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Dependence of T, on the physical parameters in single-layered copper oxides
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From the superconducting gap equation that we have derived in a previous paper, we calculate the
critical superconducting temperature T, of an itinerant electron gas in a Cu02 plane as a function of the
occupancy of the d-p subband. This involves applying the Bogoliubov-Valatin mean-field approximation
to a Hamiltonian including both the Hubbard intra-atomic repulsion U and an effective coupling con-
stant V between electrons; the latter is assumed to be mediated by the electron-phonon interaction. As
the Fermi level is shifted from the logarithmic Van Hove singularity in the electronic density of states,
the calculated value of T, decreases much more slowly than the antiferromagnetic order parameter that
we had previously calculated in the same model. This explains the existence of the superconducting
phase largely outside of the domain of stability of the antiferromagnetic phase, when the compound is
doped. Furthermore, we calculate the isotope effect, which exhibits a large variation with the doping x,
showing a sharp peak for some critical value of x, in agreement with several independent experimental
data. A very large inhuence of the Coulomb parameter U is found on the isotope effect which, in some
cases, could vanish, or even be negative.

I. INTRODUCTION

We use the tight-binding model which had been initial-
ly proposed by Labbe and Bok' for calculating the criti-
cal superconducting temperature T, of an itinerant elec-
tron gas in a Cu02 plane. This model is supported by
very recent experimental photoemission data ' which
clearly show, not only the existence of a Fermi energy,
but also the existence of a bidimensional saddle point in
the energy spectrum, indicating the itinerant nature of
the electron gas and its bidimensional character. In their
paper, Labbe and Bok had predicted a reduction of the
isotope effect when the Fermi energy nearly coincides
with the logarithmic Van Hove singularity in the elec-
tronic density of states. More recently, Tsuei et al. used
this model for calculating the variations of T, when the
Fermi energy is shifted from the singularity. As an in-
teresting result, they found that the isotope effect strong-
ly depends on the Fermi-level position. But in their cal-
culation they did not take into account the repulsive part
of the Hamiltonian, which is known to be essential to ex-
plain other properties of such systems, as for instance the
existence of an antiferromagnetic phase. In the present
paper, we demonstrate that if we also include the intra-
atomic Coulomb repulsion between itinerant electrons,
the variations of T, and of the isotope effect, when the
occupancy of the band is varied, are strongly modified.
In previous papers, ' we discussed the stability of the an-
tiferromagnetic phase in a single Cu02 plane, as for in-
stance in La2 Sr Cu04, and we calculated the super-

conducting gap at the absolute zero versus the doping ra-
tio x. %'e explained why the antiferromagnetic phase was
confined to small values of x only. On the contrary, we
found a slow variation of the calculated superconducting
gap versus x. The equation for calculating the supercon-
ducting gap at any temperature T is reintroduced in Sec.
II, the variations of T, versus x are calculated in Sec. III,
and the predictions of the model concerning the isotope
effect are extensively discussed in Sec. IV, with a compar-
ison to the existing experimental results.

II. EQUATION FOR THE SUPERCONDUCTING GAP

In our model, the interaction between two electrons
with wave vectors k and k' is made of two contributions:
the first is the effective attractive interaction V&& and the
second is the Coulomb repulsion U between two electrons
on the same atomic site with opposite spins, according to
the Hubbard model. Solving the total Hamiltonian con-
taining these two contributions in the Bogoliubov and
Valatin mean-field approximation, we got the following
equation for the superconductivity gap 6&..

UV„„+— tanh

where 6z=+E&+b,z is the energy of an elementary exci-
tation, c&=E&+Un /2 —p is the Hartree-Fock one-
particle energy referred to the chemical potential p, E&
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the bare particle energy in the band, n =1—x the aver-
aged number of itinerant electrons per copper atom, T
the temperature, and N the number of unit cells.

We assumed that V&&. has a non vanishing value

—V/N, with V&0, only if both ~ez~ and ~ez. ~
are smaller

than some cutoff energy i)ico0. Then it results from Eq. (1)
that the energy gap Az has two distinct constant values
b. , and b,2 according to the sign of

~ ez~ R—coa, with

~I= V~iF(T, ~i)—U(~iF(T, ~i)+~2G(T, ~2)) if lei, l ~&~0,
b2= —U(K,F(T,bi)+b2G(T, hz)) if ~e&~ &%boa, (2)

with

F(T,h, )=— g tanh
1 1 k

~c~~ ~8~0 2 k 2 BT

G(T, bz)= — g tanh=1
N

~,~~)„~028„2kiiT
We applied these equations to a CuOz plane, with our model density of states, for ~E~ ~ 4t,

1
1

16t2)(E)= ln
i

in which E=e Un /2+ p,—and t is the efFective transfer integral between neighboring copper atoms.
From these equations, we had calculated the gaps b, i(0) and b,2(0) for T =0 K, the striking feature of our results be-

ing that b, i(0) and 52(0) decrease slowly when the doping ratio x increases.

