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Nuclear spin-lattice relaxation via paramagnetic impurities in solids with arbitrary space dimension
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We extend the theory of growth of the nuclear magnetization in the presence of paramagnetic impuri-
ties and the absence of spin difFusion to the case of solids with arbitrary space dimension D. We show
that the rate of growth of the magnetization is proportional to exp (

—At ) where t is the time and a is a
fractional power which depends on the concentration and distribution of the paramagnetic centers and
the magnetic nuclei. In the homogeneous distribution, a=D/6. In the inhomogeneous distribution, the
sample can be regarded as consisting of subsystems packed in the d-dimensional space of the sample,
each of which includes a paramagnetic center surrounded by nuclei. This model results in the expression
a=(D+d )/6. Experimental data are presented for both of these cases.

INTRODUCTION

The effect of paramagnetic centers on the nuclear-spin
relaxation has been the subject of many studies. ' The
growth of the nuclear magnetization in the presence of
dilute magnetic impurities is found to be proportional to
t' for very short times following an excitation pulse se-
quence and under conditions that inhibit spin diffusion.
Including all times, the time dependence has the form
exp[ —(t/T, )' ]; this reduces to the expression original-
ly derived by Blumberg for very short times. Observa-
tion of a time dependence of t' in layered materials re-
lated to the high-temperature superconductors ' insti-
gated an extension of the Blumberg theory to D dimen-
sions. For the case of a homogeneous distribution of
paramagnetic centers in the absence of spin diffusion, the
magnetization growth was found to be proportional to
t ~ . This has been observed experimentally for systems
of two and three dimensions. '

More recently, the Blumberg theory was further ex-
tended to include the case of a higher concentration of
paramagnetic centers. " A multiparamagnetic-center
model was used to calculate the time dependence of the
magnetization at short times after application of an exci-
tation pulse sequence. The sample was divided into re-
gions of inhuence ' of D dimensions, each containing
only one paramagnetic center. These regions are packed
in the 1-dimensional space of the sample. The resulting
time dependence of the magnetization is t' +"' . For
example, in a strong magnetic field (as in the experiment
considered here) the magnetic moments of the regions are
aligned with the external magnetic field so that d = 1 and
the powers obtained are —,', —,', and —', for one-, two-, and
three-dimensional systems, respectively. These time
dependences have been observed experimentally and re-
ported in Ref. 11.

In this work, the theory of the growth of the nuclear
magnetization in samples of arbitrary dimension" is gen-

eralized to all times following an excitation pulse se-
quence for samples with high concentrations of paramag-
netic centers. We consider two cases: homogeneous dis-
tribution of the paramagnetic centers and nuclei and in-
homogeneous distribution. In the former, the magnetiza-
tion is found to be proportional to expI —At ) and in
the latter to exp I

—Bt' + ' I. We present experimental
data exhibiting both cases in the experimental section of
this paper.

THEORY

Let us consider a sample containing nuclear spins cou-
pling with paramagnetic centers by dipole-dipole interac-
tion, placed in a high external magnetic field. After exci-
tation of the nuclear-spin system, a local magnetization
will be changed most rapidly near the paramagnetic
centers. This leads to spatial distribution of the magneti-
zation resulting in spatial diffusion of the nuclear-spin en-
ergy. For sufficiently small concentrations of the nuclear
spins c„, or when the magic angle condition is met in the
rotating frame, ' this difFusion is negligible, and only
direct relaxation processes take place.

Assuming that the dominant nuclear relaxation mecha-
nism is that of the paramagnetic centers, the Hamiltonian
of this system is

H=cot/I, „+to$y S, +H$$+Ht$,
P J

where col and co+ are the Zeeman frequencies of the nu-
clei and paramagnetic impurities respectively. II~+ is the
dipole-dipole interaction Hamiltonian of the paramagnet-
ic impurities and Hzz describes the dipole-dipole interac-
tion between the nuclei and the paramagnetic impurities,
which, for col &&co+, has a part that gives the dominant
contribution to the relaxation process:
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where where

