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We present here results for dynamical renormalization of an anharmonic lattice. We investigate
the dynamics of the lattice at the onset of fracture, and we show the existence of a map of this lattice
into a transformed lattice with disorder (crack). By studying the properties of the transformed lattice
we get exact analytical results for the decimalization of the noise, and approximate analytical results
for the dynamical scaling of the lattice and dynamical memory for the crack. We discuss the existence
of a nonhydrodynamical behavior and how if afFects the correlation between motions of adjacent
particles. By drawing on the results of simulations and analytical methods, we are able to discuss
how these concepts may be used to interpret more intensive simulations and experiments.

I. INTRODUCTION

The problem addressed in this paper is that of under-
standing the scaling properties of a classical lattice for
which the interaction between the nearest neighbors is
given by an anharmonic force. In a previous work we
reported extensive simulations in order to determine the
conditions under which an anharmonic chain will break.
There were two main conclusion &om that study. First,
in order for irreversible breaking to occur in a stretched
chain, a bond must be extended to a length considerably
greater than the length at which the restoring force is
maximized. Second, the breaking rate of a bond may be
expressed in terms of an attempt &equency and an Arrhe-
nius factor. While the Arrhenius factor was satisfactorily
described in terms of the height of an efFective energy
barrier, the attempt &equency was found to be orders of
magnitude smaller than expected &om a Kramers type
theory.

In the present paper we move a step closer in the direc-
tion of understanding the dynamics of the breaking. The
approach that we shall take will be to follow the evolution
oF the lattices at the onset of &acture. In this way we
focus our attention on the length of a single bond, and
by drawing on simulations and reasonable hypotheses,
we obtain analytical results for the noise decimalization,
scaling, correlation function, and, consequently, memory.

We shall Gnd the rather surprising result that the cor-
relation function for the motion of adjacent particles of
an anharmonic stretched chain may be approximately de-
scribed using the single-chain phonon spectrum, which
can be expressed in a very simple form. We discuss how
the scaling displays a nonhydrodynamical behavior and
how that can be used to explain the discrepancy found
in the long-time behavior.

Scaling methods are essential in circumstances where
a system is scaling invariant or acts as if it were so. As a

general rule, whenever a characteristic control length di-
verges, as happens at any continuous phase transition,
critical eKects occur whose treatment requires scaling
(renormalization group) methods; s as far as the phe-
nomena associated with the length are concerned, the
system behaves as if it were scale invariant at the tran-
sition. In this way, scaling on linear lattices becomes a
powerful and elegant tool, since these systems have a re-
cursive hierarchical geometry such as &actals. Although
linear dynamics is still very useful in the study of frac-
tures, and a number of very useful results may be pre-
dicted &om them a nonlinear model is a necessity for
a more realistic approach.

Nonlinear equations do not, in general have simple
recursive hierarchical geometries. Consequently no gen-
eral picture of scaling and dynamics has been presented
for them, except in some particular situations. Some of
these particular situations are found in continuous phys-
ical systems, such as growth phenomena at interfaces de-
scribed, for example, by a KPW (Kadar-Parisi-Zhang)
equation. Continuous physical systems are described
dynamically by partial difFerential equations or field the-
ories. Thus they have infinitely many degrees of &eedom,
but can exhibit low-dimensional chaos, which has a frac-
tal signature in itself. Such continuous systems have
the shortcoming that they have no explicit reference to
the structure of the crystal lattice. However, the fact
that such a simple, continuous, and in some cases linear
approach is able to produce such remarkable and some-
times surprising results leads us to the conclusion that
some general mechanisms must characterize those struc-
tures at the onset of a fracture The main .purpose of
this work is to make explicit some of those mechanisms;
in particular, we prove that an anharmonic chain at the
onset of &acture may be seen as a harmonic one with
a defect. We present here results for dynamical scaling
in a nonlinear lattice. Our starting point is that at the
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onset of &acture the formation of a &actal pattern, i.e. ,
the existence of a recursive hierarchical geometry, im-
plies that the lattice can be renormalized. In Sec. II we
state the lattice dynamics, from which we get the scal-
ing properties of the noise in Sec. III, and the properties
of memory in Sec. IV. The existence of the hierarchi-
cal relations Eqs. (15), (12), and (13) exhibits the main
aspects of the dynamical lattice normalization.

