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Internal stress distribution in glass-covered amorphous magnetic wires
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During the preparation process of the glass-covered magnetic aInorphous wires, axial, radial, and az-

imuthal internal stresses are induced, determining their magnetic properties. We have proposed a calcu-

lation method of the internal stresses induced during the solidification of the metal and during the cool-

ing from the solidification temperature to room temperature due to the difference between the thermal

expansion coefficients of metal and glass. For Fe77 QSi7 5B]5 glass-covered amorphous wires we found

internal stresses of about 10 Pa. The values and distribution of these stresses depend on the radius of
the metal and on the thickness of the glass cover. The stress distribution coupled with the specific high

positive magnetostriction leads to an easy axes distribution associated with a magnetic domain structure

consisting of a cylindrical inner core with axial magnetization and a cylindrical outer shell with radial

magnetization. The inner core leads to the appearance of a large Barkhausen jump at low axial fields.

We have calculated the ratio M„/M, (the reduced remanence) as being of about 0.75—0.80. Magnetic
measurements performed on samples prepared by us confirm the existence of the large Barkhausen jump
but with a reduced remanence of about 0.95 that suggests the existence of a supplementary axial tensile

stress. The dependence of the reduced remanence on external tensile stresses for wires covered by glass

and after the glass removal confirms the existence of the supplementary stress whose value was estimated

as being of the order of 10 Pa.

I. INTRODUCTION

Magnetic amorphous wires prepared by rapid quench-
ing from the melt present a special interest for basic
research as well as for their potential applications. '

Metallic amorphous wires with diameters ranging be-
tween 80 and 160 pm are obtained using the in-water
quenching technique. ' The magnetic properties of
these wires are related to the local anisotropy distribution
produced by the magnetoelastic effects. The wire-shaped
highly positive magnetostrictive amorphous alloys
present a large Barkhausen jump at low axially applied
magnetic fields. The value of the remanent magnetiza-
tion is approximately 0.5 of the saturation magnetiza-
tion. This magnetic bistability is caused by the magnetic
domain structure that consists in two regions: an inner
core with the easy axis parallel to the wire axis and an
outer shell with radial easy axes. It is generally accepted
that this domain structure is due to the internal stresses
induced during the solidification process. This hy-
pothesis is based on the calculation of the internal
stresses, ' ' as well as on the study of the magnetic
properties of the wires subjected to external tensile
stresses.

Some results were recently published on the magnetic
properties of glass-covered amorphous wires prepared by
rapid quenching from the melt' using an improved vari-
ant of the Taylor method that is presently known as the
glass-coated melt spinning method. ' This variant con-
sists in the rapid drawing of a glass capillary in which the
molten metal jet is entrapped; the metallic melt that is in
the softened glass cover is ultrarapidly cooled by using a
water jet. The metal is induction melted and the glass be-

comes soft being in contact with the molten alloy. By
this method they found metallic amorphous wires
covered by glass with diameters of the metallic part rang-
ing between 3 and 25 pm and with the thickness of the
glass cover ranging between 2 and 15 pm. This kind of
wires, prepared from highly positive magnetostrictive al-
loys, also presents a large Barkhausen effect at low axial
fields. These glass-covered amorphous wires attract re-
markable interest because they have very small dimen-
sions as compared to those of the amorphous wires
prepared by the in-rotating-water spinning method, and
offer the possibility of studying the direct and indirect
inhuence of the glass cover on the physical properties of
these wires by preparing samples with different values of
the glass cover thickness for the same diameter of the
wire's metallic part. The magnetic properties of these
wires are related to the mechanical stresses induced dur-
ing their fabrication. These stresses are much more com-
plex in the case of glass-covered wires than in the case of
the wires without glass covers prepared by the in-water
quenching technique because in the first case the internal
stresses come from the glass transition process of the
metal as well as from the constraints produced on the
metal by the cooled glass cover as a result of the
difference between the thermal expansion coefficients of
the two materials and also from the preparation process
through the axial tension continuously applied on the
wire.

The aim of this paper is the evaluation of the internal
stresses induced during the preparation of glass-covered
amorphous wires including the calculation of their distri-
bution in the function of the wire s dimensional charac-
teristics and the study of the inhuence of these dimen-
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sional characteristics on the stress distribution. Magnetic
measurements were performed in order to verify the re-
sults obtained by theoretical considerations.

