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Tetrahis(dimethylamino)ethylene-C6o. Multicomponent superexchange and Mott ferromagnetism
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An interacting, quasi-one-dimensional, orbitally degenerate hopping model is introduced, motivated
by the structure of tetrahis(dimethylamino)ethylene (TDAE)-C60. The ground state is a Mott insulator
for average ionization C60, with several possible magnetically ordered phases. The effective Hamiltoni-
an is derived via a multicomponent superexchange transformation. Orbital degeneracy is represented as
an additional "isospin" degree of freedom. We explore the phase diagram of the one-dimensional model
in interaction parameter space, and identify various special points: (i) an SU(4) antiferromagnet (solved
by Sutherland and approximated by a large-N mean-field theory), (ii) a spin-ferromagnet/isospin-
antiferromagnet, and (iii) an isospin-ferromagnet/spin-antiferromagnet. The exact ground states for (ii)
and (iii) are proven using Marshall's theorem. Away from these points we determine the phase diagram
in the classical limit. Three-dimensional ordering for case (ii) is found using interchain mean-field
theory. We find two transition temperatures: Tc ™ +JiJ~~ for the ferromagnetic spin order and T~ ~ Ji
for the antiferromagnetic isospin ordering, where Ji~, Jj are the intrachain and interchain couplings, re-
spectively. We discuss the relevance of our theory to recent experiments on TDAE-C«.

I. INTRODUCTION

The synthesis of the fullerene (C6o) into molecular crys-
tals with electron donors has resulted in materials with
remarkable electronic properties. First, superconductivi-
ty was discovered in alkali fullerenes A3C6o (A = K, Cs,
Rb) (Ref. 1) at relatively high temperatures of T,
(33 K. Soon thereafter ferromagnetism was found in
TDAE-C6p at T, = 16 K, ' where TDAE is
tetrakis(dimethylamino)ethylene, C2N~(CH3)8 (the
stoichiometry is a 1:1 ratio of TDAE to C6o). Some strik-
ing aspects of this material are its value of T,—relatively
large for an organic ferromagnet —and its nonmetallic
conductivity, suggestive of Mott-Hubbard localization.
This is perhaps unusual, since superexchange naively pre-
dicts antiferromagnetic interactions between localized
spins in many such systems.

An obvious question is raised: Are superconductiUity in
A 3 C6o and ferromagnetism in TDAE C6o related?-While
superconductivity involves effectively attractive interac-
tions, magnetism is usually believed to result from repul-
sive Coulomb forces. (A similar mystery underlies the
proximity of high-T, superconductivity to antifer-
romagnetism in the high-T, cuprates. ) The similarity be-
tween the materials is that both involve partially filled
conduction bands made of t,„orbitals of C6p. Also one
expects similar intr amolecular electron-vibron and
electron-electron interactions.

The primary differences between the two systems are in
their crystalline symmetries and C6p ionizations. While
A 3 C6p is a fcc crystal with cubic symmetry in which the
C6o molecules are triply ionized (C6o ), TDAE-C6o has a
c-centered monoclinic unit cell, which gives nse to pre-
ferred hopping along the c axis, and singly ionized C6p
One of our aims is to show here that these differences are
indeed responsible for the difference between the super-

conductors and the ferromagnet. Our model elaborates
upon the physical mechanism identified by Seshadri
et al. , who pointed out that ferromagnetism is a conse-
quence of both molecular degeneracies and a triplet
C6p ground state. ' We also investigate the effects of
hopping and interactions in an anisotropic crystal envi-
ronment. The hopping Hamiltonian is mapped, through
superexchange, to a multicomponent spin model which
possesses both true spin as well as "isospin" degrees of
freedom, the latter representing doubly (rather than tri-
ply) degenerate molecular orbitals in the presence of a
symmetry-breaking crystal field.

The inclusion of crystal fields, we show, can give rise to
insulating ferromagnetic behavior even when there is pair
binding in the isolated C6p-C6p system.