III. CALCULATED VARIATIONS OF 1', VERSUS x

Equations (2) always have a trivial solution 6, =b,z=O and, in the superconducting state, another nonvanishing one,
which leads to a more stable state. At the critical superconducting temperature T„ this second solution itself vanishes.
This leads to the following implicit equation to determine T, :

(UG0(T, )+1)(VF0(T, )
—1)=UFD(T, ),

with FD( T, ) =F( T„O) and G0( T, ) =G ( T„O). In the case of a Cu02 plane, our model density of states (4) gives

F (T0, )= ~ f ln tanh
1 ~p 16t E, dE,

4~ t flcop 2k~ Tc

G0(T, )=
& f ln tanh + f ln tanh

1 "p 16t d c. 4~+ ~ 16t dc
4t+s E—5, 2ks T s s~a e —5 2k~ T, c.

where 5=Un/2 —p is the opposite of the shift of the
chemical potential with respect to the logarithmic singu-
larity of 2)(E). At T„ this shift is related to the doping
ratio x through the Fermi-Dirac distribution, valid in the
normal state:

1 4~+ s 16r d e
1 —x= ln

4t+5 e —5

The procedure to get T, versus x is, for each chosen
value of 5, to calculate T, from Eq. (5), and then x from
Eq. (7). Figure 1 shows our numerical results for
different values of U. Figure 2 shows the calculated vari-
ation of x versus 5: we see that this variation is nearly in-
dependent of the value of T„and thus of U, boa and V, ex-
cept for very small doping x.

The value of T, is very sensitive to U: T, is reduced by
a factor -5 when going from U =0 to U =2t. We do
not know accurately the numerical values of the parame-

I

ters. But in our model, only the dimensionless parame-
ters U/r, V/t, and fico0/t are relevant to determine the
reduced value kz T, /t as a function of x. In fact, the cal-
culated values of T, for U=O are very large: for V=2t,
A'cu0=0. 2t, one finds k~T, =0.022t for x =0.15, which
gives T, =130 K if, for instance, t =0.5 eV, which is too
large as compared to the experimental values. On the
contrary, with U = t and the same values of the other pa-
rameters, we get more realistic values of T„T,=40 K
for x =0.15, comparable to the experimental values ob-
served in La2 Sr„Cu04. Obviously, these results do not
take into account the fact that, in a single CuO2 pla~e,
the antiferromagnetic phase is more stable for x smaller
than a small critical value, as shown in one of our previ-
ous papers, forbidding the superconducting phase to ex-
ist in this narrow range. But in the present paper, we
focus our attention on the predictions of the model only
for superconductivity, as if the antiferromagnetic phase
would not exist.
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As Go( T, ) depends much less on 6 than Fo( T, ) does,
it can be replaced by the simplified version it would have
at x =0. Then, by integrating by parts the second Eq.
(6), and assuming kii T, « A'coo, one gets

Go( T, ) = —ln ln
1 4t 64t

4~ t Scop Scop

As in this case Go( T, ) in fact does not depend on T„Eq.
(S) reduces to

(V —U')Fo(T, )=1, (9)

I
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x

FIG. 1. Reduced superconductor critical temperature
k&T, /t versus the doping ratio x, exactly calculated (full line)
and by the approximate formula (9) (dashed line), for V/t =2,
@coo/t =0.2, and for U=O (curve a), U/t=1 (curve 1), and
U/t =2 (curve c).
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FIG. 2. The doping ratio x versus the opposite of the Fermi-
level shift 6, for %coo/t =0.2, U =0, and V/( =2, at T= T, (full

line) and at T =0 K (dashed line).

where the effective Coulomb repulsive parameter

U

1+( U/4' t )1n(4t /irido)ln(64t /iiicoo)
(10)

is the same as previously found when calculating the
gap. The simplified equation (9) leads to a very good ap-
proximation for the calculated values of T, versus x, as
compared to the exact equation (S) (see dashed lines in
Fig. 1).

The effect of U on T, can be explicitly analyzed for
x =0. In this case, when integrating by parts the in-
tegrals in the first expression (6) with kiiT, « iiicoo, one
gets

A~o
Fo(T, ) = 2

~
—ln
2 2k~ T,

'2
16t ~~o 16t+ a+in ln +b +a ln

%coo 2k~ T, ACOp

with a —C —ln(m/4) =0.82, where C is the Euler constant, and b =0.99. Then, a straightforward calculation leads to
the explicit expression

32t 16t
e exp — ln

'lT ACOp

4 t
1/2

+ —1.32
V U~

(12)

which explicitly shows the strong effect of U on T, at
x =0.

