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The phase diagram of a one-dimensional tight-binding model with a pair-hopping term (amplitude
V) has been the subject of some controversy. Using two-loop renormalization-group equations and
the density matrix renormalization group with lengths L ( 60, we argue that no spin-gap transition
occurs at half-filling for positive V, contrary to recent claims. However, we point out that away
from half-filling, a phase-separation transition occurs at finite V. This transition and the spin-gap
transition occurring at half-filling and negative V are analyzed numerically.

I. INTRODUCTION (2)

In recent years interest in correlated electron systems
has increased particularly in an attempt to understand
high-temperature superconductors. It is important to
study the efFect of all possible nearest-neighbor interac-
tions; however, the hopping of on-site spin-singlet pairs
has not been well studied to date.

The Hamiltonian for the pair-hopping model is

H = t ) [ct —cs + H.c.] —V ) [ct&cJ&csgcst + H.c.],
(ij)o. ('~)

where ct (c; ) creates (destroys) an electron of spin o

=f, $ at lattice site i, so that n; = c, c; is the number
of electrons of spin cr at site i, and (ij) denotes nearest-
neighbor pairs. Thus t and V are the single-electron-
and pair-hopping amplitudes, respectively, and so this
models a competition between the two hopping terms.
As t ~ —t is a symmetry of H, in this paper we take
t)0.

At large ~V~/t, all sites are doubly occupied or empty
(assuming an even number of electrons) and the model
becomes equivalent to spinless fermions. In particular
there is a large gap, of O(V), to any excited state with
nonzero spin. This is true for either sign of V, but it
is important to note that V ~ —V is not a symme-
try of the model, unlike the Hubbard model. Finite-size
numerical work ' has been performed on this model in
one dimension for positive V, suggesting a phase tran-
sition at which the spin gap (or single-particle excita-
tion gap) opens, at V/t 1.4. Two different analytical
renormalization-group (RG) analyses have been applied
to the model. One suggested the existence of a spin gap
D, for all V ) 0, with

as V/t + 0, and no transition for any positive V; the
other suggested that there is a transition at V/t = 1.4,
consistent with the numerical work.

One purpose of this paper is to reexamine this ques-
tion. Previous numerical work has used chains of length
L & 12. We present data for much longer chains,
L ( 60, using White s density matrix renormalization-
group (DMRG) technique, thereby countering the dom-
inance of finite-size efFects. We also discuss the subtleties
involved in trying to extract information about the phase
diagram &om a low-order analytical RG calculation. Our
conclusion is the same as that of Ref. 2: no phase tran-
sition for any V & 0.

It was argued in Ref. 2 that there is a phase transition,
corresponding to the appearance of a spin gap, for some
finite negative V. (The case V ( 0 was not studied in
Refs. 1 or 3.) We analyze this numerically, finding a
transition at V = —1.5t.

There has been considerable interest of late in phase
separation in the Hubbard and t-J models in one and
higher dimensions. The pair-hopping model provides a
simple example of a Inodel where it is easy to see that
a phase-separation transition must occur at some 6nite
critical coupling, with a nonzero total magnetization.
Consider the model at t = 0, with a total magnetization
M/2, corresponding to an excess of M spin-up electrons.
These electrons necessarily reside on singly occupied sites
and are therefore completely immobile when t = 0. Thus
the model is equivalent to spinless fermions with vanish-
ing hopping terms to M sites. Equivalently we have an
XY spin chain with vanishing exchange coupling to M
sites, corresponding to M nonmagnetic impurities. These
simply have the efFect of breaking the chain up into chain-
lets. It is fairly clear, and can be demonstrated explic-
itly by a trivial calculation in the &ee spinless fermion
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model, that the energy is lowest when all M impurities
are next to each other, leaving an XY chain of L —M
sites. This corresponds to phase separation at ~V~/t && 1
for any nonzero magnetization. On the other hand, the
renormalization-group analysis of the model at weak cou-
pling,

~
V~/t (( 1, indicates behavior similar to that of the

Hubbard model, with no phase separation. This suggests
that phase-separation transitions should occur at finite
values of V/t (one for positive V and one for negative V).
We find evidence for such a transition at V = V,q

—3.5t,
but we have not examined the one at V = V2 & 0.