II. CALCULATION OF INTERNAL STRESS
DISTRIBUTION

dz

Oee ~ ~rr

dY

We consider that the preparation process of the glass-
covered amorphous metallic wires has two separate
stages, accomplished in successive time and temperature
intervals. The first stage is the glass transition of the
metal that, for simplicity, is assumed to take place simul-
taneously with the hardening of the glass at the glass
transition temperature T . In the approach we have tak-
en, we assumed that the glass transition phenomenon is a,

simple solidification process. The second stage is the:
cooling of the metal-glass ensemble from T to room tem-
perature (RT). In the first stage, internal stresses are in-
duced due to the solidification of the metal as the
solidification front proceeds radially inward to the center
of the wire. In the second stage, internal stresses are in-
duced due to the contraction of the two materials (metal
and glass) having different thermal expansion coefficients.
In addition, there is an axial tensile stress continuously
applied on the wire due to its drawing during the
preparation process. We will now calculate the internal
stress distribution for the particular case of a
Fe77 5S17 58 J5 glass-covered wire. The glass transition
temperature for the Fe77 5Si7 58]5 alloy is assumed to be
approximately 1000 K.

A. Internal stresses induced during the solidification
of the metal

We calculate the internal stress distribution induced
due to the solidification of the metal in cylindrical coordi-
nates that are the most appropriate in this problem due
to its symmetry. Figure 1 illustrates the diagonal com-
ponents of the stress tensor o (o, o &s, and o „)induced
in the infinitesimal element of volume d V that is centered
on the point P(r), r being an arbitrary selected point on
the radius. We assume that the other components of o.

are null.
We can consider that the metallic cylinder consists of

successive concentric cylindrical shells, each shell having
a thickness of dr. These shells are solidifying consecu-
tively starting from outside due to the temperature gra-
dient at the glass transition temperature (dT/dr)T
Due to the very small radial dimensions involved in this
process, we can consider that the decisive role in the rap-
id solidification process is played by the temperature gra-
dient on the radial direction. In order to calculate the
value of the temperature gradient in each shell we must
find the radial and time dependencies of the temperature
in the wire (metal+glass). With this aim we solve the
differential equation of the temperature field considering
that the heat transfer takes place only by conduction, the
other types of heat transfer being neglected. Considering
temperature-independent properties for both materials,
the temperature field equation in cylindrical coordinates
)s16

0'

FIG. 1. Diagonal stress components corresponding to the
infinitesimal element of volume dV centered on P(r), that is
found in the metallic part of the wire, represented in the cylin-
drical system of coordinates with the z axis parallel to the longi-
tudinal axis of the wire.

aT D a aT
at r ar ar

aT+1 aT
Q~2 p Qp

T(r =R, t)~~«»=T(r =R, )~t»s»,

for the glass cover,

T(r =R, t =0)= T

and

T(r =R, t =0)=T„,
where R is the radius of the metallic part of the wire,
R is the radius of the glass-covered wire, T is the melt-
ing temperature, and T„ is the temperature of the cooling
agent (water).

The solution of Eq. (1) is in this case

T(r, t)=T +(T —T~) g Jo P~
, PJ, (P) ~R

2

(2)
R

J

in which pj's are the roots of the equation Jo(p) =0 and
Jo, J, are the zero- and first-order Bessel functions.

For a Fe77 5Si7 5B$5 metallic wire, prepared in a Pyrex
glass cover, having R =3.65 pm, the thickness of the
glass cover (dg) of 7.50 pm, R =11.15 pm, p=7200

where T = T(r, t) is the temperature in the point r on the
radius at any instant t, r is the radial coordinate, t is the
instant of time, D =k /pc is the thermal diffusivity, k is
the thermal conductivity, c is the specific heat and p is
the density.

We solve (1) separately for the glass cover and for the
metallic part of the wire by imposing the following condi-
tions: for the metal,

T(r =O, t =0)=T~

and
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temperature gradient at the glass transition temperature
(which is assumed to be the solidification temperature):
(dT/dr)z T

=f (r). This dependence is necessary
g

in order to calculate the internal stresses. The curve
~dT/dr~ T z (r) is shown in Fig. 3.