II. CHAIN DYNAMICS

Consider a one-dimensional lattice of N particles of
mass M, which interact with their neighbors via an an-
harmonic interaction E. The chain has initial length I
= %a, where a is the lattice spacing. We stretch the
chain, and the new length becomes I = K(a+ S). The
generalized Langevin equation for the 1th particle is then

M+l —+(u + S + +E 2 / —i) +([i + S + +I+i +l)™
Here 2:E is the displacement from the equilibrium position, hi(t) describes the interaction with a thermal reservoir at
temperature T, and it is connected with the memory p(t) via the fluctuation dissipation theorem. In the simulations
to be described in this paper we use periodic boundary conditions, and the force E is obtained from a Lennard- Jones
potential

(2)

with unit (e = 1) binding energy. However, the main conclusions are the same for fractures of other nonlinear systems.
We focus our analysis on the evolution of the distance between two consecutive displacements y~

——x~+1 —x~. From
Eq. (1) we get an equation of the motion for y~,

My't = F(a+ —S+ yi i) + 2I'(a+ S+ y&)
—E(a+ S+ yi+[) —M p(t —t')yi(t')dt'+!hi+i(t) —hi(t)]. (3)

Length is in units of a, and time in units of 7g = 2n/upas,
where ws is the maximum phonon frequency of the
stretched lattice. We verify that breaking occurs at a
single bond by recording as a function of time the in-
stantaneously largest value of y~ (upper curve in Fig. 1).
We see that at some point one particular bond starts to
lengthen &om the noise and increases inexorably to the
vicinity of a saturation value given by the distance be-
tween the broken ends of the relaxed chain. The lower
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FIG. 1. The evolution of a breaking process in a chain. We
plot as a function of time the instantaneously largest value
of y~

——x~+~ —x~. The lower curve depicts the second-largest
y&. The chain is composeded of 100 particles interacting via a
Lennard-Jones potential. Distances are given in units of the
lattice parameter of the unstretched chain a, and time in units
of 7z ——2vruz, with cup as the maximum phonon frequency
of the chain. Here 9 = 0.03, T=0.05, p(t) = 2po b(t), and po
= 0.25~O.

curve (Fig. 1) depicts the second-largest yi, and shows
that no other bond has experienced any significant ex-
tension during the breaking process. Figure 2 shows the
position j in the lattice where this maximum occurs. It
shows that j fIuctuates initially and finally stabilizes at
a given position (j = 16). That corresponds to a situa-
tion where the system is just starting a real break, and
where y~ && y~ for I g j. The average of an ensemble
of 800 chains shows that most of the time the system is
in that metastable situation. Consequently for all y~ &&

y~ the variations are just of the same order as harmonic
fI.uctuations.

A very simple efI'ective potential for a chain with a
single breaking bond may be obtained as
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FIG. 2. The position j in the lattice where a maximum
y~ occurs. For the first maxiinum (upper curve in Fig. 1)
it localizes at j = 16. For the second maximum, not showed
here, it continues Buctuating from point to point in the lattice.
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U,~(y) = U(a+ S+ y) + (N —1)U
~

a + S— y
N —1)

(4)

This potential corresponds to a situation where the
stretched bond assumes a value y and all the other N —1
bonds relax by an amount y(N——1) i, in such a way
that the length of the lattice remains Axed. Prom this
potential we obtain the efFective force

III. SCALINC AND NOISE

Prom the last section we may say that the break will
occur in just one bond, and all of the other bonds will
undergo small oscillations. With this very important in-
formation in mind, we introduce, in Eq. (3), y~ = y and
y&g, = P&

—y(N —1) (g, Pi —0 with P, = 0), and
then expand Eq. (3) in small powers of P~ to obtain

t
py' = F.g(y) —p, I'(t —t')y(t')dt'+ g, (t) for l = j

I"'rs(y) = I (a+ 8+ y) —Il
~

a+ 8 — -}.y
N —1

and

(6)

The term y(N ——1) takes into consideration the finite
size of the chain and certainly becomes infinitesimal for
long chains. As N ~ oo the second term on the right-
hand side (RHS) of Eq. (5) is just the zero-temperature
stress in the chain. Consequently E,@(y) can be seen
as the competition between the stress that pulls oR' the
particle and the bond restoring force.