In the quasi-one dimensional limit, we identify special
points where the ground state is exactly known. For de-
generate pseudopotentials we obtain an SU(4) exchange
Hamiltonian in the fundamental representation, which
has been solved by Sutherland using Bethe's ansatz. ' In
another limit (large singlet-triplet splitting), we prove by
a generalized Marshall theorem that the ground state is
the fully polarized Heisenberg ferr orna gnet. To our
knowledge, this is a rare example of proven local fer-
romagnetism in a microscopically based model of elec-
tron interactions. (Other examples are the Nagaoka fer-
romagnet of one hole in the infinite-U Hubbard model
and the Hubbard model on a bipartite lattice with un-
equal sublattice sizes. Neither is easy to realize
physically. ') The global phase diagram and the effect of
interchain coupling will be calculated within a mean-field
approximation.

II. HOPPING MODEL

Electron-spin-resonance measurements' confirm that
TDAE donates a single electron to C6p. Thus we consid-
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er a conduction band formed by a tight-binding hopping
on a lattice of C60 molecules with a filling of one electron
per site. In Ref. 6, the intermolecular distances were
found to be 9.98 A along the c axis and 10.25 A within
the a b-plane. (In comparison, in A3C60, the distances
range from 10.07 to 10.25 A.}

The composition rules of t&„@tj„=aghg. t7g for rep-
resentations of the icosahedral group (the symmetry
group of C60) are identical to the corresponding represen-
tations of the spherical group. We simplify notations by
using angular momentum quantum numbers instead of
the icosahedral group representations for the molecular
orbitals:

icosahedral ~spherical,

~a, )~~0,0),
It,s )~ I

l, mL ) (mL = —1,0, 1),
(hg )~(2,mL ) (mL, = —2, —1,0, 1,2),

where ~L, mL ) are eigenstates of angular momentum
operators L and I.'. We identify the z axis with the c
direction.

We denote by t&i (5) the hopping matrix element be-
tween t,„orbitals l and l' on sites separated by a nearest-
neighbor distance 5. The Harniltonian is then given by

&=——g [tlI,(5)c, (i)ci (i+5}+H.c. ]
1

i, 5, o

is one of the eigenstates of &;,„.The electron-electron
and the electron-vibron interactions respect the molecu-
lar symmetry and are independent of spin and therefore
do not lift the degeneracies given in Eq. (3). These in-
tramolecular interactions are parametrized by three pseu-
dopotentials uo, u &, and u 2, which are the interaction en-

ergies in the I, =0, 1.=1, and L, =2 angular momentum
channels, respectively. The uL are the low-frequency
limit of the two-electron vertex function, which can be
computed by taking differences of relaxed ground-state
energies E"of the C6o" ions

——E' —2E'+Eo,

where L, is the total angular momentum of the two-
electron states. (The spin S of the two-electron state with
angular momentum I. is determined from the require-
ment that L+S be even. ) Attractive pseudopotentials
uL & 0 are also called "pair binding energies". '

Thus we can write &;,„as
uL [L,S;mL, ms)(L, S;mL, ms( .

L,S
mL m~

III. CRYSTAL-FIELD EFFECT

The crystal-field interaction in the t,„shell is modeled
by

+g &;,„(i)+g &cF(i), (2) &CF= —b, g 1 cl~ (i)ci (i),

i2, 0;m„O)Xs,
~L, S;mL, ms ) = ~1, 1;mL, ms ) X9,

i0, 0;O, O& xl,
(3)

where I, S, mI, and m& denote the total angular momen-
tum, total spin, angular momentum polarization, and
spin polarization quantum numbers, respectively. In
second-quantized notation, these states are written as

~L,S;mL, ms ):—g M ti(L, S;mL, ms )c cd lo &

aP
(4)

where a= Cl, cr) ranges over six possible values. The
above equation defines the matrices M &(A), where ~A)

where c& (i) creates, at site i, an electron of spin polariza-
tion cr = 1', J, and orbital quantum number l = —1,0, 1 (the
t,

„

triplet). ~;,„(i)is the ionic interaction Hamiltonian
which discourages multiple-electron occupancy of the C6o
molecule at i, and &c„(i)is the crystal-field Hamiltonian
discussed below, which partially lifts the threefold orbital
degeneracy of the t,

„

level.
To reAect the quasi-one-dimensionality of TDAE-C6p,

we assume that the largest hopping integrals arise when 5
lies along the c axis.