We consider a small cylindrical shell of thickness dr,
ranging between the inner radius x and the outer radius
x +dr, which solidifies due to the temperature gradient
(dT/dr)T T that corresponds to this shell which is asso-

ciated to the point r =x and whose value can be deter-
rnined from the curve illustrated in Fig. 3. The stress
components induced due to the solidification of the con-
sidered shell are given by'

a E
rr„„(r,x)=

1 v p'

x
X f T(r)r dr —f T(r)r dr

R —x X

FIG. 2. Radial temperature distributions in the wire after 5

tLts (~ ), 10 ps (o ), 20 tMs (*},30 ps (0), 50 ps (6 ), 70 tMs ((&},
90 ttt, s (Q}, and 110 tLts (+) from the start of the rapid
solidification process.

a E
eras(r, x)=

1 —v r2
r

r +x
X z f T(r)r dr+ f T(r)r dr

R —x X

(3)

kg/m, c =530 J/kg K, k =30 W/mK, T =1500 K, and
T =300 K, the radial distribution of temperature at
different instants of time is illustrated in Fig. 2. For the
Pyrex glass the following parameters were considered:
p=2413 kg/m, c =837 J/kg K, and k =1.177 W/mK.
An abrupt change in the slope of the T(r) curves is ob-
served at the metal-glass interface.

Starting from the curves T(r) at difFerent instants of
time t, we can determine the radial dependence of the

o„(r,x)=

1000—

—T(r)r

a E
1 —v

m

z f T(r)r dr —T(r)
R —x

(5)
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FIG. 3. Radial distribution of the temperature gradient at
the solidification temperature (1000 K) in the metallic part of
the wire.

r[IUm]

FIG. 4. Radial distribution of the stresses induced during the
solidification of the cylindrical shell that ranges between x =3.0
pm and x +dr =3.1 pm; o.,„(solid line), o zz (dotted line), and
o „(dashed line).
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where v =0.33 is Poisson's coefficient, E =2 X 10"
N/m is Young's modulus, and a =8.7X10 K ' is
the thermal expansion coefficient of the metal.

By the correspondence cr, , (r) we understand the stress
component induced in the direction i in the infinitesimal
element of volume d V that is centered on the point r on
the radius. If we choose the infinitesimal element of
length on the radius dr used in order to calculate the tem-
perature gradient equal to the thickness of the considered
cylindrical shell dr =0.1 p,m, then T(r) from relations
(3)—(5) is exactly the temperature gradient. In (3)—(5), r
takes values from x to R . In order to calculate the
stresses induced due to the solidification of the cylindrical
shell having r ranging between x and x +dr in the entire
interval [x,R ], we will consider the following tempera-
ture distribution in this interval:

T(r)=— (r), x ~ r ~x +dr and 0 in rest,
dI'

g

where ~dT/dr~ T T is determined from the graph shown

in Fig. 3. This approximation is quite plausible because
the solidification of the considered shell has no erat'ect on
the part between r =0 and r =x, this part being still
liquid, and the part between r =x +dr and r =8 is al-
ready solidified so we can consider that in this region the
temperature gradient is null.

Using relations (3)—(6) we have calculated the internal
stress distribution due to the solidification of the cylindri-
cal shell ranging between x =3.0 pm and x+dr =3.1

pm for the considered wire. This distribution is illustrat-
ed in Fig. 4. Due to the temperature distribution (6) con-
sidered above, o„and 0.00 present a discontinuity at the
interface between the already solidified metal and the
currently soldifying she11. A physical interpretation of
this discontinuity is that the inner shell tries to shrink be-

ing subjected to a tensile opposition from the outer one
which simultaneously feels a compression. The final
stress distribution in the metallic part of the wire, gen-
erated by its solidification, has been calculated by adding
the local distributions obtained after the successive
solidification of each metallic shell having the thickness
dr. The final solidification stress distribution for the con-
sidered wire is illustrated in Fig. 5.

B. Stresses induced during the cooling from T~ to RT
due to the dift'erence between the thermal expansion

coefBcients of the metal and glass

grad divu=Q .

Equation (7) implies

divu=const .

(7)

For simplicity, we consider that the values of Poisson s
coefficient for metal and glass are the same:

Equation (8) contains three equations, one after each
direction; r, 0, and z. Thus, we have to solve just the fol-
lowing two equations:

The cooling from T to RT is a slow process as com-
pared to the rapid in-water quenching that takes place in
the T -T interval. For this reason, for the calculation
of the stresses induced during the cooling from T to RT
we will neglect in the followings the radial dependence of
the temperature T(r) We c.onsider that the components
of the displacement vector u of any point of the wire,
namely u„, u&, and u, are independent one of the others.
Due to the symmetry of the cooling process and implicit-
ly of the displacements and strains generated by this pro-
cess, we have u&=const in the metal as well as in the
glass. In these hypotheses, EXu=0, and the equilibrium
equation of u is'

1000 )

