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Non-Fermi-liquid behavior near a T = 0 spin-glass transition
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We study the competition between the Kondo efFect and Ruderman-Kittel-Kasuya-Yosida inter-
actions near the zero-temperature quantum critical point of an Ising-like metallic spin glass. We
consider the mean-field behavior of various physical quantities. In the "quantum-critical regime"
nonanalytic corrections to the Fermi-liquid behavior are found for the specific heat and uniform static
susceptibility, while the resistivity and NMR relaxation rate have a non-Fermi-liquid dependence on
temperature.

I. INTRODUCTION

The interplay between Kondo screening of localized
spins by conduction electrons, and ordering of these spins
due to the Ruderman-Kittel-Kasuya- Yosida (RKKY) in-
teraction is a central issue in heavy fermion physics. Re-
cently, a class of systems has been studied ' in which
the ordering temperature is driven to zero as a func-
tion of concentration, and the paramagnetic metal dis-
plays non-Fermi-liquid (NFL) behavior near this T = 0
quantum-critical point. The compound Yi U Pd3 is
one of the best documented among these systems. In
this case, the low-temperature ordered state is reported
to be a spin glass for x ) x 0.2, while the system
remains a paramagnet down to the lowest temperature
studied for x & x . It is still debated ' whether the NFL
behavior of the Yo SUO 2Pd3 system is a single-ion effect
or results &om the above competition and the proximity
of the T = 0 critical point. The aim of this paper is
not to resolve this debate for this particular system, but
to demonstrate that NFL behavior is indeed a generic
feature of the vicinity of a T = 0 paramagnetic metal
to metallic spin-glass transition. This will be shown by
solving specific models at mean-field level.

II. MODELS

The models that we shall study are mean-field. versions
of the Kondo lattice, with an additional quenched ran-
domness on the exchange interactions between localized
spins. We consider localized spins S; on a fully connected
lattice of N sites i = 1, . . . , %. These spins interact with
a bath of conduction electrons. In the model that we shall
consider first, a major simplification will be made: the
conduction electron bath will be assumed to consist of
independent "reservoirs" of electrons, with no communi-
cation between the reservoirs at different sites. The effect

of releasing this simplifying assumption will be discussed
in Sec. IV at the end of this paper. The conduction elec-
trons will be denoted by c&', where n =t, $ is a spin(~)

index, A: labels the conduction band orbitals, and the site
index (i) labels the reservoir associated with site i. The
Hamiltonian of the model reads

Hi ——) egcI cq' + Jlc) S; s(i) —) J;sS; . Ss.

In this expression, s(i) —= g & g& &, 2c&i'l+o. pc&~', l& is
the conduction electron spin density at site i, and J~
the strength of the Kondo coupling between the local-
ized spins and the conduction electrons (taken to be an-
tiferromagnetic). Besides this coupling, the spins have
a direct interaction between one another: the J,~

's are
quenched independent random variables with a distribu-
tion P(J;s) exp( —J; /4N J ). A further simplification
of our model is that only the Ising part of the exchange
interaction has been included. For J~ ——0, the model
reduces to the Sherrington-Kirkpatrick model of a classi-
cal Ising spin glass with a freezing transition at T = J.
In contrast, for J = 0, we have a system of independent
localized spins, each one being quenched by the Kondo
effect with its conduction electron reservoir, and the sys-
tem has no long-range order down to T = 0. We are
interested in the intermediate behavior where the spin-
glass freezing due to the random exchange competes with
the local Kondo effect.

