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The existence of low-frequency, almost dispersionless intrinsic resonant vibrational modes in a
transition layer at clean interface between two media (a rigid and a soft crystal) with very different
elastic properties is predicted. It is shown that nonlinear interaction of bulk acoustic phonons with
Buctuation resonant vibrations of a two-dimensional transition layer leads to subharmonic trans-
mission across the interface of acoustic phonons incident from a rigid crystal with frequencies above
the highest frequency in a soft crystal, and to the second- (and multiple-) harmonic transmission of
acoustic phonons incident from a soft crystal. It is shown that contrary to subharmonic and mul-
tiharmonic generation of coherent acoustic waves, the coefBcients of fiuctuation subharmonic and
multiharmonic phonon transmission do not depend on the amplitude of incident acoustic wave and
are determined by temperature-dependent mean-square amplitudes of relative interface fluctuation
displacements. It is emphasized that Huctuation subharmonic phonon transmission is a nonthreshold
dynamical phenomenon which is signi6cant for its contribution to Kapitza thermal boundary con-
ductance across the interface. In both cases of Buctuation subharmonic and multiharmonic phonon
transmission, two-dimensional resonant interface transition layer leads to the considerable enhance-
ment of the coupling between phonons in the media with very different elastic properties. It is shown
that inelastic interface dynamical phenomena can substantially contribute at elevated temperatures
to the Kapitza conductance between solids with very different vibrational spectra (such as diamond
and soft crystal) and to the thermal conductance across a helium-solid interface also.

It is well known from the linear wave theory that the
transmission of the bulk acoustic waves across a sharp in-
terface of two materials is strongly suppressed in the case
of large differences in their elastic properties (e.g. , den-
sity and sound velocity). If applied to thermal phonons,
this phenomenon leads to Kapitza thermal boundary re-
sistance at the interface between liquid helium ( He and
4He) and a wide variety of solids, and at the interface be-
tween two diferent solids also. However, in the case
of a helium-solid interface the acoustic-mismatch phonon
theory of the Kapitza resistance appears to be adequate
only for very low temperatures (usually below 0.1 K).
Experimental values of the Kapitza conductance at ele-
vated temperatures are much larger (by a factor of 10 or
100) than estimated by this approach and no satisfactory
explanation of this long-standing disagreement has been
given. The solidification of helium also does not sub-
stantially change the transmission of the phonons across
a helium-solid interface, and Kapitza thermal boundary
conductance to solid helium, as well as to solid hydro-
gen and deuterium, is anomalously large. In a recent
paper measurements of Kapitza thermal boundary con-
ductance between diamond and several metals were re-
ported. Such interfaces represent the interfaces between
solids with widely di8'ering elastic properties because di-
amond has the highest sound velocity and Debye tem-
perature of any material. In these experiments it was
revealed that at the interface between diamond and such
soft metals with very low Debye temperatures as Au and
Pb, the Kapitza conductances measured at room tem-
peratures are as much as 100 times larger than expected
from the conventional acoustic-mismatch phonon theory.
From these observations it follows that there is some ad-

ditional way, intrinsic to diamond, in which energy is
transferred across the interface. It implies, in particu-
lar, that phonons with &equencies above the highest &e-
quency in soft metal must substantially contribute to the
energy transfer.

In a large number of works on the problem of Kapitza
thermal boundary conductance (see Refs. 2,3 and refer-
ences therein), the importance was revealed of the inter-
face transition layer which gives rise to a better match-
ing between phonons in two media. A two-dimensional
transition layer can cause, in particular, an anomalous
resonant absorption of incident bulk acoustic waves and
a total resonant transmission of phonons across the in-
terface between two crystals with very difFerent elastic
properties (see also Refs. 9—11). In the present pa-
per, on the ground of rather general considerations it
is shown that intrinsic resonant modes with &equencies
within the vibrational continuum of a soft crystal can ex-
ist in the transition layer at the clean interface between
two solids (a rigid and a soft crystal) with very differ-
ent elastic properties. The origin of these modes lies in
a structure of several atomic layers of a soft crystal ad-
jacent to a rigid crystal. The strengths of the interlayer
bonds, hoMing a soft crystal to a rigid one, are in the gen-
eral case larger than the bulk interlayer bonds in a soft
crystal. i Therefore the first (two or three) atomic lay-
ers of a soft crystal, adjacent to a rigid one, are strongly
compressed with respect to the bulk layers of a soft crys-
tal and the corresponding interlayer force constants in
the layers are larger than the bulk ones in a soft crys-
tal. (In the case of a helium-solid interface it leads to the
solidification of the Brst two or three layers of helium,
adsorbed on a solid, even in the case when the system is
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not under ambient pressure; see, e.g. , Ref. 16.) It means
that the first several atomic layers of a soft crystal form
one "heavy transition layer" which is characterized by
the existence of intrinsic resonant modes with relatively
low &equencies. These resonant modes are the lowest
transversely quantized standing-wave vibrational modes
confined in the layer (see, e.g. , Ref. 7). Their frequencies
are determined by the strengths of the bonds with a rigid
crystal of the first atomic layer of a soft crystal, adjacent
to a rigid one, and by total thickness of the transition
layer (which consists of several atomic layers of a soft
crystal). Low-frequency surface resonant modes can ex-
ist at the interface between helium (liquid or solid) and an
ordinary solid, and also at the interface between diamond
and a soft crystal (such as Au or Pb). Low-damping al-
most dispersionless surface excitations were found by in-
elastic neutron scattering in the layers of He adsorbed
on difFerent solid substrates. The origin of these surface
excitations may be the first two or three solidified helium
layers, adjacent to the solid, formed due to the substrate
potential. A "breakdown" of the acoustic phonon reQec-
tivity at a helium-solid interface was observed roughly at
the same &equencies. A strong phonon conversion due
to only three atomic layers of helium at the interface with
a solid was also observed experimentally, which testi-
fies that inelastic interface processes play a significant
role in the phenomenon of anomalous Kapitza thermal
boundary conductance.