500— z'

duy uq+ =const,
dr r

dQz
=const

dz

(9)

(10)

0
We can set const=2a in (9) and const=b in (10). The
general solution of equation (9) will now be

-500—
cf

CL

—1000—

-1500—

u„(r)=ar+ —,c (11)

in which c is an integration constant.
We notice that in the center of the wire (at r =0), due

to the symmetry of the process, there is actually no radial
displacement. This implies the following condition:

—2000—
u„(0)=0, (12)

—2 500
2

r[ pm]

where u„ is the radial displacement in the metal. The
condition (12) is accomplished according to (ll) just
when the constant c is zero in the metal. Thus, the solu-
tions (11) that give us the radial displacements are in the
metal,

FIG. 5. Final radial stress distribntion in the metal due to its
solidification: o.„„(O), o.qq(~), and o„( ). u„(r)=a r, (13)
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and in the glass,

uf(r)=a r+ —,C
(14)

the strain tensor, 0;k are the components of the stress
tensor, and 6,k is the Kronecker symbol.

Particularizing (19) for the diagonal components of the
stress tensor, we obtain

where ug is the radial displacement in the glass, a and
a are the constants a from (11) for metal and glass, re-
spectively, and c is the integration constant from (11) for
the glass.

The solutions for the axial displacements are deter-
mined by integration from (10): in the metal,

u, (z)=b z,

rr
E

[( 1 —v)u„„+v(u es+ u„)],(1+v)(1 —2v)

O Oe= [( 1 —v)u se+ v(u„„+u„)],(1+v)(1 —2v)

~zz = [(1—v)u„+v(u„„+ups)] .(1+v)(1 —2v)

(20)

and in the glass,

u,~(z) =biz, (16)

By taking into account (17) and (18), (20) becomes for
the metal,

where u, , u, are the axial displacements in the metal avd
glass respectively and b, b are the constants b for metal
and glass, respectively.

The components of the strain tensor can be detected
from the displacements given by (13)—(16) and from the
azimuthal displacements u &

=const and u =const. The
diagonal components of the strain tensor, assuming that
the other components are null, are for the metal,

duq

0zz

(a +vb ),(1+v 1 —2v

(a +vb ),(1+v)(1 —2v)

2E v
(a +vb )+E b(1+v)(1 —2v)

and for the glass,

(1+v)(1—2v) z ~ 1+v r~

(21)

uo ur
u gg

= +--
r dO r

du

dz

=a (17) (1+v)(l —2v) ~ z 1+v r~

2E v

1+v 1 —2v

(22)

and for the glass cover,

ug=
dug c

2r

ug =— + =a+rde r
(18)

E and E being Young's modulus for the metal and for
the glass, respectively.

We will now calculate the resultant strain due to the
cooling of two materials with different thermal expansion
coefficients which are in contact during the entire pro-
cess. The law of the linear thermal expansion is

ug=
ZZ

dug
=b

dz

in which u„„, u &, and u„are the radial, azimuthal, and
axial strains in the metal and u„„u&, and u„are the
same strain components in the glass. It is necessary to
make an observation here: the range in which the radial
coordinate r takes values is (O, R ] for the strains that
appear in the metal and (A, R ] for those that appear in
the glass. The reason why the expressions (17) cannot be
defined in r =Ois that u@ wouldbe Oo in this case.

We substitute the strain tensor components given by
(17) and (18) in Hooke's law in order to calculate the di-
agonal components of the stress tensor. Considering the
simplest case of homogeneous strains, Hooke's law
gives'

l =lo(1+ahT), (23)

in which l is the linear dimension of the body in the
chosen direction at the temperature T, lo is the same
linear dimension at the temperature To, hT=T —To is
the temperature range in which the variation Al =I —lo
takes place, and a is the thermal expansion coefficient.
From (23) we have for the metal

=n hT,
and for the glass

Eg =cxgAT (25)

where 8 cg are the strains due to the thermal contrac-
tion in the metal and glass respectively and o,', o, are
the thermal expansion coefficients of the metal and glass.

The resultant strain will be

uik + u/I ~ik (19)
—

Ez =(0, —a )hT . (26)

where E is Young's modulus, u;k are the components of
In this case, AT is the difference between the glass

transition temperature and the room temperature, be-
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cause, from the point of view of the stresses induced due
to the difference in thermal expansion coefficients, this is
the determinate temperature range in which the thermal
contraction takes place.