In Fig. 3 we plot U,g(y) as a function of y for N =
100 and two difFerent strains: S = 0.014 (curve a) and
S = 0.019 (curve b) This .potential has two minima,
one at y = 0 and another at y = (N —1)S. For small
S (Fig. 3, curve a), when the internal elastic energy
is smaller than the energy necessary to break a bond,
the system will not break in an irreversible way. For
S = 0.019, the unbroken position y = 0 corresponds to a
metastable situation while the large y will be an absolute
minimum. Consequently, given enough time the particle
will move from a metastable situation to a stable one,
or, correspondingly, the chain will break. In the later
situation there is a barrier Eg to overcome, which is less
than the bond energy e. The height of the barrier Ep is
a function of the strain S [for example, Eg(S = 0.03) =
0.18]; consequently, as one increases S, E& decreases and
breaking becomes easier.

The breaking of two bonds will need a extra energy e
= 1.0; consequently the probability of two breaks will be
exp( —Pe) smaller than that of one break. In our simula-
tion Pe = 20, but in real life situations this number can
be larger (for a polyethylene bond at room temperatures
Pe = 150).

0.3-

U.~~(y)
0.1

Here K(S) is the strain-dependent force constant of the
chain, p = M/2. The new noises g~(t) are given by

g) (t) = f (t)b), + (1 —
2 b(, ) [h(+, (t) —h( (t)],

where f (t) is the coherent part of the noise given by

1
f(t) = —K(S) [g ~+i(t) —2g ~(t) + P~ i(t)].

2

Equation (9) shows clearly that f (t) is a very correlated
noise. The Buctuation dissipation theorem requires

p, kgyTI'(t —t') for l = j,
Ml T~(t —t') for l P~. (10)

Equations (6)—(10}show some marvelous simple aspects
of breaking; Eq. (6) shows a particle of effective mass p,
= M/2 moving in a efFective potential which carries the
nonlinearity, and is coupled through the noise to a har-
monic chain, Eq. (7). The chain went through a quite
remarkable transformation; it has changed from an an-
harmonic chain with periodic boundary conditions to a
harmonic one with fixed ends at l = j (P~ = 0). We shall
call the linear chain of Eq. (7) the transformed lattice.
Notice that the particle transformed memory I'(t), which
is modulated by the noise of harmonic oscillators, be-
comes quite different from the function p(t) of the chain.

To start our scaling procedure we move to points of
the chain far from the end and rewrite Eq. (7) as

~l4'I = 4'I —i 24'& + 4'&+i + gl (t)

M4~ = K(S)(Pi+i —2A + 4i-i) —I".e(y)~i, ,+i
t

p(t —t') P( (t') dt' + g( (t) for l g j. (7)

0.8
g

1.2

with 0 = MK(S) w; w is the vibrational frequency of
a given mode. For simplicity we leave the discussion of
memory for the next section. We eliminate the sites I —1
and l + 1 to get

FIG. 3. The efFective potential for a break of a bond as a
function of the bond elongation. This potential corresponds
to a minimum energy necessary to break a bond. S = 0.014
(curve a) and 8 = 0.019 (curve b)

fl'0i = 4'i —2
—24—'~ + 4'i+2 + g) (t) (12)

where 0' = 40(O —1) and gI = go+i —2gi + gi —i + fig(
For successive iterations we have
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n being the order of iteration. It is a well-known re-
sult that Eq. (13) produces a chaotic map in the region
0 & 0 & 1, with density P(B) oc [O(1 —0)] i/2. Tins
distribution has a very high probability for numbers close
to zero; consequently we may drop the term Og~ in subse-
quent iterations, and the density distributions for g& may
be built up &om the distributions for g~

—g~+i. For ex.—

ample, consider first a discrete noise g~ = 8m, with 0 as
the intensity and m = 0, +1. The initial probability W0
has the value Wo(m) = 1/3, while for the first iteration
(first decimalization) the results will be Wi(+2) = 1/9,
Wi(+I) = 2/9, Wi(0) = 1/3. The interval has been
doubled and the probability has been modified. After
n decimalizations the probability may be written in the
recursive form

W„(k) = ) W„ i(j)W„ i(k —j), n & 1. (14)

For large n (n=5 or 6), W (k) has a binomial-type distri-
bution. The binomial distribution does not obey simple
scaling; " rather it is steady multi&actal, as discussed
by Kadanoff in the context of the avalanche model.
Notwithstanding this multifractal aspect, we show that
in the continuous limit, the renormalization approach,
implicit in Eq. (14), drives the noise distribution towards
equilibrium.