In the present paper it is shown that the nonlinear
interaction of bulk acoustic phonons with fluctuation
resonant vibrations of a two-dimensional transition layer
leads to several inelastic interface dynamical phenomena:
(1) to subharmonic transmission across the interface of
acoustic phonons incident &om a rigid crystal with fre-
quencies above the highest &equency in a soft crystal
and (2) to second- (and inultiple-) harmonic transmission
across the interface of acoustic phonons incident from a
soft crystal due to the interface generation of acoustic
vibrations in a rigid crystal with frequencies multip/e
to resonant frequencies. It is shown that contrary to
subharmonic and multiharmonic generation of coherent
acoustic waves, the coeKcients of Quctuation subhar-
monic and multiharmonic phonon transmission do not
depend on the amplitude of the incident acoustic wave
and are determined by temperature-dependent mean-
square amplitudes of relative interface IIIuctuation dis-
placements. It is emphasized that fluctuation subhar-

I

monic phonon transmission is a nonthreshold dynamical
phenomenon which is significant for its contribution to
Kapitza thermal boundary conductance across the inter-
face. In both cases of fluctuation subharmonic and mul-
tiharmonic phonon transmission, a two-dimensional res-
onant interface transition layer leads to considerable en-
hancement of the coupling between phonons in the media
with very diferent elastic properties. A substantial con-
tribution at elevated (room) temperatures of inelastic in-
terface phenomena to the Kapitza conductance between
very different solids (such as diamond and soft crystal
like Pb or Au) is estimated. The origin of the described
inelastic interface dynamical processes is difFerent from
previously considered nonresonant high-&equency "bulk"
three-phonon processes near the interface between ordi-
nary and quantum crystals. ~ The proposed nonlinear
dynamical model does not imply a significant electronic
contribution to anomalous Kapitza conductance across
the interface since such a contribution was not con-
firmed experimentally. A brief description of the non-
linear interaction of bulk acoustic waves with resonant
vibrations of a two-dimensional transition layer and its
contribution to Kapitza thermal boundary conductance
was done in Ref. 21.

For a consistent macroscopic description of the low-
frequency dynamical properties of a two-dimensional res-
onant layer it is necessary to account for the disconti-
nuity (on the interatomic scale) of the elastic displace-
ments at the interface between two bonded crystals (see,
e.g. , Refs. 22 and 23). A similar approach has been al-
ready used for the macroscopic description of the long-
wavelength dynamics of an adsorbed monolayer weakly
bonded with a crystal surface. ' When the strengths
of the interlayer bonds in the transition layer are inter-
mediate between the strengths of the bulk bonds in the
adjacent crystals, the transition layer is strongly bonded
to a soft crystal but weakly bonded to a rigid one. There-
fore a center-of-mass displacement u' of the transition
layer (placed at the plane z = 0) coincides with the edge
displacement u2(z = 0):—u2(0) of a soft crystal (sub-
script 2) [i.e. , u = u2(0)j, but does not coincide with
the edge displacement ui(0) of a rigid crystal (subscript
1). If we consider the (001) interface between two (cu-
bic) crystals, the surface part of the Lagrangian function
of the macroscopic elastic motion will have the following
two-dimensional density 8, :

3

8, = -') p, (u,')
i=1

U = d, b„+ —,'A..(A'. +
+-,'C (b,' + b, '„)

Here p, is the surface mass per unit area of the interface,
&;—:&,' —ii;, i(0) = u;, 2(0) —u; i(0) is a pseudovector
describing the relative interface displacements (surface
displacement discontinuity), A, A,. and C,g~ are the ten-
sors of the harmonic and quartic anharmonic force con-
stants, B';A, ~ is a pseudotensor of the cubic anharmonic
force constants describing the interlayer interaction be-