In order to determine o,„, a&&, and o.„we must find
the values of the constants a and b . With this aim, we
will establish the equilibrium conditions, including those
at the metal-glass interface. But first of all we have to im-
pose the following conditions so that all the strains that
appear in this process result due only to the difference be-
tween the thermal expansion coefficients of the metal and
glass:

u, (r =R )
—ug(r =R )=sz,

u„(r =R ) —ug(r =R }=sR
(27)

(28)

In (27) and (28) we have maintained the hypothesis of the
homogeneous strains.

The equilibrium conditions are

F"'(r =R ) =0,
F"'(r =R }=(),
F"'(r =R ) =0

(29)

(30)

(31)

F„"'(r=R„)=0=mrs„(r =R ) =0, (32)

F„"'(r=R )=O=o„„(r=R ) os„(r =R )=—0, (33)

in which F"' is the resultant force on the indicated direc-
tion. Explicitly, after several transformations, (29), (30),
and (31) become

quantities a, b, ag, b, and c with the parameters
E~ =2X10" N/m, E =10" N/m, v= —,', and
a=3.78X10 [from (26) with a =8.7X10 K ' and
a =3.3X10 K '], we found for a~ and b [which
are necessary in (21)] the following expressions:

PS —S
[(/+3)S+4](QS+1)

sgS
QS+ 1

(36)

(37)

where by P we denominated the ratio Es!E
Substituting (36) and (37) in (21) we obtained the ex-

pressions of the internal stresses induced in the cooling
from T to RT due to the difference between the thermal
expansion coefficients of metal and glass:

m m 3~IS cEfl' 88 (g+ 3 )S +4 Nl

~ (/+1)S+2
zz PP yS+1

(38)

(39)

In the particular case we have referred to, the value of
these stresses are

o.,„=o.&=287. 28 MPa; o.„=807.26 MPa .

We notice here that these stresses do not depend on the
coordinates (r, 8,z) in the range (O, R ]. The center of
the wire (r =0) constitutes a singularity in which all the
stress components must be null in order to ensure the
equilibrium in this point.

F,"'(r =R )=0=—.o„(r=R )+Serg, (r =R )=0,
(34}

C. Total stresses induced during the preparation
of the glass covered amorphous wires.

Results and discussion

a R —a R — =cRC

a +vb —(1—2v)
C

R2
W

=0, (35}

(a +vb )—A,g as+ vbg —(1—2v)
R

=0,

2A, v(a +vb )+E b

+S[2A, v(a +vb )+E b ]=0,
in which we denominated A, =E /(1+v)(1 —2v) and
A, =E /(sI+ )(1v—2v). For the considered particular
case we have R =11.15 pm and R =3.65 pm, from
which it results that S =8.33.

Solving the algebraic system (35) for the unknown

where S =St, /S„; St, and S„being the cross section
areas of the glass cover and of the metallic wire, respec-
tively.

Using (13)—(16) and (21)—(22), the conditions (27), (28),
(32), (33), and (34) will constitute the following system of
equations:

b —b =c. ,

The total stresses are calculated by adding the different
stress components induced in the two considered stages
of the preparation process. Thus, we will add the stresses
induced in the solidification process to those induced in
the slow cooling from T to RT due to the difference be-
tween the thermal expansion coefficients of metal and
glass. For the moment we neglect the axial tensile stress
generated by the continuous drawing specific to this kind
of preparation process. The total stress distribution in
this particular case is illustrated in Fig. 6. We notice that
the radial dependence of the temperature in the glass
influences the cooling of the metal and this inhuence can
be observed in Fig. 4. Thus, the radial distribution of the
temperature in the glass influences the internal stresses
through the temperature gradient in the metal. One ob-
serves that the shape of the curves cr (r) and o &s(r) is the
same, but the positive values of o „(r) are almost twice
the positive values of o se(r) Both curves p. resent a posi-
tive maximum value at r =2.4 pm: cr„(2.4pm) —1500
MPa and ere&(2. 4@m) -730 MPa. After reaching the
maximum, both cr„(r) and ose(r) decrease drastically,
reaching near the surface of the metal high negative
values: o „(3.6@m) ——1360 MPa and o ss( 3.6pm)
——1910 MPa o„„(r) has a much moderate variation
than o „(r) and o se(r), having only positive values.
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(negative). Thus, on the grounds of magnetoelastic ener-
gy minimization, we can consider that in the metallic
part of the wire, starting from its center, we will have
three zones, namely, (i) zone I with a uniaxial magnetic
anisotropy having the easy axis oriented along the axis of
the wire (z axis) due to the coupling between o„(posi-
tive) and the magnetostriction; (ii) zone II with a radial
magnetic anisotropy due to the coupling between o.,„
(positive) and the magnetostriction; (iii) zone III with two
strongly compressive components (cr„and ops), which
are comparable by magnitude and have absolute values
much higher than o.,„. These compressive stress com-
ponents generate two hard axes of magnetization on the
axial and azimuthal directions. Thus, in this zone we will

