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Calculation of x r-ay magnetic circular dichroism in Gd
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An approximate theory for x-ray magnetic circular dichroism (XMCD) is presented for the special
case of half-6lled shells, e.g. , Gd. The Lz and L3 XMCD structure arises primarily from the exchange
interaction of the photoelectron and provides a test of various exchange models. The XMCD signal
can be interpreted in terms of an effective magnetic scattering amplitude that depends on the spin
of the absorber and of the scattering atoms. Ab initio curved-wave multiple-scattering calculations
for the L2 and L& edges of Gd are found to be in satisfactory agreement with experiment.

I. INTRODUCTION

X-ray magnetic circular dichroism (XMCD) in the x-
ray-absorption near-edge structure (XANES) region, i.e. ,
for photoelectron energies within about 10 eV of thresh-
old, was predicted by Erskine and Stern. Much exper-
imental and theoretical work has recently been carried
out on XMCD in this region, where the main mech-
anism responsible for the XMCD signal is the filling of
difFerent m~ states. There has also been considerable in-
terest in sum rules for the XMCD signal. A complete
set of such sum rules has been derived. Such sum rules
have been used to determine contributions &om orbital
and spin angular momenta to the net magnetization.
%lith improved synchrotron x-ray sources, XMCD data
in the extended x-ray-absorption fine structure (EXAFS)
region, i.e. , 10—1000 eV above threshold, has also become
available. We shall refer to this extended fine-structure
signal as circular polarized x-ray-absorption fine struc-
ture (CPXAFS); it is also referred to as spin-polarized
extended XAFS (SPEXAFS).2 Unlike the situation near
threshold, all m~ states are unoccupied far from the edge
and are equally available for transitions. Therefore dif-
ferent mechanisms, e.g. , exchange and spin-orbit (SO) in-
teractions, must be sought for the XMCD signal at high
energies.

In this paper we present a quantitative theory of
XMCD, especially above the I 2 and L3 edges of Gd in
EXAFS region. For these edges we argue that the photo-
electron exchange interaction is primarily responsible for
the CPXAFS. This is borne out by the reasonable agree-
ment between the calculated signal and experiment. This
also suggests that XMCD measurements provide a signif-
icant test of various exchange-correlation potentials.

II. XMCD FOR HALF-FILLED SHELLS

For simplicity, we treat in this paper the special case
of half-filled shells (e.g. , Gd), so that spherical symme-
try of the scattering potential is retained. One source of
XMCD in this model is the SO interaction of core elec-

trons. When l g 0, this interaction affects the relative
alignment of the spin and angular momentum of core
electrons. By examining the appropriate dipole matrix
elements, one sees that right circular polarized (RCP)
light, Lm = +1, produces more photoelectrons with a
positive projection of angular momentum (L,) along the
magnetic field, B = BE, and conversely left circular po-
larized (LCP) light, Am = —1, produces inore with a
negative projection. Thus for j = t + 1/2, RCP x rays
will produce more spin-up electrons. This is analogous to
the well-known Fano eKect of atomic physics. A second
source of XMCD in magnetic materials is the photoelec-
tron exchange interaction or self-energy V, . Spin-up (t)
and spin-down ($) photoelectrons have difFerent scatter-
ing potentials due to difFerent exchange interactions with
the difFerent spin populations. This leads to difFerent
backscattering amplitudes for spin-up and -down photo-
electrons, and hence a XMCD signal due to a difFerence in
the XAFS spectra for RCP and LCP light. Furthermore
we will make the additional but reasonable approxima-
tions of neglecting the exchange splitting of the core levels
and the SO interaction of the photoelectron. The latter
interaction is usually an order of magnitude less impor-
tant than exchange. A similar model has been used by
Ebert and co-workers to calculate the near-edge XMCD
spectrum.