3 7IXsF„=. —— sin2 Or„exp { i—yr.„j,
JP

(3)

where Pr is the local inverse spin temperature of the
nuclear-spin system,

K„=i[Hrs~H

K„(A,, t ) = U(A, , t )K„U+(A,, t ),

r.„, 6I.„,and yJ„are the spherical coordinates of the vec-
tor r „concerning the j'" paramagnetic impurity and the
p'" nucleus in a coordinate system with the z axis along
the applied external field. Here the Greek indices indi-
cate the positions of the nuclei and the Latin those of the
impurities. If the heat capacity of the paramagnetic im-
purities is large or if the spin-lattice relaxation time of the
impurities is very short, it is reasonable to consider only
the relaxation process with constant inverse spin temper-
ature of the impurities equal to that of the lattice:
Ps =&i.

The evolution equation for the local nuclear magneti-
zation m„(t) will be derived by using the method of the
nonequilibrium statistical operator' ' which gives, in
the absence of spin diffusion,

d(Hg)
=(P~g Ps) f d—a f" dt e "&K„(A,, t)K„), (4)

Z =Tfp (12)

To calculate the spectral density y„(co), the correlation
function ( {S,r(t), S,~ j ) is needed. We assume that in the
high-temperature approximation this correlation is ex-
ponential with a correlation time ~:

({s„(t),s„.j)=(s,', )exp{ —ftf/rj . (13)

Homogeneous distribution model

In this case, the nuclear spins interact with the impuri-
ties independently and Eq. (8) has the solution

m„(t) =m„( ~ )+ [m„(0)—m„( 00 )]exp {
—

my„(d'or )t j .

(14)

Since the local magnetization m „(t) is distributed
throughout the sample and depends on position, in order
to obtain a quantity observable by experiment a suitable
averaging procedure must be performed. This averaging
is strongly dependent on the concrete model that is used
to describe the distribution of the nuclei and impurities.
Let us consider two models of the distribution: (a) a reg-
ular distribution throughout the sample' and (b) a model
in which the sample can be regarded as consisting of sub-
systems, each of which includes a paramagnetic impurity
surrounded by nuclear spins. '

U(k, , t)=exp 1, PsHs+QPIr'H/'
The observed quantity is the global magnetization M (t),
which can be obtained from the local magnetization
m (t) by a spatial average over the variables r.„and 8 „:X exp it Hs+ g Hg' (7)

P

and, after the integration in Eq. (4) is performed, we set
e=0, ' Hg'=urI, „, and Hs =cps g S,r. After some
transforrnations, Eq. (4} reduces to following form, which
is more convenient for practical computations and con-
sideration:

M(t)= g (m„(t)).„,
n P=f

(15)

elm " = —~m„(~r)(m„—m„,),dt

where m„o is the local magnetization at equilibrium,
M(t) =M( ~ )+ [M(0) —M( ~ ) ]

1

iV„
& F&.F):

1
JP JP

X g exp {—m-( q)„(cur ) )„tj, (16)

X f dt e' '( {S,(t),S, j )/TrS, (9) and the quantity to be averaged,

where X„ is the number of nuclei in the sample and

),„denotes the average over all distances ri„be-
tween impurities and nuclei and angles 0 „between the
vector r „and the external magnetic field. If all of the lo-
cal magnetizations are equal at the initial moment and at
equilibrium, then

is the spectral density of the correlation function of the z
component of the impurity's spin,

tl

R (t}= g exp{ —~(p„(d'or)),„tj,N
1

(17)

S,r (t) =exp{iHsst jS, exp{ iHsst j, —(10)

and {A, B j = AB+BA. The thermodynamic average
( . . ) in Eq. (9) corresponds to an average of the
quasiequilibrium density matrix in the high-temperature
approximation:

is a normalized relaxation function of the global magneti-
zation. Let us suppose that all quantities y„(d'or ) are in-

dependent and that they are all identical. Then, neglect-
ing the detailed angular dependence and assuming that
the continuous medium approximation is valid, ' we have

Np

p=Z '
1 PsHs —g P~rHt'—

P
R(t)= f d V exp

VL 0
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a =
—,'S(S + 1)(y y „)sin (28)

1+re)I
(19)

where NP is the number of paramagnetic impurities in
the sample, Vl is the volume of the sample, and

necessary to modify Eq. (8) to

de
~) = —~~J(~, )(m„, —mo, ),

dt

where

(23)