1000—

-2000
2

r Lpm]

1200—FIG. 6. Total stress distribution (solidification stresses added
to those induced due to the difference between the thermal ex-
pansion coefficients of metal and glass) in the metallic part of
the wire: o.,„(o), 0.

&z (4), and o.„(CI).
—1000—

Thus, the radial stresses are tensile everywhere in the
range (O, R ), while the axial and azimuthal ones are ten-
sile from r =0 to approximately 82% of R, changing
sign close to the surface where they become compressive.
The curve cr „„(r)reaches a maximum value at r =2.7 pm
of -550 Mpa after which it decreases having a slope
with an absolute value higher than that of the ascendant
portion of the curve (till it reaches the maximum value).
We mention that o„(r) and os&(r) do not intersect each
other, both being intersected by o „„(r). The intersection
point between cr„(r) and o„„(r) is at —85% of R
Starting from the center of the wire up to this point we
have a region in which o.„ is the component with the
highest value and it is positive (zone I). From —85% of
R to —88% of R we have a second region, much nar-
rower than the first one, in which o,„ is the highest stress
component and it is positive (zone II). The remaining
part up to R constitutes a third region, dominated by
the high negative values (compression) of o„and 0 ss
(zone III). The values of the internal stresses on each
direction and the position of the intersection point be-
tween the radial and axial stresses with respect to the di-
mension of the metallic part of the wire determine the di-
mensions of these three zones.

By taking into account the fact that the alloy to which
we referred is highly magnetostrictive, there will appear a
strong coupling between the internal stresses and the
magnetostriction. ' Due to this coupling, in the metallic
part of the wire there will form easy axes of magnetiza-
tion on the directions in which the dominant internal
stresses are tensile (positive) and hard axes on the direc-
tions in which the dominant stresses are compressive
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FIG. 7. (a) Maximum value of the total axial stress in func-
tion of the radius of the metal for three wires having almost the
same glass cover thickness: wire Nos. 4 (~ ), 5 (0) and, 6 (D)
from Table I; (b) Position of the relative intersection point be-
tween o.,„and cr„ in function of the radius of the metal for wire
Nos. 4 ( ~ ), 5 ( ), and 6 (t3).
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also have an easy axis of magnetization on the radial
direction that is energetically favored by the coupling be-
tween the magnetostriction and cr „„(positive).

By taking into account the above-mentioned discus-
sions, it can be considered by analogy with the case of the
wires prepared by the in-rotating-water spinning
method, that for the glass-covered magnetic amorphous
wires prepared from a highly positive magnetostrictive
alloy there will result a magnetic domain structure con-
sisting of two regions: a cylindrical inner core having an
axial easy axis ad an outer shell having radial easy axes.
For the considered case, the radius of the cylindrical
inner core (R, ) is approximately 85% of R

The considered domain structure depends on the distri-
bution of the total internal stresses that appear in the
preparation process of the wire and which, in turn,
strongly depends on the diameter of the metallic part of
the wire and on the thickness of the glass cover, as well as
on their ratio.

Using the above described method, we calculated the
internal stress distribution for six glass-covered wires,
considered as being representative cases. The dimension-
al characteristics of these wires are listed in Table I, to-
gether with the maximum positive values of the three
stress components induced in each stage of the prepara-
tion process and the maximum positive values of the total
stresses in each direction, as well as the maximum nega-
tive values of O.„and 0.

6} induced in the solidification
process and the same values for the total axial and azimu-
thal stress components. The maximum negative values of
o.„and o.

06} were calculated in points situated very close
to the surface of the metal in each considered case. In
Table I, the positions of the intersection points between
cr„(r) and o „„(r)for each wire are also listed.