In order to obtain the density of probability, or the
density distribution, of noise at the iteration n, P (x),
we erst localize x in discrete intervals k. We de6ne now
W (k) as the probability of order n of finding x in a given
interval k. Now, in the continuous limit we obtain

6

P„(x) = P„ i(x')P,„ i(x —x')dx', n&1, (15)

1P (*) = -(2 —I*I)4 IxI & 2, (16)

(32 —12x'+3IxI')/96, 0 & IxI & 2,
(4 —I-I)'/96,

where P (x) is the density distribution of noise at itera-
tion n. Here IxI & L„and L = 2L i. From this condi-
tion we get a„= ( L„—x+ IxI)/—2, b„= (L„—x —IxI)/2.
Notice that the distribution for gi will be P2(x). The re-
currence relation defined by Eq. (15) has very important
properties. For an even starting distribution, all the sub-
sequent distributions will be even; the distributions will
be decreasing functions of IxI, with vanishing values for
IxI & L; finally, as n ~ oo, the probability becomes
a Gaussian, independent of the initial Po(x). The infor-
mation about the local Po fades away when the collective
effects of the lattice (n ~ oo) drive the noise distribution
toward equilibrium. Actually, with only a few iterations,
the distribution becomes very close to a Gaussian. For
example, using our white noise distribution Po(x) = 1/2
for IxI & 1 we get

0.4—
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FIG. 4. Density of probability P„(x) of finding the noise
within the value Oz and O(x+ dx) as a function of x. Here
x is a random number —L & x & L, L = 2L„q, n
is the order of iteration, and 0 is a measure of the inten-
sity of the noise. P„(x) is obtained iteratively from P„ i(x).
We start with the white noise distribution Po(x) = 1/2 and
Io = 1. We plot (1) Pi(z) and (2) P2(z) and the Gaussian (g)
P(x) = exp( —nx /9)/3. The Gaussian has the same height
as P2, and is normalized to unity.

In Fig. 4 we plot P (x) as a function of x: (1) Pi given
by Eq. (16) and (2) P2 given by Eq. (17). As a refer-
ence we plot (g) the Gaussian P(x) = exp( —vrx2/9)/3,
which has the same height as P2. For n ) 2 the form of
P (x) becomes quite complicated, but it can always be
obtained numerically by use of Eq. (15). However, it may
not be necessary, since, as one can see in Fig. 4, P2(x) fits
a Gaussian surprisingly very well. The recursive form of
Eq. (15) is so constraining that any even starting distri-
bution is expected to become close to a Gaussian after a
few iterations. The fact that the noise distribution tends
toward a Gaussian is by itself a remarkable result, since
one should bear in mind that in this new picture (effec-
tive particle + transforined lattice) the particle is in a
nonequilibrium situation. This result is very useful as
well from the computational point of view, since we may
apply locally any available distribution Wo(n), or Po(x),
and the renormalization procedure of the noise distribu-
tion [Eq. (15)] will give us assurance that the lattice noise
distribution will be in a thermal equilibrium, even under
certain extreme conditions such as fracture.