The average (L,) in magnetic materials is nonzero, ex-
cept for elements with half-filled core levels. However,
if one maintains the spherical symmetry of the atomic
scattering problem, the spherically symmetric scattering
potential and phase shifts will still depend on the val-
ues of m~ and m, of the photoelectron. This dependence
requires some knowledge of the ground-state electronic
configuration (i.e. , the ground-state density matrix), but
otherwise can be included in a straightforward general-
ization of the multiple-scattering (MS) formalism of x-ray
absorption. For half-filled configurations, the scattering
potential is difFerent for spin-up and -down electrons but
independent of m~. Our present codes can also be used as
a first approximation for other than half-filled configura-
tions in a simplified model of the density matrix which as-
sumes equally populated I states with the same spin di-
rection. This will give the correct total spin, as in Hund s
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rule, but the wrong (L, ) (except for the half-filled case).
Thus we assume that all spins are aligned along the z axis
(i.e., as in a ferromagnet far below T,), and temperature
independent. The spin of the photoelectron can be re-
garded as a conserved quantity because we neglect the SO
interaction of the photoelectron. Also because this SO
interaction is neglected, this model predicts no XMCD
signal for I = 0 shells in the dipole approximation. How-
ever, two other mechanisms that neglect SO must be
considered. First, as noted above, RCP light will pro-
duce more photoelectrons with positive m~, which have
difFerent exchange interactions with partly filled valence
shells. Second, if one neglects the difFerence in m~ 6lling
of valence shells but includes magnetic dipole transitions,
then RCP light will produce only spin-up electrons due to
these transitions and hence a nonzero XMCD signal. On
the other hand, Brouder has argued that the magnetic
dipole efI'ect is small and observations have convincingly
failed to observe any efI'ect. The exchange splitting at
the l = 0 edge may also be important. For example, this
splitting is 6.7 eV at the Mq edge of Mn in KMnF3.

A more detailed treatment of the It = 0 case is given by
Brouder et al.

Below we develop a quantitative MS theory for XMCD
and CPXAFS for l g 0 shells based on these consider-
ations. The formal treatment of Brouder and Hikam is
similar. However, these authors have not carried out ex-
plicit calculations, and they make some approximations
in the expression for the XMCD fine structure which
are not always justified. In particular, we 6nd that the
atomic matrix element dependence of the fine structure
is essential to achieve agreement with experiment. Our
treatment makes use of the fast Rehr-Albers (RA) MS
formalism and takes advantage of symmetry proper-
ties of the total propagator G. This leads to feasible
calculations Rom threshold to k = 20 A. i based on a
straightforward generalization of the ab initio polarized
MS XAFS code FEFF (version 6).

Using the Green's-function formalism of RA, we can
write the absorption of RCP (+) and LCP (—) light f'rom

core level j and angular momentum l within one-particle
theory as

). GP.',1..).(Jl —
I P++ 2ko~~~ I IL-S)(LpslP+ —-kozw+IJ)

Ln)1 O)me mj

Here we have also included the leading term &om mag-
netic dipole interaction, which is negligible except possi-
bly for the K, Lq, and Mq shells. In what follows the
indices j and I will not be indicated explicitly unless
otherwise needed for clarity. In Eq. (1) the momentum
operator is p+ ———(p + ip„)/~2, b,m = +1(—1) for
RCP(LCP) light [we follow the notation for vector com-
ponents V~ and phase conventions of Messiah s (see p.
1075), which are consistent with the Racah definitions],
k = /2(E —Eo) is the photoelectron wave number de-
fined with respect to the threshold energy Eo [we use
atomic units e = 5 = m = 1], kp ——w/c is the pho-
ton wave number (or energy), A = 1/2)rc in atomic
units; any I is an abbreviation for the angular quan-
tum numbers (l, mi), S = (1/2, m, ), and J = (j,m));
L„and Lo are the Anal state and initial state orbital
angular momenta of the photoelectron, respectively; and
GP &

——(L„OlG lIoO) is the matrix element of the
total propagator between these angular momentum and
absorption site states (henceforth, we suppress the site in-
dex). In the MS expansion, the total propagator is given
by the sum over contributions &om all distinguishable
MS paths I' defined by the path leg vectors Rq, R2. . .R
that leave and return to the absorbing site:

G~s G+&~e + ) G( )& + (I )
~~j m + ~l na (2)

r

where G& & is the central atom Green's function. An
n) 0

expression for G&~ & (I') is given by Eq. (15) of RA, but
now is difFerent for different m, = +1/2 and difFerent

j = j+ = l + 1/2. For clarity, to differentiate between x-

ray polarization and. photoelectron spin, we will use the
notation g ($) for spin m, = +1/2( —1/2) and +(—) for
RCP (LCP) light.