In Sec. II we review and critically analyze the previ-
ous analytical RG calculations. In Sec. III we analyze
quantitatively the large ~V~/t limit. In Sec. IVB we
present our numerical work at half-filling, M = 0 and
V ) 0, indicating no phase transition. In Sec. IVC we
present numerical evidence for the spin-gap transition at
half-Ailing, M = 0 and V ( 0. In Sec. IVD we present
numerical evidence for the phase-separation transition for
M g 0 at V = V i = 3.5t.

II. ANALYTICAL RG STUDIES
OF THE PHASE DIAGRAM

The RG analyses of Refs. 2 and 3 came to quite difI'er-
ent conclusions. Here we would like to explain the rea-
sons for this and give arguments in favour of the former
approach.

We use essentially the notation of Ref. 3, which is
taken &om the review article of Solyom. Taking the con-
tinuum limit of the pair-hopping model we obtain a gen-
eral Hamiltonian

We have chosen to write the Hamiltonian in a manifestly
SU(2)-invariant way. The last term can also be written
as

J~~ J~~ ——JL . Jr' ——JL JL —4JI JL' = 4Jl,g Jl,g, (7)L, I.

where

JL, = gl i/)I, (repeated index not summed).

To the first nonvanishing order in V, the bare couplings
have the values

vF = 2t, gp = —g~ = gs = g4 —2V/7I'vF

To cubic order, the RG equations are given by

&&
=g. + —,(g. +94)9.',

dgp,„,=g. + —,(9 —9)9. ,

gpgs + 4 (gp + gs gp94)93
1 2 2

dg4 .(9.9. —9—.) . (10)

Here / = —lnA, where A is an ultraviolet cutofI'. As we
lower the cutofF to study the long-distance behavior, /

increases.
Part of the discrepancy between the conclusions of

Ref. 2 and Ref. 3 arises from the treatment of the g4
coupling. If we bosonize the theory, then

H = dx'Ro

where 'Ro and 'R;„tare the dimensionless kinetic energy
density and interaction Hamiltonian density. We keep
only wave vectors close to the two Fermi points, A: —kk~,
which we label, in position space, gl, and g~. The kinetic
energy density is given by

at&o = VF 4L, 'i QL, —Q—z & QR—
dx dx (4)

O.P
JL, —= 41,'4 I. and JI'. = 0l," A.p2

and similarly for JR and JR. In this notation, we have

P P
int 7t v~ gP JL JR 2gg JI JR

2

[~ pi/I, 0 I. &"0—a~—0m + (I ++ &)j

——)Et' — J~. J~+ [I ++ R))) . (6)—

Here the spin index n is implicitly summed over; v~ is
the Fermi velocity. Some of the various interaction terms
can be conveniently written in terms of charge and spin
currents (or densities)

JI.JL', = —(&+&p)'
27r

4JL' JL' = —(0+$,)',
27'

where Pp, are charge and spin bosons. Hence g4 simply
shifts the velocities of charge and spin excitations to

vp
——VF (1+g4/2),

v, = vF(1 —94/2). (12)

A common approach to Luttinger liquids is to simply
set v~ and v, to their renormalized values and drop g4
from the RG equations. This approach was used in Ref. 2.
The RG equation for g, then decouples &om the g~ and
g3 ones. This arises from the fact that, upon bosonizing,
the corresponding operators involve only the spin boson
and only the charge boson respectively. We then see that
g, = 0 is not a stable fixed point: If g, & 0, as is the case
for V ) 0, g, will flow away to strong coupling. This is
usually taken to indicate that the system is in a phase
with a gap for spin excitations.