&;,
„

is defined by the two-electron spectrum on a C6O

molecule. In the absence of crystal fields, the two-
electron states in the t,„shellform three multiplets,

where b, )0. Equation (7) implicitly assumes that the
crystal fields resolve the threefold t,„degeneracy into a
doublet (i=El) at energy —b, and a singlet (l=0) at
zero energy. In fact, this is true only for crystal fields
which are rotationally symmetric about an axis which
pierces the center of a pentagonal face of C60. In general,
a tetragonal or monoclinic crystalline symmetry will
resolve the triply degenerate t&„ level into three distinct
levels. We shall show in the following that ferromagne-
tism in TDAE-C60 follows from the (twofold) degeneracy
of molecular orbitals in the conduction band. If one
adopts the model of Eq. (7), then b, & 0 would yield a non-
degenerate conduction band and hence antiferromagnetic
superexchange, a state of afFairs apparently ruled out by
experiment.

We also assume b /~ uL ~
))1, which allows us to ignore

the higher-lying l=O orbital entirely, restricting our at-
tention to the l =+1 states. Hopping along the chains is
then assumed to preserve the orbital quantum number l.
This, too, is a rather strong assumption and one which
cannot be justified given our lack of information concern-
ing the relative orientation of consecutive C6o molecules
along the c axis. It seems likely to us that the essential
features of our model (e.g. , ferromagnetism) will not be
severely altered by retaining all three of the t &„orbitals in
a more complicated Hamiltonian, with a weakly split
low-lying doublet.

We are then led to the Hamiltonian



10 116 DANIEL P. AROVAS AND ASSA AUERBACH 52

I c~~(1)c1~(1+c)+H c. ].

i 1&„,= ——g t11 (5i)[c1 (i)c,. (i+5i)+H c. ].,2

l, l', a

IA(i) &(A(l)l, (8)

l
ll' (5l ) +tl tl (16)

where the sign of the off-diagonal elements is positive for
5i=+x and negative for 5i=+y.

TDAE-C6p is not a superconductor, even if up &0 is pair
binding.

For the hopping matrix t11 (5&), we assume the simple
form

tj. +tj.

—(c+&c 1+c+~c t )IO) = Il, 1;0,0),1

2

ct+ict
& Io) =

I 1, 1;0,—1), (10)

where the two-electron states IA) are those of Eq. (3)
after projection onto the subspace containing no I =0 or-
bitals. This projection eliminates six of the nine I =1,
S=1 states and three of the five L, =2, S=O states. In
addition, another state from the L, =2, S=0 multiplet, as
well as the I.=0, S=0 states, yields the same result un-
der projection (a state of indefinite L).

Explicitly, the surviving states I A ) are a triplet of en-

ergy u& =—u&,

c',c', Io& =
I
1, 1;o,»,

IV. MULTICOMPONENT
SUPEREXCHANGE HAMILTONIAN

Experiments have shown that TDAE-C6p is insulating
at low temperatures, consistent with the existence of a
gap (u ) to charge fluctuations. We believe this material
to be a Mott insulator, and in this section we derive an
effective Hamiltonian for the low-lying spin and orbital
excitations. The superexchange model is an expansion in
the small parameter tl/u, though presumably even for
t~'/u & 1 a similar superexchange model with renormal-
ized couplings may be applied. Within the subspace of
singly occupied sites, one has the superexchange Hamil-
tonian

a doublet of energy u 2 ——u 2, P&q,p(1——P)(gf;,„)'(1 P)&q, P, — (17)

c+,c+g Io& = I2, 0;2,o),
c',c', IO) = I2, O; —2,O),

and a singlet of energy up ——
3 Qp+ 3

Q

—(c+yc 1 c+1c t )Io)
2

where I' projects onto the subspace where each site is
singly occupied. For a particular link (ij), one has