The main contribution to the absorption p, (k) comes
from the l -+ l+1 transition (lp = l ). Prom conservation
of the projection of angular momentum, ma+ m, = m~ +
1 = m + m„ it follows that mo ——m, and

Akp
Im

x ) G-, , ) (JlLS)(LSlp lI.„S)
1»me m&

x (L„Slp+ lL S)(L SlJ),
where (LSlJ) are Clebsch-Gordon coeKcients. is Using
the Wigner-Eckart theorem for dipole matrix elements
we obtain

p+(k) = ——Im ) GP'
~n)~e

2

x (2j + 1) lE-m, m, m )fA~ )ml

I+11

hami

+1 —m

where the reduced matrix element
= QA kpl(l jllplll+1, m, )l depends on j, because the ini-
tial state radial wave function difFers for j = j+, and the
final state radial wave function depends on m, . The dif-
ference in the result for p (k) is only a sign change, with
—1 in the second 3j symbol instead of +1. Using invari-
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ance of 3j symbols under the simultaneous sign change
of all m;, we obtain

1
p (k)= ——Im ) G,

ms

x ) (2j +
mj )ml

X
(m) +1

j l 1/2 )
q

—m~ m~ m

1+1)'
m~ j—

p+ —p = ——Im ) GP' z 6 . Gi„,i„
mn ~ms

2

V7l,j )ml

l 1 1+1)
(m) +1 —m )

The second sum actually consists of just one term since
m = m~ + m, and m„= m~ + 1. Using properties of 3j
symbols, the sum over m, gives,

Diagonal elements of the propagator have the prop-
erty that G~ ~ ~ ~ —— G~ ~ ~~, which follows from

the symmetry of g&~ &2
——

g&2 &~ [RA, Eq. (10)] and
the properties of rotation matrices, ~s R~ (0: )

(—1) ' 'R, , (Op) substituted into Eq. (9) of RA. ~s

Here O~ refers to the Euler angles that rotate a
bond p onto the z-axis. For identical superscripts,
which are henceforth suppressed, this procedure gives

(—1) ' 'G~, , ~, , Thus in Eq.
(14) of RA, the contribution to G~ ~ from the
path I' = Rq, R2. . .R is the same as the contri-
bution to G~ ~ &om the inverse path, I'
R, R q. . .Rq. We therefore obtain for the XMCD sig-
nal from a subshell j,

M I ) ~ ( ~)Grn (p) 2ib(

7r ~„,r
(10)

as FEFF is designed to calculate the full propagator
CGP' L (I')e '
& - using the MS expansion. It is conve-Ln, L~

nient at this point to distinguish several different quan-
tities that appear in the XMCD formalism. In this work
we will use as normalization factors the atomic cross sec-
tions (denoted with a superscript A),

A 1 AA
( A+ A)

2j+1
vr 6 2l+1 Gi'o, io&g+ Gio, io&g-

The XMCD signal in Eq. (7) (denoted with superscript
1VI) can be expressed as

=Po +Ps ~ (12)

where po is the nearly smooth XMCD background aris-
ing &om absorption within the central atom,

(-1)' "l
Po = (2. 1) (Pg Pg) ~

and p& is the oscillating part of the XMCD signal, aris-
ing as in XAFS, &om scattering by neighboring atoms,

3(2m2 —l —1)
(2l + l)(l + 1)

In addition to (a) path-reversal symmetry, (I' ~ I' ~),
paths give the same contribution to the total propagator
if they take one into another under the operations of (b)
rotations of any angle about the magnetization axis, and
(c) reflections in the planes containing the magnetization
axis and normal to it. These symmetries ignore the small
phase shift due to magnetic Qux.