In the limit as N ~ao, VL —&DO, and N /VI =C, the
impurity concentration, we have

x

(p('(co) = F„F*„f. dt e' '( [S,~(t)S,J I ) /TrS,
~

. (24)

R(T)= 1 — f dV 1 —exp ~

P —at
0 I'

L L

00 —at=—exp —CP dV 1 —exp ~

0 6

After integrating Eq. (20) by parts, we obtain

R (t) =expI —At

where

2m I"(1 D /6)—
DI (D/2)

(20)

(21)

(22)

To obtain the magnetization of the j'" subsystem, the
solution of Eq. (23) must be averaged over all distances
between muclei and the j'" paramagnetic impurity

y (m„,(t) &,„„, (25)
j }M=1

where the prime denotes that the summation is only over
the nuclei that are in the j'" subsystem, and X is the
number of nuclei in the j'" subsystem.

To calculate the global magnetization, it is necessary to
average Eq. (25) over the volume of the subsystems:

I'(z) is the gamma function, and D is the dimensionality
of space of the sample. In the case of D=3, Eq. (21)
reduces to the results obtained in Refs. 5 —8 and 12 and,
for short times, the magnetization has a t time depen-
dence in agreement with experimental and theoretical re-
sults. We note that A is proportional to C, the concen-
tration of impurity centers.

Subsystem model

M(t) = g (M, (t) ),„, ,
p j=1

(26)

M(t) =M( ~ )+ [M(0)—M( ~ )]R(t), (27)

where

where N is the number of impurities in the sample.
Assuming that all nuclei in the subsystem interact with

the impurity independently and that all subsystems are
independent and identical, we have

The main difference between the homogeneous distri-
bution model and the subsystem model is that in the
latter any given nucleus is influenced primarily by one
paramagnetic impurity, so that the sample may be divid-
ed up into subsystems, each of which includes only one
impurity surrounded by nuclear spins. ' In this case it is

1 ~ 1R(()= X X'(exp( xy„;(m, (()„„)„—J . (28)
p j=1 j @=1

Under assumptions analogous to those in the preceding
section in the continuous medium approximation, Eq.
(28) becomes

R(t)=exp. —C f dV 1 —exp —C„f dv(l —e "~"
)p n (29)

Changing the integration variables and integrating by
parts, Eq. (29) yields the following expression for the re-
laxation function:

R(t)=exp( Bt' + ' I), —

where

I

and I (z, g) is the incomplete gamma function.
In the limit as g)) 1 (g =at /I, that is, fo—r a long time t

and small size of subsystems I) and C„«1, the power
of the exponent in Eq. (32) approaches zero:
lim& „f(g) =0 and

(D +d)/24m
a (D +d)/6C C

D dI (D/2)I (d/2)
(31)

R (t) =exp B I 1——d D+d
t (D+1)/6

D+d 6
(34)

d(g(D+d)I6)e f(g)(1 e
—g)—

D+d 0
(32)

f(g)=g "(1—e-~)+I (1—d/6, g), (33)

d and D are the dimensionality of space of the subsystems
and the sample, respectively, and

In the case of short times t and C « 1, Eq. (30) reduces
to the results obtained in Ref. 11. We note also that the
coefficients A and B, from Eqs. (21) and (30), respectively,
can be extracted from the slope of the log of the magneti-
zation as a function of t, where, for a homogeneous dis-
tribution of impurity centers, a =D /6 and, for the sub-
system model, a=(D+d)/6. Both A and B are propor-
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tional to the impurity ion concentration C, which can
thus be determined, and to a, given in Eq. (19). This
equation gives the dependence of 3 and B on the correla-
tion time ~, which is in turn dependent on the sample
temperature and the resonance frequency. Determina-
tion of A and B as a function of temperature and frequen-
cy will thus yield the correlation time function r( T, co).

is the result of a least-squares fit of the data to the func-
tion A expI —(Bt)'~

J and is seen to be a very good fit,
while 1(b), which shows the same data with a fit to
A expI —(Bt)'~ j is not appropriate. Thus, for a sample
with D =2 we obtain the dependence of the magnetiza-
tion growth predicted by our theory, exp I

—(Bt)
In Fig. 2 we present results for the case of inhomogene-

EXPERIMENTAL RESULTS

We have studied the growth of the magnetization fol-
lowing a saturation pulse sequence in samples falling in
both categories discussed above and have obtained results
consistent with our theory. In the copper oxides, copper
atoms are paramagnetic centers distributed uniformly
throughout the sample. In this section we present the re-
sults of 'H NMR in H„Y2BaCu05, where x =1.21. At
this concentration, the dipolar interactions between the
protons and the copper atoms were shown to be two di-
mensional in nature.