A„') + —,'A, .A,'+ B, A, (A2 + A,', ) + ,'B...A,'—
(1)

I

tween the transition layer and a rigid crystal, and d;
is a macroscopic pseudovector parameter describing the
equilibrium surface (interface) relaxation Eo; in a soft
crystal 2; see Eq. (5) below. [The latter describes the
change of the equilibrium interlayer spacing, with respect
to the bulk one in a soft crystal, between the adjacent
atomic planes of soft and rigid crystals. Surface relax-
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ation occurs both at the free surfaces of crystals (see,
e.g. , Ref. 26) and at interfaces between different crystals
(see, e.g. , Ref. 27).] In Eq. (1) it is taken into account
that the d, B = B,», and B components of the
odd-order pseudotensors d; and B,k~ are in the general
case nonzero at the considered two-dimensional interface
layer due to the locally broken inverse symmetry along
the normal to the interface even in the case when both
adjacent crystals are centrosymmetric ones. (The OZ
axis is directed along the normal to the interface from
crystal 1 to crystal 2.) In Eq. (1) we neglect the lateral
(intralayer) interface interaction (which is described by
the interface elastic moduli and residual interface stress;
see, e.g. , Refs. 22,23) and the interaction between the in-
terlayer and intralayer deformations, as not essential for
the considered dynamical phenomena.

Introducing the atomic mass m2 in a soft crystal and
the nearest-neighbor harmonic and anharmonic inter-
atomic force constants in the transition layer, we can es-
timate the macroscopic parameters of a two-dimensional
transition layer given by Eq. (1):
p ~m2a, & K'a B ~ I'a C I'a .

(2)
Here N is the number of soft-crystal atomic layers in
a "heavy transition layer" (we assume that N 2—

3), K', I', and M' are the nearest-neighbor harmonic
and (cubic and quartic) anharmonic force constants be-
tween the atoms of the transition layer and a rigid crys-
tal, and a is the equilibrium interatomic spacing in the
transition layer. In the following we assume that, as
was discussed above, the harmonic force constant K'
in the transition layer is intermediate between the force
constants Kq and K2 in the adjacent crystals and that
the elastic impedance of a rigid crystal considerably ex-
ceeds the impedance of a soft one: Kq &) K' ) K2,
m, K»& m2K2.

In order to take into account the intrinsic dissipation
in the two-dimensional interface layer, the surface dissi-
pative function with density 'R, per unit area should be
introduced in addition to the surface Lagrangian function
(cf. Ref. 7):

& = -I **[(& ) + (& ) ]+ -I-(&.) . (3)

The boundary conditions for bulk elastic stresses
cr,y(0) and displacements u;(0) at the interface plane
z = 0, which describe the macroscopic dynamics of a
two-dimensional transition layer, can be obtained Rom
the joint variation of the surface Lagrangian and dissipa-
tive functions and bulk elastic energy with respect to the
independent variables uq(0) and u2(0) = u'.

(4)

(6)

(7)

(8)

bZ, b7Z, bZ, (VR, bZ, b7Z,

t t

Prom Eqs. (1) and (4) and the requirements O„q(0) = 0, o„.2(0) = 0 we obtain the equation for the uniform (along
the interface~ equilibrium static surface relaxation Ao, in a soft crystal 2:

C L() + B 4O + A LO: d LO: LOy: 0 (5)
Since the surface relaxation Ao, is assumed to be jess than the equilibrium interatomic spacing (b,o, « a), the
parameter d, should be relatively small and the surface relaxation is described by the smallest root of Eq. (5):
&o. = —d /A-.

Equations (4) with the use of Eqs. (1), (3), and (5) can be reduced to the following boundary conditions at z = 0
for the dynamical elastic fields u; and 4,. = A, —Ao; (near the equilibrium positions u = 0 in the bulk of the adjacent
crystals and Ap = Ao& = 0 and ffnite Ao, at the interface plane z = 0):

~ ~ s
&zi, 2 = &zi, j + Ps&; )

~...= [A..+ 2B...(a,.+ a', ) + C..„(a„+Z', )']Z'. + C....a."+C..„„a'.Z„"+r..Z. ,

o,„,= [A + 2B, (b,„+A', ) + C .„(A,.+ A', )']A'„+ C A'„'+ C»b, „'A" +I'
cr„~ = [A„+2B„,Ao, + 3C„„AO,]A' + [B„,+ 3C„„AO,]4', + C„„A',