In order to take advantage of the XAFS code FEFF6 to
calculate the XMCD signal y, it is convenient to de6ne
a normalized, spin-dependent XAFS function,

p —p, = ——Im) GL L At —GL
+ — - t 2

m Q

1)(i—i+) l

3(2l + 3)(2l + 1)

where

(7)

Ps = (2. 1) Pg Xg Pg Xg (14)

Because the matrix element factors p&& are spin depen-
dent, the net XMCD effect is not simply due to the dif-
ference in y&&. Similarly, the average XAFS signal &om
subshell j contains atomic matrix element factors and is
given by

3(m —1)(l + m) (l + m + 1)
l(2l + 1)(l + 1)

If we now sum contributions &om j+ and neglect the j
dependence of the propagators and matrix elements, Eq.
(7) gives zero signal due to the (—1)~ factor. Prom phys-
ical considerations alone we expect to have zero XMCD
signal when the SO splitting of the j+ shells is zero, be-
cause then there is no connection between electron-spin
polarization and photon polarization. In order to take
advantage of path symmetries, we can make use of the
path-reversal symmetry property of GL, , L„above and
cancel out all odd powers of m,

1
&u = 3(V'+V++u ) —V"

A A=
—, [s g xg + v~ xg)

(2~ + i) Im
vr 6(2l + 1)(2l + 3)

xg GJ. L e -tdt+GL L
e'-2za

Experimentally a factor close to —2 has been found be-
tween the XMCD signals above the L2 and L3 edges.
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This can be understood as follows. If one neglects the
difference between the j+ core wave functions, which is
generally a good approximation, the following approxi-
mate results are obtained in terms of a generalized XAFS
function y~ = A p~ / p,

A (k) Al+1

l+1
&s,+(k) = &I, (k)—

x,+(k) = x, -(k),
M (k) M (k)

lM (k)
M (k)

Here

2 (2j+ ]) 0 J.

which should not be confused with y . Thus for I q(j =
1/2) and Ls(j = 3/2) final states (both l = 1), we obtain
a factor of precisely —2.

For polycrystalline materials, averaging over all di-
rections leads to C(m) = 1 and hence from Eq. (10),

This averaging significantly increases path
symmetry and Eqs. (10)—(14) simplify to a very compact
form for the XMCD, namely

(-1)' ' l= S+ —V = (2. 1) (St —&~). (18)

(2j + 1)
2%pix,. m e'' ~ —,. ~e''

The term in square brackets can be interpreted as an
effective magnetic scattering amplitude

fM fl( )
2ib/ t f4( )

2ab/ (2o)

We can then use nnpolarized FEFF6 calculations to obtain
the XMCD signal. Here ptg = p&&(l + gag) is the net
j-edge absorption coefIicient calculated with the poten-
tial for spin-up and -down electrons, respectively. This
formula explicitly connects the XMCD signal to the spin
polarization of the system. However, within the dipole
approximation, the result gives no XMCD signal in non-
magnetic systems.

One can estimate the magnitude of the XMCD signal
for polycrystalline materials using the single-scattering
approximation and neglecting the difference between the
background amplitudes p&&. Then, using the exact
curved-wave expression (or somewhat less accurately, the
spherical wave approximation)is for the scattering am-
plitude at site i in Eqs. (10)—(14), one obtains Gl, I. =
g,. (e ' '/p;) f, '(m)e ' ' ~, . where the sum is over all
neighbors to the absorber and p; = kB;:

(E) = u, (E) —V, —(E —E-). (21)

This expression can be used to estimate the XMCD far
from the edge for elements like Mn, and again predicts an
effect proportional to 1/k and an additional vr/2 phase
shift.