Because the model is fully connected, it can be re-
duced to a single-site problem after taking the (quenched)
average over the realizations of the random couplings.
In order to describe also the spin-glass phase, we may
introduce replicated variables labeled by indices a, 6 =
1, . . . , n. Using standard techniques, the single-site
effective action is found to be (with obvious notations)
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In this equation, Qo is simply the bare on-site propaga-
tor for the conduction electrons: go = g& 1/(i~„—cb),
which can be taken to have the characteristic form as-
sociated with a flat band without loss of generality:
go(iw ) = iI'sgn(w ). The nonlocal spin interaction
D 6 must satisfy the following self-consistency condition
in the thermodynamic limit N —+ oo:

D~b(r —r') = (TS~(r)Sb(r'))q «.

slow decay of K(r) stems from the metallic nature of the
spin-glass problem under consideration. In the insulating
case considered in Refs. 11, 12, the decay is faster with
K(X(s)~) ~ Cd

III. SOLUTION AND PHYSICAL PROPERTIES

A. Solvable M = oo limit

In order to analyze the effective action (4), we can
follow Ye, Sachdev, and Read and generalize the model
from Ising spins to M-components quantum rotors n,.„,
p = 1, . . . , M, with n; = 1 at each site. The Ising case
formally corresponds to M = 1, but the M —+ oo limit
will be first solved exactly. Enforcing the local constraint
by Lagrange multipliers A~, the model is solved in this
limit by a saddle-point method, with i%~ = A uniform
at the saddle point. The free energy of the model reads,
in the paramagnetic (replica symmetric) phase,

P
S,'s = dr dr' ) S'(r) [K(r —r')b~b

ab

JD b(r —r')]Sb—(r'), (4)

in which K(r) ~ 1/r at large r, i.e. , K(ice )
Ku sgn(ur ) (r, is a dimensionless parameter depending
on the anisotropy of the Kondo coupling). This behav-
ior must be cut off at high frequency w ) A (i.e. , at
short time separation). Because the decay K(7) 1/r
only holds for times longer than 1/T~, where TJi is the
"bare" Kondo temperature in the absence of the ex-
change J, the cutoff must be chosen as A T~. This

In the following, we shall mainly be concerned with the
paramagnetic phase in which replica symmetry holds, so
that D b(r) is nonzero only for a = b. In the spin-glass
phase, D b is nonzero (but r independent) for a g ti,

and the Edwards-Anderson order parameter is given by
qE~ = D (r m oo).

The problem defined by Eqs. (2,3) is still too com-
plicated to be solved exactly, even in the paramagnetic
phase. However, it can be related to a solvable prob-
lem, which can be shown to have the same qualitative
phase diagram and the same low-frequency and low-
temperature universal properties. To arrive at this solv-
able model, we have to go through two additional steps.
The first one is to "integrate out" conduction electrons in
S ~, so that an action involving only spin degrees of free-
dom is obtained. This cannot be done exactly because
of the Kondo interaction, but can be done asymptoti-
cally at low energies by following the classic Anderson-
Yuval-Hamann approach to the Kondo problem. This
approach consists in separating the Kondo term into an
Ising part S s and a spin-flip part, and performing an
expansion in the spin-flip term to all orders. The result
of this procedure is a mapping of the Kondo part of S g
onto an action involving an effective interaction for the
Ising components of the spins. This effective interaction
is retarded and decays as 1/r2 for large (imaginary time)
separations ~. Thus low-energy properties of the model
can be studied by replacing S,~ with

NM 2P
= A+ —) in[A+ K(i~„) —J D(i(u„)],

where the spin-correlator D(iur ) is given by

D(iu)„) = (A+ K(iur ) —+[A+ K(i(u„)]2 —4J2).1

(6)

The Lagrange multiplier A is determined by the con-
straint equation (equivalent to setting BF/BA = 0):

1——) D(i~„) = 1.

B. Connection with z = 2, d = 3 quantum-critical
phenomena

In order to analyze the phase diagram and critical be-
havior resulting from these equations, it is very useful
to put them in a different form, which will reveal a con-
nection with a different problem already analyzed in the
literature. Indeed, instead of using a mapping onto the
single-site action (4), we could have solved the M = oo
rotor model directly for the fully connected lattice. In
this approach, the spin-spin correlation function D(iu )
is given by the on-site component of the inverse of the
random matrix: [A + K(i~„)]b,~ —J;~. In the thermo-
dynamic limit N = oo, the eigenvalues of the matrix J;z
have a semicircular distribution given by

1
pg(x) = /4J —x 8(2J —ix~).