+(B, + C „(Ap, + A', )](A' + A'„) + I'„A, . (9)
These boundary conditions consistently describe the low-&equency dynamics of the transition layer and account

both for the interface discontinuity of elastic stresses [due to surface mass p, ; see Eqs. (6)] and for the interface
discontinuity of elastic displacements A;—:u; 2(0) —u, q(0), u; = u, 2(0) [due to the weak interlayer interaction at
the interface; see Eqs. (7)—(9)]. More general boundary conditions can also be obtained within the framework of the
macroscopic approach when the elastic displacement u of the transition layer coincides neither with uq(0) nor with

u2(0) and two independent relative interface displacements 4;—:u,'. —u; q(0) and 4,. —:u; 2(0) —u,'. should be
introduced (the corresponding linear boundary conditions are described in Ref. 23). Due to the interface anharmonic
force constants B;I,~ and C;1,~, the surface relaxation 60, [Eq. (5)] accomplishes a static renormalization of the
parameters A, A„, B, , and B„, in the interface equations of motion (7)—(9). Such a renormalization can be
essential in the general case (and can result in the so-called "supermodulus efFect" in some bimetal superlattices; see,
e.g. , Ref. 27). Therefore in the following we introduce renormalized parameters, namely,

+yy +Ãx + 2BzÃx +oz + +Razz +oz ) +zz +zz + 2Bzzz +oz + 3+zzzz +oz )

B.*..= B. .+ C....L... B.*..= B...+3C....do.
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With the use of these parameters, the boundary condi-
tions (7)—(g) can be written in a more concise form:

0. , 1
——A;„4'J, + B,*-A,)LqL) + C;I,I A~AIL + I';A, LA, .

To describe the low-&equency interface resonant mode
polarized in the boundary plane, we look for the solution
of bulk and interface equations of motion in the following
form:

(
u ~ = uo q exp

~

i z ——i—alt ~,
rCol

Cd

u z =uo gexp~ 'L

uxs = uoxz exp( —&~~), (»)
where p and c~ & are the bulk densities and (longitudi-
nal and transverse) sound velocities in the adjacent crys-
tals. The above mode has a zero parallel to the interface
component of the wave vector A:: kI~

——0. Using the
boundary conditions (6), (10), and (11) (in the linear
case A* » B*A', A* » |*A'z), we ascertain that the
low-&equency resonant mode with the following disper-
sion relation and the form of the displacement distribu-
tion exists at the interface between crystals with very
diferent elastic properties:

p, ur A* —i(u
~

Zq~+ + I' ~, (13)

z —zcap t

i ((i, (14)
~0+2 Z1t

where Zo~ t, ——gA;, p, and Z~, t,
——pc~ t, are the longitu-

dinal and transverse elastic impedances of the interface
layer and the adjacent crystals. Prom Eq. (13) it follows
that in the considered case when

Zg (( Zo (( Z1, Zo (( Z1Zg, (15)

and p, ) pea, A* /p, ( (m pz)/(pea ), the resonant

frequency ato~~ = gA* /p, —gK'/Kmz is lower than
the upper cutoff (Debye) frequency of a soft crystal,

gKz/mz, and the damping of the interface
resonant (pseudosurface) mode is caused mainly by the
emission of bulk transverse elastic waves in a soft crystal
2 and by the intrinsic interface dissipation (which also
finally results in the emission of noncoherent thermal
phonons in a soft crystal to which the transition layer

is strongly bonded). Equation (14) shows that the res-
onant mode is indeed accompanied by large dynamical
relative interface displacements Lo —'Sop ~o1
A similar conclusion follows also from the consideration
of the discrete-lattice equations of motion in a simple
one-dimensional model of the interface when the nearest-
neighbor harmonic force constants K' +z (between the
adjacent n and n+1 atomic layers in the transition layer)
are diferent from the bulk force constants in a soft crys-
tal at least in the erst two near-surface layers, namely,
Ky » Ko ~ ) Kf ~ ) Kz and N = 2 in relations (2).

With the use of boundary conditions (6), (10), and
(ll), we can show that the low-frequency stretch in-
terface resonant mode polarized along the normal to
the boundary also exists in the system at &equency
no~ ——gA,*,/p, . In the case of A* = A.„*„and uniform
interface vibrations (with k~~

= 0), the two modes po-
larized in the interface plane have the same resonant &e-
quency clfo~~ = gA /p . For surface modes with nonzero

kII, the lateral interface elastic moduli delete the degen-
eracy between the frequencies of longitudinal and shear
surface modes and cause a small dispersion of the modes
(see, e.g. , Ref. 8).