&(ij)=gJ ~PI(i)S~(j )+(i~j ),
a,P
a, P

—I2, 0;0,0) — —Io, o;0,0) .1 &2
3

'''
3

These states define the matrices M & through

(12)
J p~=g (tM") p(M t) p,

1

QA

where

(18)

IA) —=—yM.'@'.cptIo) .
1

aP
(13)

Calculations of the pseudopotentials QL, based on rnicro-
scopic models of electron-electron and electron-vibron in-
teractions, have appeared in the recent literature. ' '
For an order-of-magnitude estimate of the pair binding
energy up of C6p C6p in K,C6p we appeal to the
weak-coupling BCS formula

T

1

N(~„)Iu,I

(14)

and the experimental values' of T, =19 K and co=1100
cm ', together with band theory estimates' of the densi-
ty of states N(eF ) =7.2 states/eV spin. This yields

Sti(i) =c (i)cti(i)

is a generalized spin operator at site i and tM is the ma-
trix product of t and M . The indices a, P, a, and P run
over the four single-particle orbitals I + f, + $, —f, —$ ],
and single occupancy means that TrS(i) = 1. Hence there
are 15 independent components to Sti(i), corresponding
to the 15 generators of the group SU(4). The four possi-
ble states at each site constitute a basis in the fundamen-
tal representation of SU(4).

It is also possible to represent the S& in terms of spin
and "isospin" operators, viz. ,

St,'= —g c1 (i)H .c1 .(i),
l, o, o'

u p ( A 3 C6p ) 0.03 eV (15)
1I =g CI ( l }%11CI' (l).

l, 1',a
(20)

This energy is a sum of the negative electron-vibron in-
teractions' ' and positive (or negative' ) electron-
electron interactions. However, since u p

=—', Qp+ 3 Q2 we
have that up&0 if u2&2IupI, thus explaining why

where v. are the Pauli matrices. The 15 independent ele-
ments of S& can then be expressed in terms of the 15
operators I S",I",S"I"].
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V. ONE-DIMENSIONAL LIMIT

We first consider the purely one-dimensional (1D) case,
where t&t. =0. In this limit, the effective Hamiltonian % is
parametrized by three superexchange constants

mean-field Hamiltonian is given by

"=g (A, +2Q cosk)ct(k)c (k}
k, a

2(tll)2
J~ —= , M=0, 1,2, (21)

+2 —A, N,J (26)

and we can write

&= g(AS„.S„+i+BI„~I„+i
ri

+ ri ri+1+Dsri sri+]I

+ES„.S„+iI„'I„'+,+F),
where

A = —
2 J1+J2+ —,

' Jo

&=—,'J, —
—,'Jo,

C=Jo-J2

D =2Ji+2J0,
E=4J —4J

F= —-'J —-'J —-'J
8 ~ 4 2 8

(22)

(23)

and minimization of the ground-state energy for the P =4
case gives Q = J/—rl&2,. 1,=J/rr, and a mean-field
dispersion

J
e(k) =—(1—&2 cask) . (27)

One thus has four degenerate quarter-filled (k~= —,'n)
bands for P=4. Although there is no true long-ranged
order, the susceptibihty diverges at the nesting wave vec-
tor 2kF =

—,
' m, which describes a commensurate spin-

density wave of period 4. The period 4 arises because the
spin chain is in its fundamental representation, and by
"4-ality" one needs four sites to make a singlet. [A
separate class of SU(P) models in which sites on alternat-
ing sublattices transform according to fundamental and
antifundamental allow a singlet to be formed within any
consecutive pair of sites, and such models exhibit long-
range order via dimerization. ]

This model possesses a global SU(2)XU(1) symmetry;
i.e., & commutes with Q„S„andwith Q„I„'.Enlarged
symmetries occur when JO=J2, where the symmetry
group is SU(2) X SU(2), and when Jo =Ji =Jz, where the
symmetry group is SU(4).