Hence the free-energy and spin propagator can be written
in the equivalent form:

E =
+2J

= A+ ) d2:pg(x) in[A+ K(iur„) —x], (9)MN
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C. Phase diagram

Independently of the low-frequency behavior of K(i~„)
(metallic or insulating), it is clear that only the solu-
tions with A ) 2J are admissible (so that no pole
is encountered in the integration over x). The critical
boundary with the spin-glass phase is signaled by A(T, J)
reaching the value 2J [the condition A(T, j) = 2j holds
throughout the spin-glass phase]. Thus the combination
4 = A —2J plays the role of the important low-energy
scale (which vanishes in the spin-glass phase). Univer-
sal low-frequency properties are found when this energy
scale is small. These universal properties only depend
on the low-frequency behavior of K(iur„) and on the fact
that the spectral density pg(x) has a square-root behav-
ior near its upper band edge +2J. Formally, this behav-
ior is identical to that of fermions with a kinetic energy
proportional to A; in d = 3 dimensions: we could as
well set K(iw„) + A —x = K(iu„) + 4 + k and re-
place the integration over x in the above equations by
an integration over dsk (with some upper cutofF). In
this analogy, the scaling of frequency with respect to k
is obtained from K(iu ) w k2 in the insulating
case of Ref. 12, while K(i~„) ~u

~

k in the metal-
lic case. Therefore, we conclude that there is a formal
equivalence with quantum-critical phenomena in the
d = 3, z = 1 universality class for the insulating case, and
in the d = 3, z = 2 universality class for the metallic case
of interest here. The insulating case considered in Ref. 12
corresponds to a (quantum) Landau-Ginzburg model at
its upper critical dimension d+z = 4 (with P4 a marginal
perturbation), while the metallic case amounts to look at
this model above its upper critical dimension (with P a
dangerously irrelevant perturbation). For these reasons,
many results that will be derived below for the metal-
lic case are formally identical to those of Millis for the
d = 3, z = 2 case.

In order to derive these results, it is most useful to con-
vert the Matsubara sums in the above equations into real-
frequency integrations. Using K(tu + i0+) ~ insgn(u)
(with an upper cutofF A), we can write the free energy as

The phase diagram resulting from Eqs. (12,13) is de-
picted schematically in Fig. 1. It is qualitatively similar
to the insulating case, but the equations for the criti-
cal boundary and the various crossover lines are affected
by the difFerent low-&equency behavior of K(iu„). Some
calculations are detailed in the Appendix. For very large
J, the spin-glass transition temperature is at T, = J, the
classical value. T, decreases upon increasing quantum
fluctuations (i.e., increasing jlc) and eventually vanishes
for J smaller than a critical value: J Av / T
Near zero temperature, the phase boundary is such that
1 —J,(T)/J, (T/A)s/ (T/T~) / (to be contrasted
with T in the insulating case z).

Next, we discuss the various crossover regimes near
the T = 0 quantum critical point at J = J, (cf. Fig. 1).
Close to this point, and for low frequency and small 4
(but ~/b, arbitrary), the imaginary part of the local dy-
namical susceptibility y"(~) = —1/vrlmD(u+i0+) takes
the scaling form

(14)

The scaling function f(x) is easily obtained from (6) as

lj2
f (x) = x/(1 + gl + x2)

and behaves as f(x) 1 for x -+ oo and f(x) ~x for
x —+ 0. Hence spin excitations are gapless in all regimes,
with y"(~) ~/( j ~A) for ur (( 4 and y" (ur)

sgn(~)~u/ j, / for ~ )) A. The former, linear behavior
is characteristic of local spin correlations in a Fermi liquid
with a low-energy scale 6, while the latter (which holds
down to cu = 0 at the T = 0 critical point) deviates

d(d Phdcoth
7r 2 2J

dxpg(x) tan

and the constraint equation reads

f d(u y" (ur) coth
0 2

with

(12)

rr QD1
rr

r

QD2 (Kondo)
T

1

+2J
= sgn(~) dxpg(x) . (13)

—2J 7I (d + A —x

FIG. 1. Schematic phase diagram at mean-field level, as a
function of T/J and J,/J (with J, A TJt,.). The plain
line is the critical boundary with the spin-glass phase. All
other lines are crossover lines, corresponding to the regimes
described in the text. The hatched region is that of classical
behavior near the critical boundary.
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strongly &om Fermi-liquid theory. t is a nonuniversal
constant, and the low-energy scale A(T, J)—:A —2J
has different behavior in different regions of the phase
diagram (Fig. 1). 4 = 0 inside the spin-glass phase, in
which y" (u) sgn(ur)~u with no characteristic scale.