In Fig. 1 we show the growth of the proton nuclear
magnetization in H Y2BaCu05 for x=1.21. To em-
phasize the nature of this growth, we have plotted the
logarithm of the magnetization as a function of t' and
t '~ in (a) and (b), respectively. In Fig. 1(a), the solid line
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FIG. 1. Log (base 10) of normalized nuclear magnetization of
protons in H&» YBaCuO5 a function of (a) t ' and (b) t ' . The
solid line is a least-squares fit to (a) A exp[ Bt'~ j and (b)—
A exp{ Bt'~ j. —

FIG. 2. Log (base 10) of normalized nuclear magnetization of
protons in (a) hexagonal WO3 at 180 K as a function of t' (b)
V205 as a function of t ', and (c) WO3 Pyrochlore D20 at 230
K as a function of t . Note that in Ref. 11 a least-squares fit
was made of these data to A expI Bt j with a as a free pa--

rameter, and the values a=0.316, 0.497, and 0.667 were ob-
tained for the data of (a), (b), and (c), respectively.
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ous distribution of magnetic impurities. Samples doped
with small quantities of paramagnetic centers and with
efFective spacial dimensions D = 1, 2, and 3 were
prepared, corresponding to Figs. 2(a), 2(b), and 2(c) re-
spectively. Experimental details are given in Ref. 11.
Since the magnetic moments of the subsystems are
aligned with the external magnetic field, d =1, and the
nuclear magnetization of protons is seen to decay as
exp{ —(Bt)' + '

I for all three samples.
In addition to our own experimental work, we present

some data taken from the literature. Kryukov et al. '

measured the ' Tm NMR in TmBazCu306 4 and studied
the magnetization recovery after a 90'-180' pulse se-
quence. They found that the magnetization grows as
exp{ (Bt)—'~ I. Due to the lamellar nature of this com-
pound, D =2 and the paramagnetic centers are distribut-
ed homogeneously throughout the sample. Their results
are thus explained by our theory.

In a continuation of the work on ' Tm NMR in
TmBa2Cu30, Teplov and co-workers studied the effects
of high-temperature annealing and quenching on their
samples. ' They found that as the concentration of
paramagnetic centers in the sample is decreased, either
by oxygenation, long-time room-temperature annealing,
or lowering the sample temperature, the exponent a
changes from 1/3 to 1/2. They explain that this is be-
cause of a change in dimensionality of the sample from 2
to 3, but we propose a different explanation, as we see no
other evidence for a change of sample dimensionality. As
the concentration of paramagnetic centers decreases,
their distribution in the sample changes from a homo-
geneous to an inhomogeneous one. When this happens,
the expression for a changes from D/6 to (D +d)/6. In
this case, the sample dimensionality D is 2, and, following
a m/2-m. pulse sequence, the magnetic moments of the
subsystems are constrained to one dime~sion along the
magnetic field, so that the subsystem dimensionality
d = 1; thus a changes from 1/3 to 1/2.

In view of this explanation, we must consider an alter-
nate interpretation of the data presented in Ref. 9 for H-
doped Y2BaCu05. In that paper, it was suggested that
increasing the H concentration made the sample three di-
mensional, resulting in a= 1/2. Another possibility is
that the increased H concentration decreases the concen-
tration of paramagnetic centers sufficiently that they may
be distributed inhomogeneously in a sample that is still
two dimensional. In this case, a=(D +d)/6=1/2. The
correct interpretation may be determined by studying the
distribution of the paramagnetic centers using ESR,
which we intend to do.