IV. SCALINC, FB.ACTONS, AND MEMOBV

We now turn to the central theoretical problem of the
dynamics of breaking in an anharmonic lattice: H%at
can our theory can say about correlation of motions in
adjacent particles, memory, and scaling at the onset of
fracture'7 Such ingredients are necessary for one to be
able of make predictions that may be checked by simula-
tions or real experiments. Of course no analytical theory
capable of accounting for all the richness of the problem
is available at present, and so we try to develop a simple
picture of the phenomena as a stepping stone to a more
complete theoretical explanation. Our 6.rst step is to ob-
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serve that &om Eq. (10) the memory can be expressed
formally as

(18)

where

M~2
R(') =

& ). (~ (t)~ (o)).
l=g+1

(19)

7l./2

R(t) = — cos[~st sin(y)]dy. (20)

The integral was obtained by making the q space contin-
uous. In &equency space Eq. (20) may be written in a
most suitable form as

~s
R(t) = p(cd) cos((dt)did.

p
(21)

The last equation will be generalized for a nonhy-
drodynamical regime [see Eq. (28)]. Using p(w)
2/~g(v~2 —u ' we get

Here () refers to an ensemble average. This equation
shows that since more "&iction" is added. to the sys-
tem &om the coherent modes, even a starting white noise
p(t) = 2&p8(t) will introduce some memory into the sys-
tem.

For simple monoatomic harmonic chains, that is, those
whose spectra are phonons of wave number q and angular
&equency u(q) = us sin(qa/2), the correlation function
(x~(t)x~(0)) has been intensively investigated (see Ref.
27 and references therein). Florencio and Lee27 point
out that the divergence in the mean square displacement
(x~(0) ) was a consequence of the periodic boundary con-
dition. For a chain with Axed ends, their result is finite,
but depends on the lattice site l. Following their proce-
dure we get

strong support for the concept of a linear chain with fixed
ends. For t ) ~s/2 curve b is displaced from curve a, and
shows some kind of interference phenomenon.

Before we proceed with a more detailed analysis of the
modes, we are led to the question of stability: How Sta-
ble are those modes since even a small nonlinearity may
result in instabilities& Unfortunately, this is not a fully
answerable question given the state of art of our theory.
However, we shall mention here that the strong (exact)
variational principle present in the effective potential (4)
yields a hidden variational principle for the equation of
motion. Consequently the system will follow the mini-
mum action path (geodesy) leading to a break, and we
may say that the equations of motion [Eqs. (6) and (7)]
represent that minimum action principle. We can refer
to the experiments of Fig. (5) as a good test for that
claim. A very important fact here is that curve b of Fig.
5 does not display an exponential decay, but rather, as
curve a, a t / decay. We notice as well that even for
very long times (went

—20vr) the amplitude is almost the
same as that of curve a. This strongly suggests that the
difFerence between them is not due to anharmonic correc-
tions, which would induce instability in the modes and
an exponential decay envelope. Simulations with har-
monic chains show a similar behavior. Notice that the
equivalence between Eqs. (19) and (23), namely, the er-
godic theorem, is itself a proof, within the limitation of
our simulation, that the lattice is not very far away from
equilibrium as we discussed in the previous section.

To examine this manifestation further we look at the
low-frequency modes, which have the main responsibility
for the long-time behavior. To drive the system to large
y, we initially need some higher modes, such as solitons;
once this result is achieved, the linearization of the lattice
shows that the low modes, the most coherent ones, are
mainly responsible for continuing the breaking dynamics.
As a consequence, we may claim that the self-similarity
of the transforvned lattice may be used to understand the

R(t) = Jp(~st); (22)

here Jp is a Bessel function. Since our P~ is the differ-
ence between two amplitudes, the correlation function
R(t) is neither divergent nor site dependent. This re-
sult is surprisingly simple, compared with the long series
obtained " for the function (x~(t)2:~(0)). For the simula-
tions, we define

1.0

0.8

0.6

where

R, (t) = Mu)s(41c~T) 'P, ~, (t)P ~g~(0), (23) 0.0

-0.2

10

In Fig. 5 we plot R(t) as a function of time, for the same
conditions as those in Figs. 1 and 2. Curve a of Fig.
5 is the result &om Eq. (22), while curve b is the result
of a full numerical simulation of the anharmonic lattice
[Eqs. (1) and (24)]. In the simulation we use 7 = 20000
time step intervals. For t = 0, Eq. (19) predicts R(0) = 1,
while our simulation gives R, (0) = 1.016. For the region
t & ws/2, the agreement is remarkable. This provides