Raising temperature at J = J, one enters the quantum
critical (QC) regime, in which the physics is dominated
by the T = 0 quantum critical point. The energy scale
4 = A —2J is set entirely by temperature in this regime
and is found to be E T3/2/~J, T / /QTIc. One
would have naively expected 6 T but we find a vi-
olation of this scaling in the QC regime of this model.
Following the connection explained above, this is an ef-
fect of the P term in the quantum Landau-Ginzburg
model being a dangerously irrelevant perturbation for
d+z=5) 4.

Decreasing J (or increasing TIc) from the T = 0 crit-
ical point, at low enough temperature, one enters the
quantum disordered (QD) regiine in which A J, —J
Tlc —J (to dominant order). The crossover between the
QC and QD regimes occurs at J = J'(T) obtained by
matching the two behaviors of 4 given above with the
result 1 —J'(T)/J~ (T/J ) / (T/TIc) / . As shown
below, two distinct regions corresponding to T )) L and
T « A must actually be distinguished within the QD
regime, in which the physical quantities have quite dif-
ferent low-temperature behavior. In the low-temperature
region of the QD regime (denoted QD2 on Fig. 1), the
physics is that of a metal showing Fermi-liquid behav-
ior below the coherence scale (or effective Kondo scale)
L, which can be very small because of the competition
between the Kondo effect and the freezing of the local
moments. However, this interpretation has to be han-
dled with some care, since this scale enters the various
physical quantities in quite different manners, as detailed
below.

Finally, near the phase boundary, there is a classi-
cal regime for

~

J —J,(T)~ && T /J, dominated by
purely classical Huctuations and in which b, J,[J-
J (T)1'/T'.

D. Specific heat, susceptibility,
and NMR relaxation rate

A~=~o — „,~T+ . .
Jc

(16)

Interestingly, the non-Fermi-liquid nature of the
quantum-critical point results in a nonanalytic correction
to the low-temperature specific heat in this regime. Very
close to the critical boundary with the spin-glass phase,
there is an additional contribution: BT/[J —J,(T) +

We now investigate the low-temperature behavior of
the specific heat in the various regimes described above.
Some details of the calculation are provided in the Ap-
pendix, but the results could also be directly read ofF
from those in Ref. 15, given the equivalence with the
d = 3, z = 2 problem. In the QC regime, the specific-
heat coeKcient p = C/T is found to behave as

T3/2]i/ [ Ti/ for J J,(T)], which becomes rapidly
negligible, however, as one moves away from the critical
boundary.

The nonanalytic ~T behavior continues to hold within
the QD regime as long as T )) A, i.e. , T )) J, —J. This
defines an additional subdivision of the QD regime, corre-
sponding to region QDi in Fig. 1. In the low-temperature
(QD2) region of the QD regime, (16) is replaced by

C D T2
3/2 3/2 /3/2J J

with A J, —J and where po oc 1/J, remains finite as
Jm J.

Next, we discuss the low-temperature behavior of the
uniform spin susceptibility y. This quantity is assumed
to be measured by applying a uniform field such that the
Zeeman energy @II is smaller than the bare Kondo scale
T~. Then the Kondo effect still takes place and the low-
frequency behavior of the resulting propagator K(iu )
is essentially unaffected. We can thus simply introduce
a uniform magnetic field II P, S;. in the effective Ising
model. The susceptibility is given by the sum over all
pairs of sites of the spin-spin correlation function taken
at u = 0+, namely

y = ) [A+ K(i0+) —Jk(],, .