In order to analyze the influence of the metal's dimen-

sion on the internal stress distribution, we represented in
Fig. 7(a) the maximum value of the total axial stress in
function of R for three wires having approximately the
same thickness of the glass cover (wire Nos. 4—6 from
Table I) and in Fig. 7(b) the position of the intersection
point between o„(r) and rr„„(r) as a percentage of R in
function of R for the same wires. It can be observed
that the maximum value of o„decreases almost linearly
with the increase of R from 1250 Mpa for R =2 pm
(wire No. 6) to 650 MPa for R =10 pm (wire No. 5}.
From figure 7(b) one can observe that r(o„=cr„„)/R
(the ratio between the intersection distance and the ra-
dius of the metal} increases with the increase of R from
—83% for wire No. 6 to -90% for wire No. 5.

In order to analyze the inhuence of the glass cover's
thickness (d ) on the stress distribution, we represented
in Fig. 8(a) the maximum value of the total axial stress in
function of d for three wires having approximately the
same R (wire Nos. 1, 2, and 6 from Table I) and in Fig.
8(b) the position of the intersection point between s„(r)
and s (r) as a percentage of R in function of d . From
Fig. 8(a) it can be observed that the maximum value of
rr„ increases with the increase of ds from 1250 MPa for
d =4.5 pm (wire No. 6) to 1720 MPa for d =15 pm
(wire No. 2). We notice that starting from d —10 pm the
maximum value of o.„is maintained approximately con-
stant around the value of 1700 Mpa when d increases.
From Fig. 8(b) one can observe that the infiuence of ds on
the ratio r(rr„=rr„„)/R is very reduced.

From the above presented data we observe that the
internal stresses depend on the ratio ds/R~. In Fig. 9
the dependence of the ratio r(cr„=cr„„)/R on the value
of the ratio ds /R for five wires (Nos. 1 —6) from Table I
is illustrated. Initially, one can observe a strong displace-

TABLE I. Maximum values of internal stresses for six selected samples of glass-covered wires.

Wire Dimensional
No. characteristics

[pm]

Stresses [MPa]
Induced at the solidification Induced at the cooling

of the metal from T~ to RT
max max surface max surface

Zz Zz 0 ee ~ee 0 rr ~ee zz

Total
stresses r (o.„„=0.„)/R

max max surface max surface
ozz Ozz 0 ee ~ee

+metal

dgi„, = 10.00
N„„i=25.00
e „„=5.00
dg]„,= 15.00
@„„i=35.00
+metal

dg)„, =7.50
@total

dgi„, =4.75
4 tata]

=24. 80

dgi„, =5.00
Nt „i=30.00
@metal 4 00
dgi„, =4.50
N„„i=13.00

354 793 —1680 486 —1752 309

345 783 —1658 487 —1727 316

266 693 —2164 440 —2195 287

133 338 —2047 212 —2089 190

100 245 —1516 159 —1592 170

188 443 —728 310 —934 286

903

937

807

404

804

663 1696 —777 796 —1442

662 1720 —721 803 —1410

553 1500 —1357 727 —1907

323 803 —1582 402 —1899

270 649 —1112 328 —1423

474 1246 —150 596 —648

83.3

83.7

84.6

86.3

90.1

83.4
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ment (from —90 to —83 % of R ) of the intersection
point (that determines the diameter of the cylindrical
inner core) with the increase of the ratio ds/R in a very
narrow range of values (from 0.5 to 2.0) and starting from
dg /R —2.0 the position of the intersection point
remains practically constant (around 83% of R ).

The results presented above show that by changing the
dimensional parameters of the glass-covered amorphous
wires (the radius of the metal, the thickness of the glass
cover, and their ratio), one can obtain internal. stress dis-
tributions that lead to the formation of a cylindrical inner
cover with a uniaxial longitudinal anisotropy having a ra-
dius (R, ) that ranges between —83 and -90 % of R
This leads to the appearance of a large Barkhausen jurnp
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FIG. 8. (a) Maximum value of the total axial stress in func-
tion of the glass cover thickness for three wires having almost
the same radius of the metal: wire Nos. 1 (0), 2 ( ), and 6 (I3)
from Table I; (b) Position of the relative intersection point be-
tween o.„„and o.„ in function of the glass cover thickness for
wire Nos. 1 ( ~ ), 2 ( ), and 6 (I3).

FIG. 9. Position of the relative intersection point between s
and s„ in function of the ratio between the glass cover thickness
and the radius of the metal for wire Nos. 1 (~), 2 (~ ), 4 ( A ), 5

(f), and 6 (~ ) from Table I.