On the other hand, a quite diferent conclusion can be
reached if g4 is kept in the RG equations. Then, accord-
ing to Eq. (10), g, = 0 becomes a stable fixed point from
the negative side provided that g4 ( —2. The nature
of this putative phase can be understood by also rewrit-
ing the &ee electron kinetic energy in terms of spin and
charge currents. Setting all coupling constants to zero



52 PHASE TRANSITIONS IN THE PAIR-HOPPING MODEL 10 209

except g4, the full Hamiltonian density can be written

(13)

We see that for g4 ( —2, the spin part of the Hamilto-
nian becomes unstable. That is, Jg'(z) and Jg(z) tend
to become large, necessitating the keeping of higher-order
terms in the Hamiltonian. On the other hand, the con-
dition of zero total magnetization requires

(14)

A possible interpretation of this phase (which occurs in
other known cases) is a ferromagnetic phase. The con-
dition of zero total magnetization forces a domain struc-
ture, i.e. , phase separation, to occur. One side of the
system has positive polarization and the other half neg-
ative.

In Ref. 3, the cubic RG equations were integrated,
including g4, using the initial values of Eq. (9) [plus the
O(V ) corrections which are not important at small V].
The result was that for 0 & V/t & 1, a fixed point was
reached with g4 ——2.5 and g, = 0.

Whether or not g4 is included, for V/t & 1, gs renor-
malizes to a zero and g~ to some small positive value
which depends on V/t, corresponding to a zero gap for
charge excitations.

In Ref. 2 this phase was identified as having a spin gap
since g, does not flow to zero. In Ref. 3 this phase, with
g, = 0 and g4 & —2, was assumed to have no gap for
single-particle excitations. Since these excitations have
spin 2 and charge 1, this would imply, &om the usual
Luttinger liquid viewpoint, that there is neither a charge
gap nor a spin gap. We do not find this calculation con-
vincing. It is not possible to argue rigorously that g4
renormalizes to a value less than —2 using only the cu-
bic order RG equations. If this actually happened, as
claimed in Ref. 3, this would presumably imply a transi-
tion into a ferromagnetic phase [or possibly some other
more exotic phase characterized by the harmonic spin
Hamiltonian of Eq. (13) becoming unstable] for arbitrar-
ily small V. No direct numerical evidence for ferromag-
netism (or other exotic behavior) at small V/t has been
presented. Although earlier numerical work in Refs. 1
and 3 saw indications of a vanishing spin gap in this re-
gion of parameters, the numerical results presented here
in Sec. IV B based on much longer chains (I & 60 instead
of L & 12) find a nonzero spin gap.

In Ref. 3 a difFerent phase is reached for V/t & 1 with
a non-zero g, at the fixed point, corresponding to a spin
gap as in Ref. 2. However, Refs. 2 and 3 now disagree
about the behavior of the charge couplings, g~ and g3.
Note that the second and third RG equations in Eq. (10)
imply that gs ——+g~ are separatrices (for g4 ——0). For
g~ & 0, if [gs~ & g~, gs flows to zero (see Fig. 1), cor-
responding to a harmonic gapless effective Hamiltonian
for charge. Outside this region both g3 and g~ flow off to
values of O(1). This is normally interpreted as a phase
with a charge gap. It is a remarkable feature of the pair-

(b)

-2

FIG. 1. Third-order RG flow diagrams, ignoring g4. (a)
Flow in the charge sector, for small gq and g~. (b) Flow in
the spin sector.

hopping model that, to O(V), g~ = gs. The system lies
on a separatrix. It is necessary to calculate the bare
couplings to O(V ) to deduce whether or not gs flows
to zero. Both papers agree that these O(Vz) terms place
the bare couplings in the basin of attraction of the g3 ——0
critical line, for small V. In Ref. 2 it was assumed (on
the grounds of simplicity) that the system remained in
this basin of attraction for all V & 0. On the other
hand, in Ref. 3, the expression for the bare couplings to
O(V ) was used for arbitrarily large V to deduce that the
bare couplings moved outside this basin of attraction at a
critical V = t (the same critical point at which g, and g4
change). The cubic RG equations predict a fixed point
at g~ = g3 ———2, which the authors of Ref. 3 assume
corresponds to vanishing charge gap.

This argument concerns us because it is not possible
to tell &om these low-order calculations of the bare cou-
plings and the RG equations whether or not the bare cou-
plings ever leave the domain of attraction of the g3 ——0
critical line. Furthermore, if they did, this phase would
normally be identified as having a charge gap, which we
know does not occur for small or large V. [The existence
of an apparent, finite coupling fixed point of the cubic
RG equations at couplings of O(1) does not necessarily
signal the existence of a different critical point. It could
disappear upon keeping higher-order terms. ]

In Sec. III we give analytic arguments implying that,
for large ~V~/t, there is a spin gap but no charge gap.