In this expression, the overbar denotes an averaging over
disorder. The inverse of the random matrix present
in this expression can be evaluated by expanding in
powers of JA, ~. Because these couplings have random
signs and zero mean, only closed paths (with i = j)
give a nonzero contribution on the fully connected (or
Bethe) lattice. Hence the uniform susceptibility behaves
in an identical manner to the local spin susceptibility:

jo dvD(w). Note that this relies crucially on
the fact that we are dealing with a random system, and.
would not apply to a uniform antiferromagnet for ex-
ample. Hence the formal analogy between the present
problem and the z = 2, d = 3 quantum antiferromag-
net does not apply to the calculation of the suscepti-
bility. y&, (and thus g) is easily obtained by setting

~ 0+ in Eq. (6) and taking the real part. This yields
2J2yi, = const —2[JA(T, J)] / + A(T, J).

In the QC regime, we must set 6 T /2, so that

i T &
3/4

X(T) =Xo
( Jc j + 0 ~ ~

)

T'/'
X(T) = Xo —~i 3/2

—~2, + (2o)

In the low-temperature (Kondo) region of the QD regime,
we have (cf. Appendix) A(T) = A + T2/~A, so that

with yo 1/J„and c a numerical constant. A non-
analytic correction departing from standard Fermi-liquid.
theory is again found. In the high-temperature part of
the QD regime (QDi region), we have (cf. Appendix)
A(T) = A+T /, so that
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T2
X(T) = Xo —ai,&,

—a2, + ". (21)
single species of conduction electrons. We shall consider
a lattice of connectivity z, and study the Hamiltonian

In both (20) and (21), 4 J, —J and we emphasize that
1/ J, is nonsingular as the critical point is reached.

Finally, we consider the NMR relaxation rate, which
is directly related to the ~ = 0 behavior of the local
dynamical susceptibility through

1 y"(~)
(22)

Hence this quantity always feels the linear regime
y"(~) u/i/4 in the scaling form (14). In the QC
regime, this yields a temperature dependence of the re-
laxation rate which diQ'ers from the usual Korringa be-
havior (1/TiT const) found in a Fermi liquid:

1 1
~3/4 '

In contrast, in both the QDi and the QD2 ("Koiido")
regime, the Korringa law is obeyed, but with an enhanced
rate:

1 1 1

TiT ~& QJ, —J (24)

We emphasize that in the same regime, the T = 0 uni-
form spin susceptibility is not critically enhanced (the
low-energy scale A only enters subleading corrections).

E. Ising (M = 1) case

Before leaving model (1), we would like to show that
the Ising case M = 1 actually has the same univer-
sal low-&equency behavior than the rotor model in the
M + oo limit that we have analyzed in detail. In order
to show this, one possibility is to adapt the reasoning of
Refs. 11, 12 to the present case. Specifically, we can de-
fine the spin irreducible self-energy associated with (4)
by D(ice„) = K(uu„) —J2D —II(ice„). For M = oo,
II(iu ) reduces to a constant II = A. To order 1/M, the
erst contribution to ImII is from decays into three spin
waves. With D(r) 1/7 ~ at the critical point, this
leads to ImII ~ . No nonanalyticity with a weaker
power of frequency is induced to any order in 1/M, and
hence the low-&equency behavior found above at the crit-
ical point is unchanged. Another line of reasoning leading
to the same conclusion is to use the formal equivalence
with the d = 3, z = 2 universality class. Going from
the M = oo to the M = 1 case just changes the spe-
cific coefficients of the various terms of the (quantum)
Landau-Ginzburg model, but the equivalence holds for
all M.