The exponential factors in the expression (10) of T, and
in the expression (34) of our previous paper for b, &(0) at
T =0 K are almost identical. Thus the ratio
2b. i(0)/kii T, is essentially equal to the ratio of the two
prefactors in front of the exponentials in these expres-
sions, and in fact has the standard 8CS value
2m.e =3.53. Numerical calculation shows that the
value of this ratio remains practically constant when the

doping ratio increases.
It is clear that our model is not able to explain a ratio

2b, ,(0)/kii T, which would be much larger than the usual
BCS value. A large value, if it was experimentally
con5rmed, could be explained either by the Eliashberg
strong-coupling theory, or by an effect of large bidimen-
sional fiuctuations which would reduce T, but not b, ,(0),
or also by a large anisotropy of the attractive coupling
constant Vki,
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IV, INFLUENCE OF THE CUTOFF ENERGY Scop

In our model, the efFect of ficoo on T, can be calculated.
It must be emphasized that our theory, which is of BCS
type, does not necessarily assume that the attractive part
of the interaction between two electrons is induced by
phonons: in principle it could be induced as well by some
other boson field. But in the case of an electron-phonon
mechanism, the calculation of the efFect of %coo leads to
the discussion of the isotope efFect.

The dependence of T, on ~o, for a given value of the
doping ratio x, can be calculated by differentiating Eq. (5)
with respect to T, and ct)p in which 5 depends on T,
through Eq. (7). Qne finds

dT~ ( VFO —1) —1 aFO
(13)

aF, /aT, +(VF, —1)'(aG, /aT, ) a~, '

where we took advantage of the equality
aGo/ac00= —aFo/atoo. When deriving Eq. (13), we start-
ed from the exact equation (5), and not from its simplified
version (9), because we have now to calculate very small
variations of T, versus coo, and not the absolute value of
T, itself. The partial derivatives of I'0 and 60 with
respect to coo and T„for a constant value of x, can be cal-
culated from Eqs. (6) and (7). The calculation is greatly
simplified by doing approximations which use the fact
that the subband width St is much larger than the cutoff
energy ficoo, which itself is assumed to be much larger
than kz T, . The resulting explicit expression of the
coefficient y =a lnT, /a lntoo, which is given in Appendix
A, makes possible numerical calculations of the value of
y as function of the physical parameters of the model.
The most striking feature of our results is that y does not
have the usual constant value, equal to unity, which
would be predicted by the simplest version of the BCS
model, but on the contrary it exhibits a large variation
versus the doping ratio x, and very critically depends on
the respective values of the repulsive Coulomb parameter
U and the effective attractive coupling constant V. Ac-
cording to the choice of the parameters, y can be either
much smaller or much larger than unity, it can vanish,
even with an electron-phonon mechanism, or also be neg-
ative. Figure 3 shows the calculated variations of y
versus x for different choices of the parameter U.

For x =0 [and thus uo =0 in Eq. (A2)], the expression
for y reduces to

d lnT, V( V 2U +
) ln(16t /A'coo)

d 1ncoo ( V —U*}2 0.82+in(8t/k&T, )

(14)

where we took advantage of the simplified equation (9),
with U* given by Eq. (10). The expression (14) shows
that when the Fermi energy exactly coincides with the
logarithmic singularity in the density of states, the more
drastic modification of the isotope efFect comes from the
presence of the effective repulsive potential U*. For in-
stance, for 2U') V, the expression (14) is negative, and
thus the isotope effect is reversed. On the contrary, for
U*=O, the expression (14) is always positive, and for
realistic values of the other parameters, the reduction of
the isosope effect by the factor ln( 16t /irido� ) /(0. 82
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FIG. 3. Logarithmic derivative y=8 lnT, /81ncoo versus the

doping ratio x, calculated for V/t =2, %coo/t =0.2, and for
U =0 (curve a), U/t =1 (curve b), U/t = 1.88 (curve c), and

U/t =2 (curve d).

(15)

where we must keep the exact expression of Fo( T, ),
which depends on U through Eq. (5), because it is very
sensitive to the value of x for large doping. We see from
Eqs. (Al) and (A2), that y vanishes at a critical value of
x, if it exists, for which VF0=2, leading to an infinite
value of the denominator D of the expression (Al).