By ignoring g4 (i.e. , absorbing it into velocity renor-
malizations) and making a plausible assumption about
the behavior of bare coupling constants at large V, we
obtain simple behavior requiring no phase transition for
any V ) 0. There is always a spin gap and no charge
gap.

On the other hand, by including the renormalization
of g4 and using weak coupling results at strong coupling
one obtains two different phases: a bizarre small-V phase
with an unstable harmonic spin Hamiltonian and a large-
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V phase which would likely correspond to a charge gap,
in contradiction with the expected large-V result.

The authors of Ref. 3 applied the same RG analysis
to the positive-U Hubbard model. Their analysis gave a
small-U phase with g4 ) 2, corresponding to a negative
harmonic Hamiltonian in the charge sector and a large
U phase with a nonzero g, which would normally corre-
spond to a spin gap. As they pointed out themselves,
this is in contradiction with the expected behavior which
is a charge gap and no spin gap for all positive U (at
half-filling) .

III. LARGE iVi LIMIT:
SPIN GAP AND PHASE SEPARATION

The pair destruction operators a; = c;gc;g have com-

mutation relations [o,„aj = (1 —n, )b;~, where n;
n,; . So the a's commute if n; = 1 since they have

no effect on singly occupied sites. In the other two cases
n; = 0, 2 we have n; = 2a, a; so that the a, 's are spinless

fermion operators, obeying (a;, at) = b';~. As shown in
Ref. 1, setting t = 0 results in a ground state involving
only empty and doubly occupied sites, and so the on-site
pairs are effectively spinless fermions.

The DMRG method that we use requires &ee bound-
ary conditions. So we analytically examine the large ~V~

limit for an open chain, noting that nothing essential will
change in going to periodic or infinite length chains. The
ground state energy for an open chain of even length I
is easily computed to be

Li2
n7r f vr

Eo = —2/V[ ) cos = [V/ (
1 —cscL+1 E 2L+2)

known results on the large-U Hubbard model. In this
case we project out singly occupied sites. A single appli-
cation of t takes us into the high-energy subspace with
two singly occupied sites. In second-order perturbation
theory we generate an efFective interaction of O(t /V)
in the spinless fermion model. This simply corresponds
to a nearest-neighbor interaction of the spinless fermions.
This interaction is known to be exactly marginal, leading
to a critical line with vanishing gap.

Thus there is a spin gap for large ~V~/t. As there is

no spin (or charge) gap for V = 0, there must be some
transition. On the basis of a reliable interpretation of
the analytical RG equations and careful consideration of
and comparison with numerical RG results, we conclude
that the positive-V transition occurs at V = 0 instead of
at some finite ~V~. We show numerically that for small

positive V, the behavior of the single-particle gap is of
the form predicted by the RG fiows (upon dropping g4)
in the numerically accessible region of phase space. We
also find a spin-gap transition at V = V ——1.5t.

The above analysis also shows that in the case t = 0,
a single unpaired electron sits at a chain end; it is clear
that additional electrons of the same S will clump at
the chain ends as well. That is, at finite magnetization,
the chain phase separates: One part of the chain assumes
the net magnetization. It is important to note that this
is not a peculiarity of the open chain; in the periodic
case as well, at t = 0, added polarized electrons cut the
chain and the chain-breaking energy is clearly minimized

by clumping them together. Since going from t = 0 to
some large but finite ~V~/t introduces only a marginal
operator, it is clear that this phase separation will per-
sist to some critical values of V, which probably have
different absolute values because the Hamiltonian is not
symmetric under V ~ —V.

Adding a single electron to this half-filling ground state
produces an immobile site since t = 0, effectively break-
ing the chain. The energy will depend on the location
of the break, and is easily shown to be minimized if the
break is at the end of the chain, in which case the energy
is that of 2 pairs hopping on an open chain of length
L —1, namely,

Ei = —2[Vi ) cos = iV~i (1 —cot ) .