FIG. 5. The correlation function R(t) as a function of time.
Parameters as in Fig. 1. We start to count the time t when the
maximum localizes. Curve a displays the theoretical value for
the harmonic chain Js(rust), obtained from the full spectrum
of the one-dimensional phonons, with the hydrodynamical be-
havior (ur oc k) in the long-wavelength limit. Curve b is the
full simulation from the anharmonic chain. We use 20000
time steps; no normalization was done. For large t (small cu)

curve b suggests a nonhydrodynamical behavior.
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&actal characteristic of the anharmonic one. The eR'ect
of disorder can be incorporated in the same way as it was
for linear phonons or for a spin glass with a low con-
centration p of impurities. In the presence of impurities
the new maps are

p-+i = p-(2 —p-),

0„+i ——f(0„,p„), (26)

~ = k'G((k),

with ( as the characteristic length of the random geom-
etry for both limits (k « 1, and (k » 1 G((k) has a
power law form. Consequently those results provide w

oc k . Here, o. is expressed as a function of the criti-
cal exponents. Harris and Stinchcombe obtained the
dynamical critical exponents exactly for a dimension d.
From their results we know that for (k ( 1 we have
n = 1, while (k & 1 yields a nonhydrodynamical (ci g 1)
behavior. Those modes have been named ft. actons. Ex-
perimental results from inelastic neutron scattering
are in agreement with the theory, and they show the
hydrodynamical-&acton crossover for ( k

The fracton modes will induce modifications in the
density of states, a8'ecting consequently almost all phys-
ical quantities. For given ci we generalize Eq. (21) to
obtain

~s
R(t) = p (~) cos((ut)d~; (28)

here k is related to u via Eq. (27). The density of states
p (u), and consequently the memory, is strongly affected

where p and 0 are the concentration and the &equency
at the iteration of order n. For zero impurity concentra-
tion (p = 0), Eq. (26) reduces to Eq. (13). The precise
form of f need not be specified here, since the result
for the linear chain is well known. ' The important
aspect is that the frequency spectrum and the bifurca-
tion diagram are that of a linear lattice. In this way we
have achieved the dynamical renormalization of the an-
harmonic lattice. Notice that this result does not depend
on the particular form of the force E.

Equation (25) can be extended to dimension d & l.
The new equation (besides the trivial fixed points p =
p' =0,1) may have one critical p' = p„0 ( p, ( 1,
which allows a percolation transition. Consequently a
fracture process for d=2, 3 can be seen as a percolation
transition. The general form of Eq. (26) may be difficult
to get except in few cases. The important point is that
the lattice dynamics is the same for difFerent systems
with a similar geometry; in this way the renormalization
for phonons is the same as that of magnons (u oc k)
in dilute Heisenberg chains ' and in the quantum XY
model. z2 For d = 1, Stinchcombe obtained Eq. (26)
explicitly, which combined with Eq. (25) yields for the
low modes 0„+i oc AA [A = A(p*)], and 0 scales as a
which gives u oc 0 / cx k . For a general d, those results
can be obtained from the scaling hypothesis

d(d p~ (cd )z

o ~2+ (29)

which for z 0 becomes R(z) mp (z)/2. Notice that
for z = 0 and n = 1 this agrees with the exact R(z) =
1/gw&2 + z2 result. For the low &acton modes p (w) oc

(~/~~)", with q = ——1 ( 0; consequently we expect
that the nonhydrodynamical regime will produce values
for R(z) larger than the hydrodynamical one.

In Fig. 6 we plot R(z) as a function of z. The function
R(z) is given in units of 1/ug, while z is given in units of
~g . Curves a and 6 of Fig. 6 are the Laplace transforms
of curves a and b of Fig. 5, respectively. For large z (short
times) we see that curve b of Fig. 6 converges to curve
a of Fig. 6. For small z the e8'ects of the low modes are
appreciable. From the results of simulation and analyt-
ical methods, Eq. (29), one may be able to say that the
nonhydrodynamical behavior induces a higher density of
states for the low modes than a hydrodynamical regime.

The change of memory and the presence of a nonhy-
drodynamical behavior can be related to the large healing
capacity of a bond and consequently to the long break-
ing time found in some simulations. These times are 300
times longer than those obtained &om estimates which
do not consider the dynamical eKect of the memory. This
healing capacity is also observed experimentally in iron
whiskers under stress. They contain few defects and re-
main undamaged in a metastable state until a ft. acture

by the &actal dimension of the lattice. For a few values
of o., Eq. (28) can be integrated in terms of elementary
functions, but numerical integration can be carried out
in general if we know p (u).