A. SU(4) point

In the limit where u
&

=u2 =uo ——u and hence

(24)

B. Special points of SU(2) XSU(2) symmetry

Along the surface u2=uo, our Hamiltonian possesses
an SU(2)XSU(2) symmetry. There are then two special
limits in which we can determine the exact ground state.
One such limit is uo —+ ~, where the interactions are fer-
romagnetic in the spin channel and antiferromagnetic in
the isospin channel; we refer to this as the "FX A mod-
el." The other limit ( "A XF model" } occurs when
u

&

—+ ~, where the interactions are antiferromagnetic in
the spin channel and ferromagnetic in the isospin chan-
nel. The corresponding Hamiltonians are given by

&=Jg g Sp(n)SP(n+ I ),
ri a, P

(25)

the Hamiltonian of Eq. (18) possesses a global SU(4) sym-
metry and is given by a sum over noninteracting spin
chains, each of which is governed by

4(t
~ex ~

= g (S„S„+,+ —,
' )( —,

' —I„.I„+,),
u)

4(tll)& g( —,
' —S„.S„+i)(„„+i+—,') .

uo

(28)

(29)

where J=2(tl') /u. While this model is not directly
relevant to TDAE-Cso (it is not ferromagnetic in the spin
channel), its identification on our phase diagram is
worthwhile because it is exactly solvable. The model has
been solved using Bethe's ansatz by Sutherland, who
solved the problem of the general SU(P) Heisenberg anti-
ferromagnet in the fundamental representation, the P =2
version being the one originally solved by Bethe himself.
The general model features P —1 gapless elementary exci-
tation branches. We presume, based on what happens in
the SU(2) model, ' that for a chain of N sites, where N is
an integer multiple of P, the ground state is an SU(P)
singlet and the low-lying excitations transform according
either to the singlet or adjoint representation.

This is essentially what happens in the fermion mean-
field theory of the SU(P) antiferromagnet. The

It is possible to prove the following.
Theorem. &zx z has a ground state in which the spin

variables are fully polarized and the isospin wave func-
tion is given by Bethe s solution to the spin-half antifer-
romagnet, i.e.,

~F X A ) = ~F )s ~Bethe)t . (30)

A corresponding result holds for &~&r, with spin and
isospin variables exchanged.

Proof. Because of SU(2)SU(2) symmetry of &zx„,
the total spin 5„„total isospin I„„andtheir polariza-
tions along the z axis (Ms and Mt, respectively) are good
quantum numbers. We now follow Lieb and Mattis'
proof of the Marshall theorem for the Heisenberg
model, first performing a m. rotation about the z axis of
the isospin operators on odd-numbered sites:
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+ +
I21+1~ I21+1

121+i~ I21+i ~

Z Z
121+i ~121+i

which transforms the Hamiltonian into

~Fx w ~Jg (I„'I„'+
&

—
2I„I„+~

—
2 I„I„++

&

—
~ )

This gives a trial dispersion of

co(k) = (k ~&zx„~E& =21n(2)J(1 —cosk), (38)

with J=2(t 'I) /u &. Thus the role of the antiferromagnet-
ic isospin correlations is to reduce the ferromagnetic
magnon bandwidth in the spin channel by a factor of
( —„'—I„I„+,& =ln2.

x(S„.S„+i+ )=&—rx w (32)
C. Classical phase diagram

which can be seen to be a nonpositive ("negative
semidefinite") operator in the transformed Ising basis

(33)

where

Im, m I

Ms MI 0

x ~Im,s~, ImlI &, (34)

The accessibility of all states within a given magnetiza-
tion sector by repeated application of the Hamiltonian
implies (see Ref. 24) that the ground state in the sector
(Ms, MI ) =(0,0) can be chosen to be positive definite in
the sublattice-rotated Ising basis; i.e., it obeys Marshall's
sign rule in the untransformed Ising basis

~e, &= y ( —1) " " f(Im, ', m,lI)