So the single-particle gap for the open chain is

IV. RESULTS OF NUMERICAL RG

A. DMRG details

We use the "infinite system DMRG method, " treating
open chains of even length up to 60, and maintaining 64
(sometimes 128) states in each block. The ground state
has total spin 0 and is at half-filling; we add a single
electron (pair of electrons of opposite spin) to compute
the spin (charge) gap for each length. These results are
extrapolated to infinite length taking into account trun-
cation error uncertainties. The figures summarize the
results of our DMRG calculations, as explained in this
section.

A,~ = ~V~ csc —cot2L+ 2 2L,
(17)

B. Spin gap for V ) 0

So, for t = 0, we have a model equivalent to free spin-
less fermions, corresponding to a spin gap proportional
to ~V~ but no charge gap. To see whether this situation
persists for finite iV~/t, we can do perturbation theory in
the lattice model in t/V This is very sim. ilar to the well-

—mt/V (19)

We find that the spin gap does not vanish for any V &
0, as shown in Fig. 2. In comparing its dependence on
V with that predicted from the analytical RG of Ref. 2,
namely,
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FIG. 2. Summary of numerical results: the open squares
and dashed line are the charge gap, and the solid squares
and solid line are the spin gap. A clear phase transition is
evident near V = V —1.5t, but for positive V, the spin gap
opens up from V = 0. The error bars indicate uncertainty in
extrapolating L ~ 0; the lines are to guide the eye.

(after correcting the typographical error), which is valid
for small V/t, the numerical work is not dependable for
V/t ( 1 because there the expected correlation length
( = v~/2E becomes of order the system size L. The
finite-size gap alone is b, Fs —harv~/L so that one cannot
expect to measure 6/t lower than 4 F/st = 27r/L = 0.1
for L = 60.

The RG Bow equations to two-loop order, after drop-
ping g4 as explained in Sec. II, give for the spin coupling
g8

1 1 + 2g8
gs gao

gso
(20)

where Lp is an initial length scale (A = L i is the ultra-
violet cutoK) and the initial spin coupling iss

v fvl' /'

go= +
I /

ln/ tan
art

inert)

q tLp)
(21)

We take the spin gap to be the energy (inverse length)
scale at which g, enters the regime of strong coupling,
specifically where g, = a = D(—1), resulting in

A, (v) = Apexp(g p' —a ') 1+2a —~

1+2g, o
(22)

where a = 0(—1) is used as the criterion for ~g, ~

becom-
ing large. Figure 3 shows that the numerically computed
spin gap is indeed of the form predicted by the RG Bow
equations with g4 dropped.

While the above comparison of the RG Bows are to
numerical results on open (not periodic) chains, we be-
lieve these results (and in particular the nonvanishing of
the gap for V ) 0) constitute a reliable estimate of the
situation in the thermodynamic limit. However, the sit-

FIG. 3. Fitting the DMRG data for only two points,
namely, V/t = 1, 2, to the form given by Eq. (22); the dashed
lines are the upper and lower limits of the resulting 6tted
curves taking the numerical error bars into account. The
lower limit extrapolates well over the range t & V & 4t, which
is the expected region of validity. (The fit is not expected
to be valid for V & t because of the 6nite-size gap, while
V ) V, q 3.5t is the phase-separated region. )

uation is somewhat difFerent in the phase-separated re-
gion (V ) V,i = 3.5t and V ( V,2 ( 0) than in the
non-phase-separated region at smaller ~v~. In the non-
phase-separated region, the excitation which we study
is concentrated in the bulk of the chain as discussed in
Sec. IVD and Figs. 4—6. Thus we expect that its exci-
tation energy is not affected signi6cantly by the bound-
ary conditions for suKciently long chains. However, in
the phase-separated region, the excitation lives near the
ends of the chain and its energy may well be strongly
afFected by the boundary conditions. In this case, the
energy which we measure is still a lower bound on the
bulk gap. This follows because the state which we study
is the lowest-energy one with these quantum numbers. If
the bulk gap were lower, we would expect a lower-energy
state to exist, localized far &om the chain ends. Thus our
results give strong evidence for a spin gap for all V ) 0
but only give a reliable estimate of the size of the gap for
V,~ & V ( V,q = 3.5t, except for magnitudes less than
the Bnite-size gap as discussed above.