To consider a subharmonic acoustic phonon transmis-
sion across the interface, we assume that the double-
resonant frequencies 2uo~~ and 2wo~ are higher than the
upper cutoff frequency wz~~„of a soft crystal 2. (Oth-
erwise we can consider a subharmonic transmission of
acoustic phonons with a near-triple-resonant &equency
ctJ 3(do' see below. ) In the linear system the incident
&om a rigid crystal acoustic phonon with near-double-
resonant &equency w 2wo will be totally reflected from
the interface. But at the interface fluctuation vibra-
tions, either zero temperature or thermally excited, of
the transition layer with near-resonant &equencies always
have nonzero temperature-dependent amplitudes of the
relative interface displacements Ao, ——Ao;(T). Since we
assume that low-frequency interface resonant modes are
almost dispersionless and, according to Eq. (14), one has

Ao —uoq in these modes, the temperature dependences
of the mean-square amplitudes (Ao, (T) ) of relative in-
terface fluctuation displacements can be described [in the
small-amplitude limit (Ao~,. (T)z) (( az] in a model of a
two-dimensional array of (anisotropic) Einstein oscilla-
tors:

(~'.(T)') = (&o„(T)') =
2Nmquo~j

cath( f, (D (T) ) =
(2kaT) ' 2Xmz~oz

(hao~ 5
coth

( 2kgyT j (16)

where N is the number of soft-crystal atomic layers in a
"heavy transition layer" [see Eq. (2)].

The anharmonic interaction of incident acoustic waves
(with near-double-resonant frequency w) with fluctua-
tion resonant interface vibrations is described by the
term B,*&&At, (u)A& (wo) in right-hand side (rhs) of Eqs.
(11) and results in the interface stress o„.q with near-
resonant frequency. Therefore the incident from a rigid
crystal high-&equency phonons excite the interface os-
cillations with near-resonant &equencies which in turn
emit phonons in a soft crystal. In the inverse inelas-

I

tic process of second- (or multiple-) harmonic genera-
tion, the incident soft-crystal phonons with near-resonant
&equencies excite the interface oscillations with near-
double- (and near-multiple-) resonant frequencies which
emit high-frequency phonons in a rigid crystal.

To describe in the main approximation the subhar-
monic acoustic phonon transmission, we have to solve
the linear boundary problem and And the relative inter-
face displacements AI, (w) induced by the incident wave.
By solving Eqs. (6), (10), and (ll) in the linear case in
the assumption (15) for longitudinal rigid-crystal acous-
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2' A.*.
TRH(~) = "~(~ —~«).

Z1/
(20)

The coeKcient TRH(ld) of resonant harmonic power trans-
mission of' transverse acoustic phonons is correspondingly
equal to [2irA* /Zi, ]b(ld —ldp~~). Using Eqs. (6), (10), and
(11) in the linear case for the arbitrary ratio between Zp
and Z1Z2 [instead of the assumption (15)], we can show
that for given resonant frequencies the coefFicients of reso-
nant harmonic phonon transmission reach their maximal
values of TR'H(ldp~~ ~) = 1 (when correspondingly r = 0)
for Zo~ &

——Zqq, ~Z2q ~. This resonant surface phenomenon
is similar to the acoustic clearing of an interface between
two media due to a macroscopic quarter-wavelength tran-
sition layer with acoustic impedance equal to a geomet-
ric mean of the impedances of the contacting media (see,
e.g. , Ref. 8).

In the high- frequency domain ld ) ld2 „, efFective
acoustic impedance of a soft crystal is a pure imaginary
one Z2l = —iZ2'l and Eq. (17) describes in this case
(almost) total re8ection of incident rigid-crystal acous-
tic waves, when ~r~ — 1 and in a soft crystal there
are only evanescent high-frequency waves decaying into
the bulk. To describe fluctuation subharmonic trans-
mission of high-frequency phonons, we consider rigid-
crystal longitudinal waves normally incident at the in-
terface with amplitude ui and near-double-resonant fre-
quency ld = 2ldp~~ + e (e is a small detuning). In the
assumption Z2& (( Zq~ for the high-frequency dynami-
cal impedance of a soft crystal, &om Eq. (19) we find
the relative interface displacements A2 induced by the
incident wave: ~A2/ui

~

= 8/3. With the same as-
sumption we find that the interface stress with near-
resonant frequency p = no~~ + e is described by the term

tic waves with amplitude uq normally incident at the in-
terface, we obtain the amplitudes of reflected rui and
transmitted tui waves as well as the amplitudes of the
displacement of the transition layer u' = tuz and of rel-
ative interface displaceinent b, 2 = u' —ui(l + r):

ZllZ211d + Z[Zll (Azz —p lad ) —Z2lA,*',
]

Zil Z2 lid + 1[Zil (A —p~ ld ) + Z2l A* ]

8 2 'Z A*'
(18)

u1 ZllZ21ld + &[Zil (A~~ paid ) + Z2LA~~]

A2 =—u' —ui(1+ r)

Zl!Z2lld + &[Zil(A~~ paid ) + Z2lA~g]

From Eq. (18) we see that for lorna frequ-ency waves
(with ld « ldp~ ( ld2~~„), the coeKcient of acoustic
power transmission across the interface is small, T(ld) =
~t~ Z2l/Zil —4Z2l/Zil &( 1, but we have a strong res-
onant enhancement of the coefficient for ld ldp~ (see
also Ref. 8). For low-damping interface oscillations (when
A*' = A*), the coeKcient of resonant harmonic power
transmission, TRH(ld), of longitudinal acoustic waves can
be approximately written in the assumption (15) in the
form of a b function, which is convenient for the further
calculation of phonon heat Aux across the interface [see
Eq. (24) below]:

7B,* ui(b, p~ )

where A — (Z2 + I' )/(2p, ) is a parameter describ-
ing the damping of the oscillator [see Eq. (13)]. After
the normalization of the interface absorption I(e) by the
flux. of the energy Io ——u&~ Z& 4u&~OZ& in the in-
cident rigid-crystal acoustic wave, we obtain the coefIi-
cient of the power transmission T(ld) which finally de-
termines the heat flux due to the transmission of acous-
tic phonons from rigid crystal 1 to soft crystal 2. In
the considered case of low-damping interface oscillations
A (( ldp (when Z2 + I' « Zp), &om Eq. (21) it follows
that the coefficient of fluctuation subharmonic transmis-
sion, TFsH (ld, T), of longitudinal rigid-crystal phonons
into transverse waves in a soft crystal can be written
in the form of a b function:

7~+*277rB, (Ap (T) )
16A* Zii

(22)

In the case of longitudinal acoustic phonons nor-
mally incident at the interface from a rigid crystal with
frequency w close to 2~0~, the coefficient of fluctua-
tion subharmonic power transmission, TFsH(ld, T), into
longitudinal waves in a soft crystal has a resonant form
similar to Eq. (22):

7 B,*,', (Ap, (T) ')
16Azz Zll

Using Eqs. (6), (10), and (11) we can show that for
oblique incidence at the interface of high-frequency rigid-
crystal phonons, the corresponding coefficient of Quctu-
ation subharmonic transmission also has a characteristic
resonant form similar either to Eq. (22) or to Eq. (23).

In the case of rigid-crystal transverse (or longitudinal)
phonons normally incident at the interface with near-
triple-resonant &equency ld 3ldp~~ (or with ld 3ldp~),
the coefficient of fluctuation subharmonic power trans-
mission into transverse (or longitudinal) elastic waves in
a soft crystal has a resonant form similar to Eqs. (22)
and (23) and is proportional to ([C (b,p (T) ) +
(1/3)C y„(Apy(T) )] /(A* Z„))h(ld —

31dp~~) (or to

[C,*, (Ap (T) )/(A*, Zil)]8(ld —3ldp~)). Similar prop-
erties possess the coefficients of fluctuation subhar-
monic transmission of rigid-crystal phonons incident with
higher-order near-multiple-resonant frequencies. It is
important that, contrary to subharmonic generation of
coherent acoustic waves, the coefFicients of fluctuation
subharmonic transmission do not depend on the ampli-
tude of incident acoustic waves and fluctuation subhar-
monic phonon transmission is a nonthreshold dynamical

rr, , i = B,* A2Ap cos(pt) in Eq. (7). This surface force
is applied to the interface oscillator with the damping
given by the imaginary part of Eq. (13). From the ex-
pression for the response of the oscillator to the driving
force with near-resonant frequency, we readily find the
average absorption I(e) (per unit time and unit area) of
the acoustic energy by the interface oscillator:
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phenomenon, which is significant for its contribution to
Kapitza thermal boundary conductance across the inter-
face.

The heat flux qi(T) (per unit area of the interface)
due to the transmission of acoustic phonons from rigid
crystal 1 to soft crystal 2 with the coeKcient of power
transmission T~p(m, T) can be written as follows (see,
e.g. , Ref. 16):

qi(T) = —,
' &1 msLx

n(tv, T)Di(ar) bc' (v, ) (TAp (cu, T))dc'.

Here n(tv, T) is the Bose-Einstein distribution func-
tion for phonons with frequency w at temperature T,
Di(cv) is the density of phonon states in a rigid crys-
tal 1, (v, ) and (Tp, p(w, T)) are the average (over the
three acoustic phonon branches) values of the z com-
ponents of the group velocities and coefficients of power
transmission of the incident phonons. Kapitza thermal
boundary conductance eric(T) is proportional to the tem-
perature derivative of the heat Aux across the interface:
o~ (T) oc Oqi (T) /OT

In order to compare the contributions to the heat Aux
and, correspondingly, to the Kapitza conductance of Buc-
tuation subharmonic and nonresonant harmonic phonon
transmission, we have to take into account a steep depen-
dence of the density of phonon states in a rigid crystal
[Di(cu) oc tv ] in the low-frequency domain w &( t'ai

and that the coeKcient TNRH of nonresonant harmonic
transmission of acoustic waves across a sharp interface
between acoustically strongly mismatched crystals is of
the order of TNRH 4ZiZ2/(Zi + Z2) 4Z2/Zi (& 1
[see Eq. (18)]. For T & 2htvp vrhich (approximately)
corresponds to room temperatures used in [6], from
Eqs. (22)—(24) we can estimate the ratio between the
heat flux qisH(T) due to fluctuation subharmonic (one-
half-harmonic) transmission across the interface with a
resonant transition layer of high-frequency rigid-crystal
phonons (with ar & tv2 „)and of the heat flux qiN~H(T)
due to nonresonant harmonic transmission across a sharp
interface of lovr-frequency rigid-crystal phonons (with

& tV2 max « +1 max) .

