bandwidth is still increasing with basis size, and the trend
is greater at larger t/J It is pos. sible then that the slight
decrease which we find -is due to the finite size of the
hopping basis.

Figure 2 compares our values for the t-J bandwidth
with those obtained by other methods; major differences
occur in the physical region t/J & 2. The hopping-basis
results agree best with loop-expansion results, ' ' and
poorly with other results, for unknown reasons; the 4x 4
exact-diagonalization resultsi4 at large t/ J are unreliable
due to finite-size effects. Our results at large t/J are
qualitatively consistent with the mean-field result
4J for strong coupling.

From Fig. 1, the normalized bandwidth difference
(W„—Wi g)/ J is almost independent of t/ J for t/J & 4.
Since (H„—Hq g)/J = Hs/J has no explicit depen-
dence on t or J, this suggests treating the three-site
terms as a perturbation to the t-J model. The er-
ror in the first-order result for the bandwidth differ-
ence AWi = EEi(1') —AEi(M), where AEi(k)
(@& &IHsl@& &)(k), is less than 2% at t/ J
t/J = 8, but is much larger at smaller t/ J (52% at t/J =
4). Of course the estimate for the strong-coupling band-
width itself is much better (errors are 0.3, 0.3, and 11%
at t/ J = 10, 8, and 4). It appears then that the three-site
terms can be treated in first order for t/J & 6.

Further investigation revealed that the first-order es-
timates of the energy at S are excellent; ((H„)& z—
E„)/W„ is 0.1, 0.09, 0.06, and 0.04% at t/J = 10, 8,
4, and 1 respectively; the corresponding values at F are
0.4, 0.4, 11, and 41%. For unknown reasons, at inter-
mediate t/J values the three-site terms appear to affect
the F ground state strongly and the M ground state very
weakly.
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IV. DISPEB.SION
(b) t —J

The Fourier coefficients a~ defined. by

I /2

E(k) = ) a~ coslk cosmk„
t,m=O

0.3

are easily obtained by inversion &om the energy as a func-
tion of k. The symmetries of the lattice give a~ ——a
and a~ ——0 for /+ m odd. The independent coefFicients
are then the 81 a~ with 0 & l & 16, 0 & m & l, and 1+m
even. The coefFicient aoo depends strongly on the order of
the basis, as more states important for the ground-state
energy are generated; it affects none of our results since
we look only at quantities (like the dispersion) which de-
pend on energy di8'erences.

Of the other coefficients, aqua and a2p (both positive)
are the largest, with the ratio a2p/aqua less than about
0.6 for both models for the range of t/J values studied.
The remaining coefficients are less than about O. laqq in
magnitude for both models at the t/J values studied.
Figures 3 and 4 plot the two leading coefficients as func-
tions of t/J for the two models. The convergence is of
course qualitatively the same as for the bandwidth, good
for the t Jmodel a-t all t/J and for the strong-coupling
model for t/J & 4, but increasingly poor for the latter
with decreasing t/ J

At large t/J, the values a2p/J are almost independent
of t/J, whereas the coefBcients qadi/J decrease with in-
creasing t/J. The strong-coupling coefffcients are larger
than the t-J coefficients, reQecting the enhanced mobil-
ity due to the three-site terms. Also, at larger t/J, the
difference (a2p/ J) —(a2p/ J)g z for the two models is al-
most independent of t/ J, as is the difference in the values
of aqua/J, for the reason discussed in Sec. III. Figures 3

0.1

0
0 10

FIG. 4. The second leading Fourier coeKcient aqo, in units
of J, as functions of t/J for the t Jand -strong-coupling (sc)
models, for the three largest bases used. The dot-dash lines
give other results for the t Jmod-el: (a) Ref. 28 and (b) Ref.
29.

V. BAND MASSES

The band masses at the band minimum, which is at S
for both models in the region 1 & t/J & 10, are defined

and 4 also plot other results ' for the t-J Fourier coeffi-
cients; the agreement is as expected &om Sec. III. Recent
Monte Carlo results, '2 available only at t/J = 2.5, are
about 25%%uo higher than ours.
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0 2 4

I I I I

6 8 10

FIG. 3. The leading Fourier coefBcient a~~, in units of J, as
functions of t/J for the t Jand strong-coupling -(sc) models,
for the three largest bases used. The dot-dash lines give other
results for the t Jmodel: (a) Ref. 28 and (b) -Ref. 29.