C. Phase transition at V = V —1.5t

As discussed in Ref. 2, for small V ( 0 the pair-
hopping model is identical to the positive-U Hubbard
model. Thus we expect a charge gap but no spin gap in
this region. It was also argued that there should be a
phase transition at finite V ( 0 because at V/t -+ —oo
there is no charge gap but a spin gap. In Fig. 2 we
present DMRG results con6rming this prediction, with
the transition occurring at V = V —1.5t. Our numer-
ical results are consistent with the spin gap appearing
at the same critical coupling at which the charge gap
disappears; however, the presence of two distinct critical
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couplings cannot be ruled out. It is unclear to us whether
this critical point (or points) simply corresponds to the
renormalized couplings g, and g3 passing through zero or
to some more exotic critical point.

0.3

I I I
i

I I I

i
I I I

i
I I

D. Phase separation at V = V,q 3.5t 0.2

To demonstrate the phase-separation transition, we ex-
amine the behavior of wave functions obtained using the
DMRG at I = 60 in the sector of one electron added
relative to half-filling. Specifically, we plot in Fig. 4 the
expectation value of S'(i) for sites i = 1, . . . , 30 (the
chain is symmetric about the central link) for difFerent
values of V/t. For large V, the excess spin is localized at
the chain ends, and as V is reduced, the spin extends fur-
ther into the bulk. As V/t drops from 4 to 3, looking at
the wave function near the center of the chain shows that
near these values of V/t the spin becomes unbound from
the chain end and is rapidly and fully delocalized into
the bulk of the chain, leading us to consider V i 3.5t
as a phase-separation critical point. This conclusion is
further verified by examining the spin on the chain end
as a function of V/t, as well as the total spin in the centre
half of the chain, as shown in Figs. 5 and 6.

Due to the fact that we have employed the infinite
system method, instead of the finite system method, 4

these wave functions are not expected to be precise par-
ticularly near the phase-separation transition and at the
chain ends. However, we expect that the results are accu-
rate to within a few percent at worst, certainly not affect-
ing the qualitative behavior of our figures which clearly
demonstrate the phase-separation transition.

While a priori this phase transition could occur at a
difFerent value of V than the bulk phase separation, the
simplest scenario would have both transitions occurring
at the same point: Essentially the bulk transition drives

0. 1

0
0 4

V/t

the boundary transition. The numerical evidence on one
and two added electrons seems to indicate that for low
net magnetization, V q is constant.

This phase-separation transition will occur for finite
V,i in the periodic and infinite chain as well (though
not necessarily at the same value of V ~ as for the open
chain): Added unpaired electrons will still break the
chain into chainlets and the energy will be minimized
if they clump together. However, it will be more diKcult
to detect in a periodic chain since the ground state is
usually translationally invariant.

V. CONCLUSIONS

We conclude that there is a finite spin gap for all pos-
itive V in the half-filled pair-hopping model in one di-

FIG. 5. Spin at a chain end (open squares) and net spin
in the center half of the chain (solid squares) as a function of
V/t for a single added electron.

0.85

0.4

0

0.1

10 20
Sit,e Index i

0
30

FIG. 4. Expectation values (S*(i)) for for different values
of V/t, for one electron added relative to half-filling. The
unpaired electron delocalizes into the chain near V/t = 3.5.
(The I = 60 chain is symmetric about its central link. )

4
Vt't'I I J I

FIG. 6. Spin at a chain end (open squares) and net spin
in the centre half of the chain (solid squares) as a function of
V/t for two added electrons.
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mension, and that to accurately describe its behavior as
a function of V, one must neglect the coupling g4 in the
renormalization-group Hows.

We conclude that there are phase-separation transi-
tions in the pair-hopping model, one at positive V and
one at negative V. In one dimension at low doping &om
half-611ing, for V & V q —3.5t polarized electrons clump
together.

We conclude that there is a new critical point at (or
possibly two critical points near) V = V = —1.5t at

which, proceeding &om weak coupling, a spin gap opens
and the charge gap closes at half-filling.
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