The ground-state phase diagram can be described by
the two dimensionless ratios uo/u, and u2/u, . We
study the classical (large-s, large-I} ground states of Eq.
(28) by minimizing the bond energies with respect to
(S„.S„+& &, (I„.I„+& &, and the ordering direction of I.
The results are plotted in Fig. 1. Also identified in the
figure are the three special models discussed above. It is
interesting to note that the SU(4) symmetry point is at
the border of four distinct classical phases. Thus we see
that the high ground-state degeneracy of the classical
SU(4) point is lifted by quantum fiuctuations. Although
the ground state of the SU(4)-invariant Hamiltonian of
Eq. (25) has no long-range order, it exhibits gapless ele-
mentary excitations at wave vectors k =0, —,'~, m, —,'m.

VI. THREE-DIMENSIONAL ORDERING
IN THEI X A MODEL

f( Im;, m; } ) &0 . (35)

Since the same Marshall signs hold for the state of Eq.
(30), which has a representative in the sector
(Ms, MI ) = (0,0), the overlap

Consider an anisotropic Hamiltonian of the form

&=&o——g J~ (5~)Q, (i)Q„(i+5,)1

i, 5~

—g ho(i)Q, (i), (39)

(e,~F x ~ &~0, (36)

which proves that the ground state
~ %o & must also have

the q~~~t~m ~~mb~~s ~tot = 2+ and Itot =0
By symmetry, the ground state does not depend on M&,

and we are free to choose Mz= —,'N as a representative.
Note that

~ %o & is indeed an eigenstate of the spin-triplet
projection operator (S„S„+,+ —,') with eigenvalue one.
It follows from Eq. (28) that the isospin part of the wave
function is the ground state of the spin-half antiferromag-
netic Heisenberg chain, given by Bethe s ansatz. This
completes the proof.

Unfortunately, our theorem does not allow us to deter-
mine the excitations of &~x „

in an exact form. One can
construct exact excited states of the Des-Cloizeaux-
Pearson Faddeev-Takhtajan type in the isospin chan-
nel, ' ' but the construction of ferromagnetic spin waves
is not straightforward because of the antiferromagnetic
isospin correlations. Nevertheless, gapless ferromagnetic
magnons do exist, since the ground state breaks SU(2) in
the spin channel. We can model these modes in the
single-mode approximation (SMA) as

~k &=s„-~e,&/Q(e, ~s+„s„-~e,&,

IFM)s IBethe)i

U2 Ul I. iver
HeIs

SU(4}

0:.—

I )UE)UE
II II II II

lsin 9

where &o is a sum over one-dimensional Hamiltonians
for a set of chains, 5~ is a nearest-neighbor separation

sa — g e
—iknsa1

k Q~ 1k

n

(37} FIG. 1. Ground-state phase diagram for the Hamiltonian &
of Eq. (22).
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vector in a direction perpendicular to the chains, the
Q, (i) are a set of local operators (e.g. , magnetization) in-
dexed by a, and h, (i) are a set of fields. As shown by
Scalapino, Imry, and Pincus, one can treat the inter-
chain interactions by mean-field theory and thereby
derive an expression for the full susceptibility g,b (qi, q, )

in terms of g,'t, (q, ), the susceptibility for the one-
dimensional chains. The general result is

X(ql q. ~)=[I—Jl(ql)X' (q, ~)l 'X' (q. ~» (40)

yF'(q, co; T)=
n 2

—n
( i' Qq

2
) /2 Qq ( ~+Qq

2
) /2 Qq

»Qlql
1 T

nk = = ~2mS5(k),ck/T p+Qk2
(42)

where Ek =P+2Q(1 —cosk)=p+Qk is the mean-field
Schwinger-boson dispersion, which at low temperatures
( J~~ && T) is given by

Q=JiiS, P=T /4Ji~iS (43)

(we have taken k~ =ill=a =1 here, where a is the lattice
constant). The approximation in the second equation of
Eq. (42) is valid for T))J~~ and Qk && T. The static
k =0 susceptibility is then

where Ji(qi)=ps Ji(5i)e is the spatial Fourier
l g~'5~

transform of the interchain coupling matrix. [Note that
the quantities y, Ji, and y' in Eq. (40) are matrices. ]
This approximation also may be employed at finite tem-
perature.