H2 ———) t~c+c, + Jlc) S;.s(i) —) J S;.S;.
2g CT 2 (2j)

(25)

The random exchange couplings are distributed accord-
ing to a Gaussian distribution as above, which is now

normalized such that J, = J /z. The limit of large lat-
tice connectivity z ~ oo will be considered below. In this
limit, the various Green s functions satisfy self-consistent
dynamical mean-Geld equations. ' These equations re-
duce the model to the solution of a single-site efFective
action, which has again precisely the form in Eq. (2).
However, there is now a self-consistency condition on both

D(i~„) [given by Eq. (3) above] and go(iu„), which is not
known explicitly in contrast to the case above. This self-
consistency condition depends on the specific lattice and
hopping term t;~. More precisely, if D(e) stands for the
noninteracting density of states of the lattice under con-
sideration, the effective propagator go must be such that
the following self-consistency equation holds: '

G, (i(u„) = de.~

~ ~
~

D(e)
i(u„+ p —Z, (i(u„) —e

(26)

go (ice ) = iw + p —t G, (i(u ). (27)

In this equation, G stands for the local conduction elec-
tron Green's function G, = (Tcc+)s „—, and E, for the
self-energy E, :—go —G, . Both should be viewed as
functionals of go(iu„) [and D(iu )].

A erst possibility is to consider a model with a spe-
cific form of long range ho-pping (described in Ref. 9),
such that the noninteracting conduction electron den-
sity of states is a l,orentzian D(e) = I/vr(e + I" ). In
this case, the Hilbert transform in (26) yields G,
[i~ + p —Z, + il'sgn(~ )],so that Z, disappears alto-
gether from the self-consistency equation and go is actu-
ally known explicitly as before: go = i~„+il'sgn(~ ).
Hence exactly the same equations as in the above model
(1) with independent Kondo baths are found for this
model with long-range hopping, and no nontrivial feed-
back of the conduction electron dynamics into the spin
dynamics is possible.

The situation is diBerent for a model with shorE-range
hopping of the conduction electrons. For definiteness (but
without loss of generality), we may consider the z = oo
Bethe lattice, with nearest-neighbor hopping normalized
according to t;~ = t/~z. (This corresponds to a semicir-
cular density of states with a half-width 2t.) In this case,
(26) takes the simpler form

IV. MODEL WITH A SINGLE
CONDUCTION ELECTRON FLUID
AND TRANSPORT PROPERTIES

Finally, we shall release the assumption of independent
Kondo baths at each site, and consider a model with a

G has to be determined &om the solution of S ~ itself, so
that the problem involves a self-consistency condition on
both D(iu ) and go(iw ). The main question is whether
this "feedback" of the nontrivial spin dynamics into go
can change the low-frequency behavior of y" (u) at the
T = 0 critical point. We shall give an argument that this
is not the case, and that (14) still holds.
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1+ !eP(~+~) + 1)
(28)

Let us imagine that the coupled problem (2,3,27) is
solved iteratively, starting from a gp which has the same
long-time behavior than in the model without feedback,
namely gp(w) 1/w. Then, the arguments above yield
D(7) 1/7 ~ at the critical point. Inserting this into
the efFective action (2), we have to compute the con-
duction electron Green's function G and feed it back
into the self-consistency condition (27) to see how gp is
affected. In order to find the behavior of G„ it is con-
venient to use a representation of the localized spins by
pseudofermions f, such that S = f+of. /2 This
amounts to "undoing" the Schrieffer-Wolff transforma-
tion and representing the original Kondo lattice as a peri-
odic Anderson model with a very large U in the local mo-
ment limit ef —U/2. We shall not attempt here to find
the actual behavior of the f-electrons Green's functions
Gy(w), but it is easily seen that it cannot decay faster
than 1/w ~ . Indeed, D(w) always contains a term of
the form Gy(w)Gy( —w) (supplemented by vertex correc-
tions), so that a decay slower than 1/vs~4 is inconsistent
with D(7) 1/w ~ . Furthermore, the slowest possible
decay of Gy(w) is the Fermi-liquid form Gf(7.) 1/7.
Hence we conclude that Gy(w) 1/w, with the ex-
ponent 8 such that 3/4 ( 0 & 1. Now, the t ma-
trix associated with (2) is proportional to Gy(iu ), so
that the conduction electron Green's function is given by
G, (i~„) = gp(iu ) + V gp(i~ ) Gy(iu„). Hence G, (ur)
behaves as ~~ at low &equency. Inserting this into
the self-consistency equation (27) in order to see how

gp is affected at the next step of the iteration, we see
that gp(w) behaves as 1/w2 8 for large w. Because of
the constraint above, this exponent satisfies the bounds
1 ( 2 —0 ( 1+ 1/4, so that gp cannot decay faster than
1/7 at the next iteration. Hence the associated spectral
density Imgp(u+io+) cannot diverge at ~ = 0: it is either
finite or vanishes. For large enough Kondo coupling, this
yields a standard Kondo effect, and hence an effective
interaction between Ising spins such that K(w) 1/~ as
before, so that the behavior of y" (ur) at the critical point
remains unchanged at any step of the iterative solution
of the coupled equations.