III. CALCULATION FOR GD

We have carried out calculations of the XMCD for
polycrystalline Gd in the EXAFS region based on the
curved wave expression in Eq. (18) using several exchange
models discussed below. We neglect the spin polariza-
tion of valence 8, p, and d electrons, and assume that
all seven f electrons have spin up for all Gd atoms. We
have verified that the overlapped atom potential used in
FEFF gives to very high accuracy, the same spin-up and
-down densities as the self-consistent, full potential band-
structure calculations of Albers and Ormeci. " We took
o from the correlated Debye mod. el with O~ ——176
K and T = 150 K. We ignored many body amplitude
corrections, i.e., we set So ——1.0, which is usually accu-
rate to about 20%. Atomic absorption coefficients were
normalized at k = 12 A. to circumvent absorption vari-
ations close to the edge. The results are compared with
the experimental data of Schutz et al. , both with and
without the magnetic background subtracted. The over-
all normalization of experimental XMCD signal depends
on many additional experimental factors: the degree of
polarization of the x-ray beam, the amplitude reduction
due to monochromators, the angle between the photon
beam and the magnetization axis, and the degree of sam-
ple magnetization at a given temperature. The energy
shift Eo for all calculated exchange models was fixed by
matching the calculated and measured peak at 78 eV
above threshold in the XAFS signal (Fig. 1). The shifts

Note that f/& arises partly from the magnetization of the
scattering atom and partly &om the central atom phase
shift. Comparison of f/& and the corresponding non-
magnetic scattering amplitude f,s of XAFS shows that
for Gd, fg is smaller by a factor which varies roughly
inversely with k and out of phase by about vr/2. One
interpretation for this behavior is the derivative effect of
the exchange energy difference between up- and down-
spin populations; i.e. , (dy/dE)AE iAE/k. This re-
sult also explains the comparatively small amplitude of
the XMCD signal at large photoelectron energies.

We can use Eq. (18) to calculate the XMCD signal for
Gd because the L2-L3 separation is approximately 700 eV
and the two signals are well separated. However, when
the SO splitting is small, for example in Mn where the
I2-L3 splitting is 10 eV, one must sum over contributions
&om both j+ channels. We can also neglect the difference
between matrix elements for j = I+ 1/2 electrons (and
the same core orbital wave function) since this is a good
approximation when the SO interaction is small. Then
the propagators difFer only by a constant shift in energy
G~=i~~(E) = G~= ~ (E + E, ). The same shift applies
to the phase shifts bf, so



10 218 A. ANKUDINOV AND J. J. REHR 52

0.04
&I

0.03—

0.02

0.01

-0.01

-0.02

-0.03—
-0.04

50
I I I I I I I

100 150 200 250 300 350 400
E —Ep(eV)

0.008

0.006

0.004;
I

0.002

I'

0
I

-0.002

-0.004

-0.006
50

I I I I I I I

100 150 200 250 300 350 400
E —Ep(ev)

FIG. 1. Gd Lq XAFS spectra. Comparison of experi-
mental (solid) with calculated spectra using Hedin-Lundqvist
(dashes) and Dirac-Hara (short dashes) self-energy models vs
energy relative to the L2 edge. Calculated spectra were en-
ergy shifted to match experimental peak positions.

FIG. 2. Gd L2 CPXAFS with background subtraction:
comparison of experimental (solid) and calculated spec-
tra for the three models discussed in the text with the
same energy shifts were made as for the XAFS spectra of
Fig. 1. Dashes, short dashes, and dots denote the modi-
fied-Von Barth-Hedin, -Dirac-Hara; and -Hedin-Lundqvist ex-
change-correlation models, respectively.

needed were 11 eV for the Hedin-Lundqvist and 5 eV for
the Dirac-Hara self-energy models used in FEFF. We
used the same energy shift for the corresponding CPX-
AFS calculation using Eq. (18); thus no additional free
parameters were needed or used in the XMCD calcula-
tions. For simplicity we only used paths with a half-total
path length less than fourth-nearest-neighbor distance,
R „=Rt q/2 = 7.29 A. ; the number of significant in-
equivalent paths up to this distance is 65. This number is
suKcient to illustrate the magnitude of the XMCD effect
and much of the Gne structure. The sign of the XMCD
signal depends on convention; our choice agrees with that
of Schiitz et al.