Consider now the FX A model discussed above. At
finite temperature T, long-range ferromagnetic order is
destroyed and the global SU(2) XSU(2) symmetry is re-
stored. This means that the susceptibility matrix
y,'b (q„co)is diagonal, where a and b each represent any
of the 15 operators [S,I~,S I~].

As a crude approximation to the low-lying excitations
of the FX A model, we assume independent ferromagnet-
ic and antiferromagnetic spin waves as discussed above.
In the ferromagnetic sector, we have J~~ =41n(2)(t") /ui,
owing to the reduction in the ferromagnon bandwidth
due to the antiferromagnetic isospin correlations. The
full dynamic susceptibility in the ferromagnetic sector is

g(q, co; T) =i f dt e'"'( [8(q, t), 8t( —q, O)] ), (41)
0

with 8=S+, and is well-approximated within the
Schwinger-boson mean-field theory of Refs. 21 and 29 [a
correction factor of —', has been included in Eq. (42), as
discussed in Ref. 21]:

course, there is no true long-range order, even at T=O),
one finds

y„(m+q,co; T)= R R1 m+ Uq co —
Uq

m T 2mT 2mT
(45)

where

lSQ

R(u)= ds
v'sinh(s )

=v'~/2lu
I [&+i sgn(u ) ]

=ao+ia, u+ . . (lu l «1) . (46)

a0a &co

gg (77+q, co; T)
772T2

(47)

Note that the static susceptibility diverges more weakly
as T~O than in the ferromagnetic sector.

In the mixed F Asector, -where the operator in Eq. (41)
is, e.g., 8=S"I», we may use the assumed independence
of ferromagnetic and antiferromagnetic magnons to write

y~„(m+q,co) = f dp f dv S~(q, p)S (m q,v)—
r

1 1
X

CO+P+ V+ l E' CO P V+ l E'

(48)

where S(co)=m(1 —e )y"(co). At low temperatures
we find yz„(m,O;T)-(J~~T) ', which diverges even
more slowly than y'~ in the T~O limit.

Thus, as the temperature is lowered, a transition to a
ferromagnetic state should set in when J~y~ = 1. The in-
terchain interaction, given in Eq. (A5) in the Appendix,
gives Ji=J~~[(ti ) +(t~) ]/4(t"), where t, z are trans-
verse hopping integrals defined in the Appendix. Thus
we find Tc—-QJ~~Ji/24. The relation Tc~+J~~Ji was
also found by Scalapino, Imry, and Pincus et al. in their
studies of anisotropic Heisenberg magnets. It is conceiv-
able that at still lower temperatures a Neel ordering of
the isospin variables occurs. From Eq. (A5), we expect
that it is the I components which order antiferromag-
netically, with coupling 3Jj, leading to a Neel tempera-
ture Tz-—3aoJi/m. .

Here u =mJ/2 is the spin-wave velocity, ao=4. 44, and
a

&

——6. 16. At long wavelengths and low frequencies
(u lq l, lcol « T), one therefore has

2a0
g'z(~+q, co; T)=

7TT
'

y~(0, 0; T)= +
24T

(44)

as was first derived by Takahashi in Ref. 30.
For the antiferromagnetic susceptibility, we appeal to

the bosonization results of Schulz and of Eggert and
AfBeck, ' who have computed the dynamic susceptibility
of the S=—,

' quantum Heisenberg chain. In the vicinity
of the antiferromagnetic ordering wave vector k =~ (of