A perturbative argument can actually be given that the
dominant behavior G, (w) 1/w of the conduction elec-
tron Green's function is not affected at the T = 0 critical
point, i.e., that 0 = 1. Indeed, if we treat the residual
coupling between the conduction electrons and localized
spins in second-order perturbation theory, we obtain a
contribution to the self-energy: Z, (w) oc JJcD(7)gp(7 )
1/w ~, so that Z, (u) behaves as w ~ at T = 0. Hence
this scattering is unable to modify the dominant term in
the long-time behavior of G, (w) 1/w.

It has, however, important consequences for the trans-
port properties near the T = 0 critical point, as we shall
now show. We first perform a more precise evaluation of
the finite-temperature scattering rate to order J~, which
takes the form +- „ t'Imx. (~+ iO+) oc J~pp(0) d~X" (~)

(e~" —1

Inserting the scaling form (14), this leads to the following
low-&equency and low-temperature dependence, in the
quantum-critical regime:

J2
ImZ. ((u + io+) oc, ,pp(0) [cu' + T j,J (29)

while in both regions of the QD regime:

ImZ, ((u+io ) oc ] pp(0) (3o)

Since we are dealing with a model on a lattice with in-
finite connectivity, the vertex corrections to the conduc-
tivity vanish, and the dc conductivity is simply given
by

O.d, oc d~D 6

x du
ImZ, ((u) Bf 31(~+ p, —ReE, —e)2+ (ImE, )2 c)cu

Hence the above calculation of the scattering rate leads to
the following non-Fermi-liquid temperature dependence
of the resistivity in the QC regime:

(T) Ts /2 (32)

while in both regions of the QD regime:

Tbp(T)- (33)

V. CONCLUSION

In this paper, we have studied Kondo lattice mod-
els with a quenched random exchange between localized
spins. The mean-field phase diagram has been inves-
tigated (Fig. 1) and found to display several different
regimes near the quantum-critical point associated with
the T = 0 spin-glass transition. In the "quantum crit-
ical" regime, the specific heat coefBcient and suscepti-
bility display nonanalytic corrections to Fermi-liquid be-
havior given by (16,19), while the NMR relaxation rate
(23) and resistivity (32) have a non-Fermi-liquid temper-
ature dependence. In this regime, the important low-
energy scale violates naive scaling and varies as a power
of temperature (E T ~ at mean-field level). In the
low-temperature part of the quantum-disordered region
("Kondo regime"), Fermi-liquid behavior is recovered,
but the NMR and scattering rate are critically enhanced
as the transition is reached, while p and y are not.

These results may have qualitative relevance for
Yi U Pd3 and related systemsi since they indicate

with 6 J, —J. Hence a Fermi-liquid behavior bp =
AT2 is recovered in the QD regime, but with a critically
enhanced rate A 1/v A. We emphasize that in the
same regime, the specific heat coefBcient p is not critically
enhanced. This distinguishes the QD Fermi-liquid regime
from conventional heavy-fermion behavior in which both
A and p are large for small T~, with A oc p .
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that non-Fermi-liquid behavior is a rather generic fea-
ture associated with a T = 0 spin-glass transition in a
metallic system. However, the reported experimental be-
havior (p —lnT, y = yp —~T, 6p T) is not in good
agreement with our mean-Geld results. This raises theo-
retical questions associated with the Quctuations beyond
mean field, and also experimental questions concerning
the actual investigation of the critical scaling regime.¹teadded. As this work was being completed, we be-
came aware of a work by S. Sachdev, N. Read, and R.
Oppermann in which the phase diagram and crossovers
described here are also analyzed, and a detailed theoreti-
cal investigation of the Quctuations beyond mean Geld is
performed.
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APPENDIX

In this appendix, we provide some details on the analy-
sis of the various crossovers and on the calculation of the
specific heat. The starting point is the Eqs. (11,12,1S)
in which we set A—:A —2J and change variables in the
integrations over x by setting z = 2J —e.