The quantitative comparison of the above theoretical
predictions to existing experimental results" ' is
difticult because the relation between mo and the masses
of the different ions in such compounds is not clearly es-
tablished. Nevertheless, it has been recently observed
that, in La2 Sr Cu04, the substitution of Cu to Cu
leads to an isotope effect of the same magnitude as the
substitution of ' 0 to ' 0, showing that large parts of the
phonon spectrum inhuence the superconducting transi-
tion temperature. '

+ln(8t /k~ T, ) ), which is due to the decrease of the elec-
tronic density of states when going from p to p+Acoo,
cannot be very large, because the singularity has a loga-
rithmic behavior only. '

The very sharp peak found in the calculated variations
of y for larger values of x in Fig. 3, which exists whatever
the value of U is, is explained by the fact that, when the
logarithmic singularity in the electronic density of states
is very close to one of the two limits p+ficoo of the energy
range inside which the attractive interaction exists, a
small variation of coo produces a large change in the value
of T, . We show in Appendix B that when 5 is very close
to %~0, the expression for y exhibits a logarithmic singu-

larity, and is approximately given by

1n( 8t /%coo) +1n( 16t /~ ficoo 5~)—
y = [1—( VF (To, ) —1) ]
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Almost all the experimental data in La2 A Cu04
( A =Sr, Ba) show a very large inhuence of the doping on
the isotope effect: a sharp peak is observed in the varia-
tions of the latter with respect to the doping x, in agree-
ment with our calculations (Fig. 3). As we do not know
the precise relation between the ion masses and the pho-
non frequencies, we cannot hope to fit in detail the exper-
imental data with our continuous calculated curves.
However, the position of our peak in Fig. 3 coincides
with the experimental one (x =0.12) if we assume
%coo —0.2 15 t which is a very reasonable value for the
maximum phonon frequencies, with, for instance, t =1
eV. It can be noticed that, in our model, the position of
the peak depends only very little on U and V. This peak
has not been observed in YBa2Cu306+ . But in this last
compound, there is not a continuous shift of the Fermi
level when the oxygen content is gradually modified: on
the contrary, for a given value of y (roughly equal to 0.4),
there is a sudden transfer of a finite number of electrons
from the Cu02 planes to the CuO linear chains appearing
in the structure at this composition. Some authors had

I

APPENDIX A

By calculating the partial derivatives of Fo and Go
from their expressions (6), and assuming ks T,« i)icoo « St, the expression (11)can be transformed to

where

d lnT, 1 (16')2=—ln
~ »~o D 1(i)ted, )' —g'I

(Al)

attributed the existence of this peak in La2 „Sr„Cu04 to
a structural phase transition which would be induced by
doping. But recent high pressure studies' and the com-
parison of the effects of copper and oxygen isotope substi-
tution' show that the observed peak can hardly be attri-
buted to structural instabilities.

A physical conclusion of our theoretical study is that a
very small, or even vanishing, isotope effect is not in con-
tradiction with an electron-phonon mechanism for the
superconductivity in these compounds.

D= 21n —K(uo, + ac )+ [K(uo, + ac ) K(0, + a—e)] .+K(uo, + ae) —K(uo, u, )
1 8t d ln5

ksT, ' d lnT,

K(uo, + DD )
—K(0, + Oe )+K(uo, u& )+K(0,u&)+in 1—d ln5

6 lnTq
(A2)

d ln5 kmT

d lnT, 5 St
2ln

A(uo)

K( uo, + ae )—
(A3)

with

A(uo) = —f lulu —uo I

00 ch u

The three equations (Al), (A2), and (A3) determine y and
make possible numerical calculations. One can use the
approximate value K (0, + ~ ) = —1.64, and also the

with uo =5/2k' T„u, =ficoo/2k+ T„and
+"

~ du
K(uo, ui)= f lulu uoI

Ql ch u

Then, by taking the derivative of Eq. (7) with respect to
T„ for a given value of x, with the same approximations
as above, one gets

asymptotic behaviors K (uo, u
&

) =2 lnuc and A(uo )

=m. /6u o, valid for u o )) 1 and u
&
))l.

APPENDIX B

If 5 would be exactly equal to ficoo, only the divergent
logarithmic terms in the expressions (Al) and (A2) would
have to be retained, giving a finite value to y. But it must
be realized that the coefficient d 1n5/d lnT, in front of
the logarithmic term in the expression (A2) is numerical-
ly so small that this term makes a non-negligible contri-
bution to D only for values of 5 so close to A'coo that it
would need a precision in the value of the doping ratio x
which is experimentally inaccessible. Thus, physically,
only the divergent logarithmic term of the numerator of
the expression (Al) gives an observable behavior in the
variation of y. Then, using the asymptotic behavior of
K (uc, u

& ) given in Appendix A, one gets of formula (15).
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