VII. SUMMARY

We have introduced a new model of interacting elec-
trons which describes quasi-one-dimensional hopping be-
tween doubly degenerate orbitals and local interactions
parametrized by three pseudopotentials. At occupancy
of one electron per site, we obtain a Mott insulator
ground state with nearest-neighbor interactions of gen-
eralized spin variables. At special values of the pseudo-
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potentials, the ground state of the model and certain ele-
mentary excitations are exactly known. These special
points include the SU(4) Heisenberg antiferromagnet in
the fundamental representation and the dual limits
AF x z and &z x~. We find a classical ground-state dia-
gram which includes a large region of spin ferromagne-
tism and orbital antiferromagnetism. We believe this re-
gime to be relevant for understanding the ferromagnetic
properties of TDAE-C6p. The ferromagnetic behavior
which arises in the limit u& «Qp Q2 is consistent with
the physical picture of Seshadri et a/. A mean-field
analysis of the interchain coupling in this regime predicts
two transition temperatures: ferromagnetic spin ordering
at Tc ~ +J~~ J~ and orbital (isospin) antiferromagnetic or-
dering at T& ~Jj . This lower transition, to our
knowledge, has not been observed experimentally.
Perhaps the isospin ordering is superseded by an isospin-
Peierls ordering (orbital dimerization) aided by the
electron-phonon coupling. In that case, a signature for
the isospin-Peierls e6'ect should be present in x-ray
scattering or in the phonon spectrum.

There are several open experimental issues which may
be addressed by further extensions of our model. First is
the role of orientational disorder. If the C6p molecules
are frozen into a glassy orientational state, this would
introduce random couplings into the multicomponent su-
perexchange model. Such perturbations could explain
the weak ferromagnetism found in bulk magnetization
measurements versus the infinite (albeit reduced) frozen
magnetic moment found in recent muon-spin-resonance
(p-SR) measurements. In addition, Bloch's T temper-
ature dependence of the ordered moment found in Ref. 4,
which holds up to T=T„is hard to reconcile with
J~ &&T, as expected in a quasi-one-dimensional system.
Another open puzzle is the excessive entropy of the tran-
sition measured to be 34 kJ/mol (6 times larger than
Rln2=5. 7 kJ/mol, expected for localized spin- —,

' transi-
tions. We suggest that the measured entropy includes
the disordering of both spins and isospins which can ac-
count for 2R ln2= 11.4 kJ/rnol.

Note added in proof. Steve Kivelson (private comrnuni-
cation) has proposed an interesting possibility that
TDAE-C6p may have Q2&u&, Q2&Qp. We can see in
Fig. 1 that this implies a spin antiferromagnet and an or-
bita/ ferromagnet with a sizable magnetization along the
c-axis direction. This possibility should be experimental-
ly explored.

the Institute for Theoretical Physics at Technion, where
this work was performed, for partial support.

APPENDIX: DETAILS OF THE
SUPEREXCHANGE HAMILTONIAN

M"+'=
—,'l1. gl(}1+7 ),

M' '+'=
—,'(3.+r')air
1

v'2

The superexchange Hamiltonian for the (ij) link may be
written

&(ij)=&' '(ij)+&"'(ij)+&' '(ij), (A2)

where &' '(ij) is the superexchange Hamiltonian
through the channel M (M=0, 1,2) whose intermediate
energy is uM. Assuming a hopping matrix for the bond
(ij) is of the form in Eq. (16),

lo I'o' (t11+t2P)ll'5ocr

we find

(A3)

f(t, ) (I;I"+I~I~ I,'I'+ —,')—
Qp

+ tlt j.(Ix +IX )+(tl )2( I +IXIX

IrIf I;If ) J
—
( —' —S; S})—

in the M =0 channel,

(A4)

~(1) [(tl )2( 1 g y )+(tl )2( 1 IxIx
Q)

(A5)

in the M=1 channel, and

j(t i ) (4I;If+1)+2t,t2(I";+Ijx)
Q2

The matrices M appearing in Eqs. (13) and (18) can be
written as direct products M& &

=Q«R ., and are
given by

M" '= ,'ir —e(3..
—r ),
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in the M =2 channel. Note that &(ij) becomes isotropic
in both the spin and isospin channels when t2=0 and
Qp =Q2, when the intermediate two-electron states are or-
ganized into two threefold-degenerate multiplets, one a
spin triplet and isospin singlet, the other a spin singlet
and isospin triplet.
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