We shall deal flrst with the constraint, Eq. (12), which
reads [replacing pz(x) by its square-root form near the
upper band edge]

1 = +ecoth . (Al)
d(d pld (d

2 A&2+ a+4 2

The integral over ~ needs to be cut oK at A T~, while
the integration over e is ultraviolet convergent and its
upper limit could as well be set to +oo. We shall focus
on the regions where A (( T (which includes the QC
regime and the upper part of the QD regime). Under
this assumption, an expansion in L can be performed to
yield

1= de P~
6 cot ll

p 7l p 7I J ~ 2 ((rJ +6

(A) 3/2

(A3)

~d~ P~f = const + coth
0 K 2

d~ (d
X , , 1/etan '

Vr J3/2 a+5 (A4)

In the QC regime, we should use the following scaling
variables: u = T~&6 T6yL = T / L. Thus it is clear
that 4 is the smallest energy scale, and we can simply
expand the above expression in powers of L. The impor-
tant point here is that the linear term vanishes because
of the constraint equation above. Hence this expansion
reads

des p(u def = const + coth +e tan
p 7l 2 p 7l' J i ( e

+4'. .. +O(b, ')+e (A5)

The coeKcient of the L2 term is the same as found above
in the analysis of the constraint. It leads to a dependence
of the form b.2(const + ~T) Ts + Ts~2.

In order to find the temperature dependence of the first
term, we make a low &equency expansion:

In this expression, the A s and B s are purely numerical,
positive constants (independent of the cutoff and of J).

The location of the quantum critical point is readily

obtained by setting 4 = T = 0, yielding J, = Az A oc2/3

T~. When T is increased above this point, the behavior
of 4 in the QC regime is found by canceling the dominant
terms to next order, leading to 4 A2/B1Ts~2/y A

The above expansion is valid as long as 4 && T, so that
we can also use it for T / && 4 && T, corresponding to
the upper part of the QD region. In this case, we have to
expand in J = J,—bJ and the behavior 4 bJ+O(T ~2)

is obtained. Also, the shape of the critical boundary at
low temperature is found by expanding in h J = J (T)—
J„with b, set to 0. This yields bJ oc Ts~2/~J

Next, we give some indications on the low-temperature
expansion of the &ee energy in the QC regime. We
rewrite Eq. (11) for the &ee-energy per site f = F/NM
under the form

.. + O(6')
la) + t (A2)

f

dic
(d Cd (d y 3/2

m J'/ +~tan ' —- —+ —
I +O((u ). (A6)J J&

In the integrations over e, we set e = uu so that the ~ de-
pendence becomes apparent. Then, we use cothPu/2 =
1+2/(e ~ —1) and expand the integrals involving the
last term at low temperature. The constraint equation
then takes the form

f ~const+ f1T + f2T ~ + (A7)

in which the coefficients f s are nonsingular and non-

Hence this term yields a contribution of order T + T /

to the &ee energy. Overall, we find the low-temperature
expansion
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vanishing as the critical point J = J is reached. The
behavior of C = TB f/BT ppT T—~ follows.

Finally, we comment on the behavior of 4 in the low-
temperature QD2 regime. In this regime, the above ex-
pansions are no longer valid since they assumed T )) 4.
Concentrating, e.g. , on the constraint equation, we see
that the leading low-temperature correction is now con-
trolled by the long-time behavior D(r) 1/w ~A, which
holds for vL )) 1. Using the Poisson summation formula,
this yields

T2= ub J+ bbA+ c +, (A8)

with bJ = J —J, bA = A —2J . Canceling the leading
T2corrections, one obtains 4 = J, —J + &JC
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