FIG. 5. Band mass perpendicular to the magnetic zone face
at the band minimum k = S, in units of the free band mass
mo ——h /2t, for the t Jand strong-couplin-g (sc) models as
functions of t/J. The dot-dash line gives the t Jresults of-
Ref. 29.
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t —J, Ref. 29

B,3
B,~
B„ -0.2898 -0.2953 -0.2687 -0.3090 -0.2937

0
0 2 4 10 ~— -0.2898 —~— -0.2905 —~— -0.2735 —~— -0.2937 —~

FIG. 6. Band mass parallel to the magnetic zone face at
the band minimum k = S, in units of the free band mass
mo = 5 /2t, for the t Jand -strong-coupling (sc) models as
functions of t/J The d.ot-dash line gives the t Jresult-s of
Ref. 29.

FIG. 7. Nearest-neighbor spin-spin correlations (in units
of 5 ) for the t Jmod-el at the band minimum k = S for
t/ J = 2.5 using the basis Bq3

VI. SPIN-SPIN CORRELATIONS

in terxns of the second derivatives of E(k) with respect
to k.

f O'E(k) l
Bk Ok

The masses were obtained by calculating E(k) at addi-
tional points near S and using finite-difference approxi-
mations for the derivatives. Figures 5 and 6 give results
for the masses perpendicular and parallel to the zone
face, respectively, in units of the bare mass mo ——h~/2t.
The parallel mass is much larger than the perpendicular

found previously 15,18,13,29,28,25

The perpendicular mass is well converged for both
models. For the t Jmodel, m~/-mo is almost linear in
t/J at large t/J, but Battens out at small t/J. For the
strong-coupling xnodel, m~/mo is almost proportional to
t/ J; the smaller effective mass reflects again the increased
hole mobility relative to that in the t-J model.

The parallel mass is much more poorly converged, es-
pecially at smaller t/J; even at t/J = 10 (the most fa-
vorable value), the masses change by over 5'%%uo between
the bases B12 and B13. The poor convergence results be-
cause the energies are nearly independent of k (the mass
is large) For larg. e t/J, though, it appears that m~~/mo
increases only weakly with t/ J for both models and that
the two models have the same parallel mass.

Figures 5 and 6 also give the results &om Ref. 29, de-
rived &om their dispersion results (Table II of Ref. 29)
using the free mass mo ——5 /2t, rather than the effective
masses of their Table III. The difference is due in part
to a genuinely different dispersion, but part of it arises
because they used only two components in the Fourier
expansion (the parallel mass, being large, is particularly
sensitive to small changes in the energy).

~— -0.2926 —~— -0.2583 —~— -0.2793 —~— -0.2833 —~

-0.2926 -0.2996 -0.2732 -0.2838 -0.2833

~— -0.2996 —~— -0.1486 —~— -0.2318 —~— -0.2838 —~

-0.2583 -0.1486 0.0000 -0.2318 -0.2793

0- -0.2732 —~— 0.0000 —~— 0.0000 —~— -0.2732 —~

-0.2793 -0.2318 0.0000 -0.1486 -0.2583

~— -0.2838 —~— -0.2318 —~— -0.1486 —~— -0.2996 —~

-0.2833 -0.2838 -0.2732 -0.2996 -0.2926

~— -0.2833 —~— -0.2793 —~— -0.2583 —~— -0.2926 -

FIG. 8. Nearest-neighbor spin-spin correlations (in units
of 5 ) for the strong-coupling model at the band minimum
k = S for t/ J = 2.5 using the basis Bq3.

Figures 7 and 8 show the nearest-neighbor spin-spin
correlation (S; S~) for pairs of sites i and j near the hole,
for the t-J model and strong-coupling model, respec-
tively. The momentum is k = S (the band minimum),
t/J = 2.5, and the basis is Bxs. In the units of 5 = 1
used, the spin-spin correlation is —0.75 for a singlet pair
of spins, 0.25 for a triplet pair, and —0.25 for a Neel pair.
The correlations are antiferromagnetic, and moderately
less than in the starting state. The "cigar" polaron in
Figs. 7 and 8 is well known from other studies.
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