Vise(&) &*'(&o(T) )
qiNRH(T) AZ2~o

According to Eq. (16), this ratio increases with in-
creasing temperature. For soft crystals with relatively
lovr melting temperatures (such as crystals of Pb and
Au) or quantum crystals of He and 4He, at elevated
temperatures the mean-square amplitudes of relative in-
terface fluctuation displacements can reach the large
values of (4 o~ (T) ) A2/R*2 [vrhen the harmonic-
oscillators approximation (16) fails]. (Extremely large
thermal vibrations of weakly bonded adsorbed atoms
have been recently observed on crystal surfaces at ele-
vated temperatures. ) In the case of large thermal vi-
brations of soft-crystal atoms in the interface layer, the
ratio between Quctuation subharmonic and nonresonant
harmonic heat fluxes (25) reaches the large value of

ZltZ2ta + t[Z2tA~~ Zit(A pstv )]
ZitZ2ttv + t[Z2tA*' + Zit(A*' —p. tv2)]

'

2iZ2g A*'

ZitZ2tCd + t[Z2tA + Zit (A —patd )]
2Z2t(Ziti' + zA )

ZitZ2tcu + t[Z2tA*' + Zit(A*' —p.cu')]
u' —u~t

(26)

2Zy y Z2g&= u2 29
ZitZ2ttv + t[Z2tA + Zit(A~~ ps~ )]

From Eq. (27) we see that for lotv frequency wave-s

(With cV (( tVpii & tV2m~x), the COeffiCient Of harmOniC
acoustic power transmission across the interface is small,
T(cu) = it~ Zit/Z2t —4Z2t/Zit (& 1, but vre have a
strong resonant enhancement of the coefficient for u =

For low-damping interface oscillations, the coeK-
cient TaH(tv) of resonant harvnonic povrer transmission
of transverse waves can be approximately written in the
assumption (15) in the form of a h function, similar to
Eq. (20):

A/Z2~o —Zp/Z»& l. At elevated temperatures the
contribution to the heat flux qi(T) due to fluctuation
subharmonic transmission of rigid-crystal phonons inci-
dent vrith near-triple-resonant frequencies td 3cdp (and
with higher-order near-multiple-resonant frequencies) is
of the same order of magnitude as the contribution due
to fluctuation one-half-harmonic phonon transmission. It
means that the additional heat Aux from a rigid to a soft
crystal due to Huctuation subharmonic transmission of
rigid-crystal phonons incident with &equencies above the
highest frequency in a soft crystal increases with increas-
ing ratio between Debye temperatures of rigid and soft
crystals. (In the case of diamond and Pb or Au this
ratio is approximately 25 or 14, respectively. ) At ele-
vated temperatures the phonon heat flux qiRH(T) due
to resonant harmonic transmission [vrith the coefficient
TRH (ar) given by Eq. (20)] of rigid-crystal phonons across
the interface with the transition layer also has a relatively
large value of qiRH(T)/qiNRH(T) Zo/Z2 && 1. There-
fore due to Huctuation subharmonic and resonant har-
monic phonon transmission, a two-dimensional interface
transition layer can substantially contribute at elevated
temperatures to the Kapitza conductance between crys-
tals with very diferent vibrational spectra.

To describe the main features of inverse inelastic pro-
cess of acoustic second-harmonic generation at a two-
dimensional transition layer, we consider the normal in-
cidence from a soft crystal of transverse acoustic waves
with frequency ~ ~ wq „and amplitude u2. In this
case we have re8ected and transmitted transverse waves
with frequency u and transmitted longitudinal waves
with double frequency 2u and amplitude uq 2. By solv-
ing in the assumption (15) the linear boundary problem
for the waves with frequency w, we find the amplitudes
of rejected ru2 and transmitted tu2 waves as well as the
amplitudes of the displacement of the transition layer
u'—:(1+r)u2 and of the relative interface displacement
Ai = u' —u2t [cf. Eqs. (17)—(19)]:
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2' A*
RH( ) —

Z ( oii).
1t

(3O)
a resonant form similar to Eq. (35):

4u22

1+ (2p, e/Z~)~
'

o~~ i = ~B Ai cos(2~t).

(31)

(32)

Since ui q
— ~o» i~/(2cuZii), from Eqs. (31) and

(32) we find the form of the coefficient TRDH(w, T) of
resonant interface power transmission of transverse soft-
crystal phonons into longitudinal second-harmonic acous-
tic waves in a rigid crystal:

4Zy)u~ 2 vrB* u2
TRDH(~) = Z, ' = A'*Z '~(~ — oii).