For (k~ ( 1, Eq. (22) is the proper result for R(t).
For (k & 1 and n g 1 we have a crossover in the dis-
persion relation, making the evaluation of Eq. (28) more
diKcult. This crossover separates the hydrodynamical
region, where the waves are underdamped and not local-
ized, &om the region where the waves are localized and
overdamped (fractons). Unfortunately there is no result
for the full spectrum, which is necessary for the evalua-
tion of the integral in Eq. (28). The difFerence between
the hydrodynamical and the &acton modes may explain
the difference between curves a and 6 of Fig. 5. The local-
ization of those waves may explain as well the results of
Fig. 2, where the large y stays in a localized metastable
position until it evolves irreversibly to a break. There
cannot be an explanation within the &amework of a hy-
drodynamical theory.

The evolution of a particle through a barrier has been
the object of intensive investigation in the last 50 years,
and represents a very active area of physics and chemistry
known as reaction rate theory. 2 The characteristic
time for a particle to go through a barrier (such as that
in Fig. 3) will depend on the Laplace transform of its
memory I'(z) and of its derivative dI'(z)/dz for values of
z close to zero (long-time behavior). To get a estimate
of I'(z) for z « ws, we suppose that the harmonic-type
correlation will hold as well for n g 1. The Laplace
transform of R(t) yields
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occurs. This phenomenon was labeled delayed fracture. i

The dynamical memory a, nd the transformed lattice may
be useful to explain those phenomena, both qualitatively
and quantitatively.

V. CONCLU SION

In conclusion, by analysis of the evolution of a break in
an anharmonic lattice, we map this lattice into a trans-
formed lattice which is a linear one with a defect. This
lattice can be renormalized, and that represents a dynam-
ical renormalization of a nonlinear lattice. Comparison
between the analytical results and simulations suggest
that the main modes are those of a harmonic lattice. The
short-time behavior of B(t) shows that no higher modes
such as solitons are present in an appreciable manner.
The lattice defect or crack can be viewed as one particle
moving in an effective potential subjected to a noise com-
posed of two parts: one due to the thermodynamical bath
and the other due to the motions of neighbor particles,
which gives an origin to a transformed dynamical mern

ory. We obtain a formal expression for the transformed

FIG. 6. The Laplace transform of the correlation function
R(z) as a function of z. R(z) is in units of 1/ws and z in
units of ug. Curves a and 6 are the Laplace transforms of
curves a and b of Fig. 5, respectively. For larger z (z (us)
the curves converges to the same value. The large values of
B(z (( us) in curve b, correspond to a higher density for the
nonhydrodynamical modes.

memory, which can be easily evaluated for a small corre-
lation length (. A first estimate shows that the inclusion
of the nonhydrodynamical regime may acct the analysis
of data &om experiments and simulations. The memory
can be used to obtain a closed analytical expression for
the breaking rate of long chains. That would be a very
important result since the state of art is only for a parti-
cle moving in a efFective potential. ' However, before
we proceed to more detailed calculations, we need more
precise information about the crossover region and the
fractons. The full theory goes beyond the objective of
this work, but the results present here are part of the
e8'ort of building up such theory. We expect to treat
these problems in a self-consistent way in a subsequent
publication.

For d & 1 the concentration of cracks p and its di-
versity of size and shape are a function of the tempera-
ture, strain, and history of the lattice, which point toward
nonuniversal values for o.. Notwithstanding the fact that
the situation is quite difFerent from the one-dimensional
case, the presence of cracks may still induce relaxation of
the other bonds and a harmonic behavior. That the low
modes are the Il;ost important ones in driving the system
toward a break may explain why some harmonic approx-
imations are not so bad at all. Additional simulations
and analytical results are necessary to further explore
the concept of the transformed lattice in higher dimen-
sions. However, we hope that the concepts developed
here will be a stepping stone toward a more complete ana-
lytical theory of fracture in low-dimensional systems, and
in particular, we expect that the renormalization proce-
dure discussed here may be applied in different areas of
physics.
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