R,
(40)

m

also used for glass-covered wires. '

In order to verify by experimental means the results
obtained by calculations, glass-covered amorphous
Fe77 5817 5BI5 wires were prepared by the above described
procedure' at the Institute of Technical Physics Iasi,
having the diameter of the metal ranging between 3 and
22 pm and the glass cover thickness ranging between 3
and 15 pm. Magnetic measurements were performed us-
ing a fluxmeter method ' at a maximum value of the axi-
ally applied field of 150 Oe, at a frequency of 400 Hz. A11
the wires that were measured present a bistable Aux re-
versal phenomenon in low axial fields; at 1 Oe for a wire
having R =7.8 pm and d =4.5 pm and at 50 Oe for a
wire having R = 1.6 pm and d = 10.4 pm.

We must notice that M„ is about 0.95 of M, (measured
at the maximum field). The value of M, measured by the
fluxmeter method is close to the value measured with the
VSM (vibrating sample magnetometer) in a 1 T magnetic
field. From the ratio M„/M, (also called the reduced
remanence) determined experimentally it results that the
radius of the cylindrical inner core is about 97% of R
higher than the value calculated by us only from theoreti-
cal considerations (83—90 %).

The difFerence between these values can be attributed
to a supplementary axial tensile stress induced in the
preparation process of the glass-covered wire due to its
continuous drawing. In order to verify this hypothesis
we conducted two experiments. Thus, we determined ex-

M,

in low axially applied magnetic fields so that the value of
the remanent magnetization (M„) ranges between 0.70
and 0.81 of the wire's saturation magnetization (M, ), ac-
cording to
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perimentally the reduced remanence of the glass-covered
amorphous wires subjected to external tensile stresses up
to 500 MPa and we noticed that there was no change in
the reduced remanence. Using a chemical etching tech-
nique' we removed the glass cover from a metallic wire
having R =8.15 pm and we determined again the re-
duced remanence, finding values of about 0.75, that lead
to R, —87%, close to the results calculated for a sample
having R =7.65 pm and d =4.75 pm (wire No. 4 from
Table I). If we apply an external tensile stress of about
250 MPa on the wire having R =8.15 pm after the glass
removal, the ratio M„/M, returns to its initial value of
about 0.95.

These experiments allow us to consider that in the
preparation process of the glass-covered amorphous
wires, supplementary axial tensile stresses are induced
and are added to the already existing ones. The diminish-
ing of the total axial stress after the glass removal leads to
a quite satisfactory accordance between the theoretically
calculated results and the experimental ones. It is plausi-
ble that these supplementary axial tensile stresses are in-
duced due to the mechanical drawing of the wire during
its preparation process, the estimation of their values be-
ing extremely dificult by theoretical considerations.

III. CONCLUSION

We have calculated the values of the internal stresses
induced on the radial, axial, and azimuthal directions
during the preparation process of the glass-covered amor-
phous Fe77 5Si7 5B]5 magnetic wires. These stresses are
owing to the solidification of the metal as well as to the
contractions generated by the glass cover in the metal
during the cooling from T to RT due to the difFerence
between the thermal expansion coefticients of metal and

glass. The total stresses have values of the order of 10
Pa that depend on the dimensions of the metallic part of
the wire and of the glass cover as well as on their ratio.

The axial tensile stresses are prevalent up to —85% of
R, from where the radial stresses become prevalent un-
til —88% of R and then, up to r =R, the compressive
axial and azimuthal stress components are prevalent. By
taking into account the high positive magnetostriction of
the FeSiB alloy, the following easy axes distribution re-
sults in these wires: up to —85% of Rm there is a region
having the easy axis on the longitudinal direction (z) of
the wire and from here until r =R there is a region hav-
ing radial easy axes of magnetization. We can associate
to this easy axes distribution a magnetic domain struc-
ture consisting of a cylindrical inner core which is axially
magnetized and of an outer shell which is radially mag-
netized.

The calculated value of the cylindrical inner core leads
to a value of the ratio M„/M, (the reduced remanence) of
about 0.75 —0.80, depending on the dimensional charac-
teristics of the wire. But, the experimentally determined
reduced remanence is approximately 0.95. The experi-
mentally established dependence of the reduced
remanence on the value of the external tensile stresses for
wires after the glass removal shows that in the prepara-
tion process of the glass-covered amorphous wires a sup-
plementary axial tensile stress appears due to the
mechanical drawing of the wire. The value of this stress
component depends on the dimensional characteristics of
the wire and it can be estimated as being about 250—600
MPa. The high values of the reduced remanence in high-
ly magnetostrictive glass covered amorphous wires opens
up a larger field of sensing applications for these wires as
compared to that of the wires without a glass cover pro-
duced by the in-water quenching technique.
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