The data of Fig. 3 were taken from Ref. 18 in which
the ' F NMR of CaFz (0.05 mo1% Eu +) was measured
in two experiments. The first experiment used an eight-
pulse sequence in order to quench the spin diffusion.
This cycle, like the magic angle spinning used in the ex-
periments of Hartman and co-workers, ' averages the
effects of the paramagnetic impurities. The nuclear spins
thus effectively interact with all the paramagnetic impuri-
ties, and the system may be described by the homogene-
ous distribution model. In this case, the magnetization
decays as exp{ (Bt) ~

I with D—=3 as shown in these
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FIG. 3. Log (to base 10) of the amplitude S(t) of the ' F sig-
nal of CaF (Eu + —0.05 mol%) in the spin-locking experiment
of Ref. 18 as a function of a= (a) t and (b) t . The solid line is
a least-squares fit to A exp{ —Bt

papers. ' ' ' Mehring, Raber, and Sinning also present
data from a spin-locking experiment on the same doped
CaF2 sample. Although the authors write that the mag-
netization decays exponentially, we show in Fig. 3(a) that
this is not the case, as the log of the magnetization plot-
ted as a function of pulse separation does not give a
straight line. A straight line is obtained in Fig. 3(b), in
which we plot the log of the magnetization as a function
of t . In the spin-locking experiment, each nucleus is
primarily affected by only one paramagnetic center and
the magnetic moment of the subsystem is constrained to
one direction with the effective field in the rotating frame.
The subsystem dimensionality is thus d =1 and, for. a
three-dimensional sample, D =3, so the magnetization
grows as [1—exp{ —(Bt)' + ' I], consistent with our
theory for a sample with inhomogeneous distribution of
paramagnetic impurities.

Humphries and Day' also studied CaF2 doped with
paramagnetic impurities. They find that for a sample
with 0.016 mol%%uo Mn + the nuclear magnetization is
proportional to exp( —t '

) in a spin-locking experiment.
This is in agreement with our theory for a three-
dimensional sample with a homogeneous distribution of
paramagnetic centers. They also present data from two
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'9F Dipolar Signal in CaF2: Mn
' (0.0008%) the time dependence of the magnetization is given by Eq.

(34). In these experiments, the magnetization is confined
to the plane perpendicular to the external field resulting
in a subsystem dimension d =2. For a three-dimensional
sample, one should find a =(2+ 3 ) /6 =5/6. To test this,
the data of Fig. 6 from Ref. 19 was digitized, and a linear
least-squares fit was made to the logto of logto(M) as a
function of logto(t) as seen in Fig. 4. The slope of this
graph is u and is found to be 0.84, which is extremely
close to 5/6, consistent with our theory.

CONCLUSIONS

-3,0
0,5

I

1,0
1

1,5

log(t)

I

2,0
I

2,5
I

3,0

FIG. 4. Log of log (to base 10) of the ' F dipolar signal of
CaF2 (Mn + —0.0008 mol%%uo) in the Jeneer method experiment
of Ref. 19 as a function of log, 0(t). The solid line is an apparent
linear least-squares St yielding slope a =0.840 or 5/6.

experiments which measure the decay of the ' F signal
from an ordered dipolar state using the methods of adia-
batic demagnetization in the rotating frame and of
Jeneer, both of which are described there in detail. In
their Fig. 6, one sees the nonexponential behavior of the
' F signal for CaF2 doped to 0.0008 mol% Mn +. At
this low a concentration, the paramagnetic ions are prob-
ably distributed inhomogeneously in the sample, so that

We have shown that the growth of the nuclear magne-
tization towards equilibrium in a sample with paramag-
netic centers following a pulse sequence depends on both
the spacial dimensionality D of the sample and whether
the nucleus is affected by only one or many paramagnetic
centers. In the former case the magnetization evolves as
expt —(Bt)' +"'~

I and in the latter as expI —( At)
Experimental data has been presented for the homogene-
ous distribution case for D=1,2 and for the subsystem
model with D =1,2, 3 and d =1,2, which can be ex-
plained by out theory. We are presently conducting nu-
clear quadrupole resonance experiments in samples
doped with paramagnetic centers to include the case
d =3 for the subsystem model, since, in the absence of a
magnetic field, there is no preferred direction for the
magnetization.
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