As discussed above, a quantitative treatment of XMCD
depends on the choice of exchange model, several of which
were considered in our calculations:

(1) Modified Von Barth-Hedin Exchange —The
ground. -state spin-dependent local-density approxima-
tion (LDA) exchange-correlation potential of Von Barth
and Hedin (BH) V, (p, x), where x = p~/p. This
model is &equently used in band-structure studies of
near-ed. ge XMCD. However, the model has several draw-
backs. For example, the difference in exchange potentials
between spin-up and spin-down states is independent of
energy, while the effect of the exchange interaction should
generally decrease with increasing energy. Moreover, the
model does not account for inelastic losses (or mean-
free-path damping). Thus we also added a contribution
&om the spin-independent Hedin-Lundqvist self-energy
ZHL(E, p), which gives a good approximation to inelastic
losses in XAFS,

(Epx)VBH(px)+/gHL(Ep) (22)

where AZ L(E, p) = ZHL(E, p) —ZHL(E~, p) . The
difference in LZ ensures that V reduces to ground-
state exchange at the Fermi energy Ey. Note (Fig. 2)
that the calculated amplitude of the XMCD signal is in
reasonable agreement with experiment in this case, but
somewhat high at large energies.

(2) Modified Dirac-Hara Exchange An exchange
model which posesses both energy and spin dependence
is the local Dirac-Hara (DH) self-energy. Thus we tried
DH exchange together with the imaginary part of the HL
self-energy to account for losses,

V, (E, p, x) = V, (p, x)

+ Z "(E,p, *) -ZDH(E, p, x)
+Im AZ (E, p).

VBH
V, (E, p, x) = V.H(p, x) +

V,BH ~, 0.5
lgHL(E ) gHL(E )j (24)

This model gives the best amplitude vs energy depen-
dence. But clearly a less ad hoc treatment of spin- and
energy-dependent exchange is desirable. However, for all
three tested exchange models the sign, amplitude, and
general form of the CPXAFS signal agree reasonably well
with experiment (Fig. 2). As noted by Von Barth and
Hedin, the spin dependence of the correlation energy is
important and can reduce the exchange interaction by a
factor of about 2. In Fig. 3 we show the calculated signal,
including the smooth XMCD background, which we And

With this model, the amplitude of the signal in the 100—
350 eV region is too small, i.e., the DH exchange decays
too rapidly with energy, owing to the neglect of dielec-
tric screening. Also the DH self-energy often gives poor
description of the XANES region.

(3) Modified Hedin-Lundqvist Exchange —We also at-
tempted to simulate both the energy and spin depen-
dence with an ad hoc model, constructed to have the
same energy dependence for the difference in potentials
between spin-up and -down as the Hedin-Lundqvist self-
energy and the same spin dependence as the potential of
Von Barth and Hedin,
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FIG. 3. Gd L2, Iq CPXAFS without background subtrac-
tion: comparison of (a) calculated spectra with the modi-
fied-Hedin-Lundqvist exchange (solid) and (b) experimental
spectra (dashes). The calculated spectrum has the same en-
ergy shift as the XAFS spectra of Fig. l.

A formal expression for the XMCD signal for half-6lled
shells has been developed into a form suitable for calcu-
lations based on a generalization of the MS XAFS and
XANES code FEFF (version 6). The dominant mecha-
nism responsible for CPXAFS at the I2 and I3 edges
is the spin- and energy-dependent exchange interaction
of the photoelectron with the Fermi sea. The amplitude
of the CPXAFS is roughly proportional to an e8'ective
magnetic scattering amplitude f,z, which depends on
the magnetization both of the scattering atom and the
central atom. Since the theory for other than half-filled
shells is more involved, the half-ulled cases can provide
a good test of various exchange potentials. All &ee pa-
rameters in the XMCD theory can be fixed by 6tting
XAFS theory to experiment. The results of our cal-
culations of XMCD above the L2 and L3 edges of Gd
are in satisfactory agreement with experiment, but difFer
somewhat between the various exchange models. This
indicates that the main approximations made in deriva-
tion, namely the neglect of exchange splitting for core
electrons and the SO interaction for the photoelectron
are reasonable. However, none of the tested hybrid ex-
change models naturally accounts for the spin and energy
dependence of the exchange interaction, including inelas-
tic losses. The smooth atomic background XMCD signal
predicted by our theory agrees weO with that found in
the experiment, illustrating the necessity of taking into
account atomic matrix element factors in the theory.
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