Z2gu2 A~~ Zg)
(33)

In the case of longitudinal acoustic phonons normally
incident from a soft crystal with amplitude u2 and
frequency w close to no~, the coefficient T&~DH(w) of
resonant power transmission into longitudinal second-
harmonic acoustic waves in a rigid crystal has a resonant
form similar to Eq. (33) and is (approximately) equal
to (vrB,*,uz/(A„Zii) jb(w —no~). In both cases the co-
eKcients of resonant second-harmonic transmission are
proportional to the square of the amplitude of incident
soft-crystal acoustic waves.

Another channel of second-harmonic phonon transmis-
sion is determined, as in the case of subharmonic trans-
mission, by the interaction of incident soft-crystal acous-
tic waves with fluctuation resonant vibrations of the
transition layer. Fluctuation generating interface stress
for second-harmonic elastic waves in crystal 1 is deter-
mined by Eq. (11), instead of Eq. (31), as follows:

o„i ——B,* AiAO cos(2~t). (34)

From Eqs. (31), (33), and (34) in the assumption
(15) we find the coefficient TFDH(w, T) of fluctuation
second-harmonic transmission of transverse soft-crystal
phonons into longitudinal waves in a rigid crystal:

(35)

The coefficient TFDH(w, T) of fluctuation second-
harmonic transmission of longitudinal soft-crystal
phonons into longitudinal waves in a rigid crystal has

The coefficient TRH (ur) of resonant harmonic power trans-
mission of longitudinal phonons is correspondingly equal
to [2vrA,*,/Zii]h'(w —no~).

From Eqs. (9) and (29) in the assumption (15) we find,
for near-resonant frequencies ~ = wp~~+6 the amplitude of
relative interface displacements Aq and generating inter-
face stress a ~ for second-harmonic longitudinal waves
in crystal 1,

A* Zg)

The coeKcient of fluctuation third-harmonic power
transmission of near-resonant transverse (or longi-
tudinal) soft-crystal phonons into elastic waves in a
rigid crystal also has a resonant form and is propor-

to ([ ....( .'.( )') + ( / )&**.,(&~.( )')]'/
(A* Zi~))h((u — cuoii) (or to [C,*„,(Ao~, (T) )/
(A,*,Zii)]8(cu —u)o~)). properties possess the coefficients
of fluctuation multiharmonic transmission of soft-crystal
phonons across the interface. It is important that in all
cases the coeKcients of fluctuation multiharmonic trans-
mission do not depend on the amplitude of incident soft-
crystal acoustic waves.

From the comparison of Eqs. (35),(36) and (22), (23)
we see that the coefficients TF'DH(u, T) of fluctuation
second-harmonic phonon transmission are similar to the
coefficients TF'sH(w, T) of fluctuation subharmonic (one-
half-harmonic) phonon transmission which reflects the
reciprocity of these inelastic interface dynamical pro-
cesses and their contribution to the phonon heat flux
across the interface.

In conclusion, the existence of low-frequency almost
dispersionless intrinsic resonant vibrational modes in the
transition layer at the clean interface between two media
(rigid and soft crystals) with very difFerent elastic prop-
erties is predicted. It is shown that nonlinear interaction
of bulk acoustic phonons with fluctuation resonant vi-
brations of a two-dimensional transition layer leads to
subharmonic transmission across the interface of acous-
tic phonons incident from a rigid crystal with frequen-
cies above the highest frequency in a soft crystal, and to
second- (and multiple-) harmonic transmission of acous-
tic phonons incident from a soft crystal. It is shown that,
contrary to subharmonic and multiharmonic generation
of coherent acoustic waves, the coeKcients of fluctua-
tion subharmonic and multiharmonic phonon transmis-
sion do not depend on the amplitude of incident acous-
tic waves and are determined by temperature-dependent
mean-square amplitudes of relative interface fluctuation
displacements. It is emphasized that fluctuation subhar-
monic phonon transmission is a nonthreshold dynamical
phenomenon which is significant for its contribution to
Kapitza thermal boundary conductance across the inter-
face. In both cases of fluctuation subharmonic and mul-
tiharmonic phonon transmission, a two-dimensional res-
onant interface transition layer leads to considerable en-
hancement of the coupling between phonons in the media
with very diferent elastic properties. A substantial con-
tribution at elevated (room) temperatures of inelastic in-
terface phenomena to the Kapitza conductance between
very difFerent solids (such as diamond and soft crystals
like Pb or Au) is considered. The existence of low-

frequency resonant modes at the clean interface between
crystals with very diferent vibrational spectra can be
verified by infrared-absorption or Raman-scattering
spectroscopies which have already been used for the in-
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vestigation of two-dimensionally localized and planar vi-
brational modes at buried monatomic layers and inter-
faces.
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