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Raman scattering from small spherical particles
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Raman coupling coefBcients are calculated for the acoustic vibrations of a small dielectric sphere.
The mean components of the strain tensor are calculated for the symmetric and quadrupolar Raman-
active vibrational modes, within a continuum approximation which considers a vibrating homoge-
neous sphere. The Raman coupling coefFicient depends on the crystalline structure and on the micro-
scopic scattering mechanism. For cubic Bravais lattices and for a dipole-induced dipole scattering
mechanism, the coupling coefFicient of the symmetric vibrations vanishes. The Raman intensity
of the inner modes is found to be small with respect to that of surface modes. The scaling law,
which gives the Raman coupling coefBcient as a function of the particle size, has been derived. The
coupling of the sphere with a surrounding elastic medium has been considered and found to cause
shift and broadening of the lines. These effects can alter signifj. cantly the estimated mean value and
distribution of particle sizes.

I. INTRGDUCTION

Glasses containing metallic or semiconductor clusters
with a size of a few nanometers are of high interest for
nonlinear optics applications. Three-dimensional quan-
tum size eÃects enhance the nonlinear response of the
glass by several orders of magnitude. The nonlinear prop-
erties are connected to the size of the clusters.

After the erst works on rough metal surfaces, on
spinel nanocrystals in cordierite glasses, and on silver
colloids in alkali halides, ' low-&equency Raman scat-
tering &om symmetric and quadrupolar acoustic vibra-
tions of the spheroidal clusters has become a method
to determine the size of the particles. A peak in the
range 5—50 cm was observed in many composite sys-
tems containing metallic, insulator, or semiconductor
nanoparticles. ' The size of the nanoparticles was de-
duced &om the energy of the peak, since the &equency
of all modes scales as the inverse of the linear dimen-
sion of the particle. In most studies a spherical shape
was assumed for the particles, and the peaks in the Ra-
man spectra were indeed assigned to the acoustic vibra-
tions of a &ee sphere. The vibrational eigen&equencies
and eigenvectors of a homogeneous elastic sphere with a
free surface were studied by Lamb. The vibrations are
grouped into two categories, the torsional ones and the
spheroidal ones. The former involve only shear motions
and do not change the volume of the sphere, the latter
involve both shear and stretching motions and produce
radial displacement. Torsional and spheroidal modes are
classified according to the symmetry group of the sphere
by the labels (l, m) as for the spherical harmonic func-
tions Y& . The symmetric l = 0 spheroidal modes are
purely radial with spherical symmetry. At higher l val-
ues, angular corrugation appears: l measures the number

of wavelengths along a circle on the surface. A third in-
dex (p = 0, 1, ..., n) labels the sequence of eigenmodes, in
increasing order of frequency and radial wave vector, at
fixed angular shape (l, m). Mode counting is achieved
by fixing limits to l and p: one can use the continuum
approximation, but one must remember that in a sphere
containing N atoms there are 3N —6 vibrational modes.

Recently, Duval " has shown, on the basis of symme-
try arguments, that the only Raman-active modes of a
sphere are the symmetric l = 0 and quadrupolar l = 2
spheroidal modes. The former produce polarized and the
latter depolarized spectra. Therefore, on the basis of the
depolarization ratio IIrv/Ivv, one should be able to as-
sign the Raman spectra to symmetrical or quadrupolar
vibration.

Silver particles in alkali halides, ' have depolarized
spectra, which were indeed assigned to quadrupolar vi-
brations. In particular, Mariotto et al. found that the
particles were ellipsoidal, and the degeneracy of the l = 2
quadrupolar modes was lifted. The energies and rela-
tive intensities of the three peaks observed in VV and
HV polarizations were very well reproduced by consid-
ering the lifting of the degeneracy of the m = 0, +1,
+2 components. Depolarized spectra were also obtained
for silver particles in silica. ' Fujii et a). 2 reported
on a depolarization ratio Iv~/Iv v. of 0.27 and assigned
the line to l = 2 spheroidal modes. On the other hand,
the I = 0 spheroidal modes seem to dominate the Raman
spectra of nanocrystalline particles of CdS in glasses:
all structures are polarized, apart &om one peak in the
smallest particles, which was indeed attributed to l = 2
modes. Similar arguments led Capobianco et al. to
conclude that nanocrystals nucleated in aluminosilicate
glasses by Eu + or by Cr + ions, acting as nucleating cen-
ters, give low-&equency Raman scattering due to l = 2

0163-1829/95/52(14)/10080(10)/$06. 00 10 080 1995 The American Physical Society



52 RAMAN SCATTERING FROM SMALL SPHERICAL PARTICLES 10 081

and l = 0 spheroidal modes, respectively.
At present, it is not clear why the l = 0 modes should

dominate in some systems and the I, = 2 modes in others.
Furthermore, it would be interesting to know the relative
importance in the Raman spectra of modes with definite
l values but with different p values. So far, the structures
observed in Raman spectra were attributed, both for l =
0 and 2, to the p = 0 fundamental mode, also called the
surface mode. To our knowledge, only in one case 3 were
the observed peaks assigned to inner modes with p = 1.

Another important question is the dependence of the
Raman coupling coefBcient on the size of the particles.
This function is necessary to obtain the size distribution
of the particles &om the experimental line shape. Also
necessary to this aim is the knowledge of the homoge-
neous line shape. In fact, a &ee sphere has a discrete set
of vibrational modes, but when the sphere is embedded
in an elastic medium, the discrete set broadens into a
continuum.

In this work we study the following: (1) The rela-
tive scattering eKciency in VV and HV polarizations
of the two sets of Raman active modes, the l = 0 and
2 spheroidal vibrations. (2) The relative scattering ef-
ficiency of the higher harmonics (inner modes) with re-
spect to their fundamental modes (surface modes). (3)
The scaling law, i.e. , the scattering eKciency as a func-
tion of the particle size. (4) The effect of a surrounding
elastic medium that causes shift and broadening of the
lines.

We will begin by studying the problem for one-
dimensio ial systems. This is interesting in itself and
helps in discussing the methods used in the calculations
and the limits of application of the results.

n((u„) + 1

Cai&
(4)

where n(~, T) is the Bose-Einstein factor and C p(wz) is
the mode-radiation coupling coefBcient.

III. LINEAR CHAIN

Consider a linear chain of N equal masses, M, placed
at rest distance a, linked by harmonic springs. The
masses have longitudinal motions along the chain. The
rest length of the chain is I = (N —1)a. For free bound-
ary conditions the eigenvectors are

2
e(i, p) = —cos(k„x;),

where k„= &, 1 & p & N —1. In this case the Raman
coupling coefFicient becomes

where u (t) is the displacement &om the equilibrium po-
sition x . Since we are interested only in Raman scatter-
ing &om systems with size (B) small compared with the
wavelength of the light (qR « 1), and not in the Bril-
louin scattering, we can consider q = 0. n'&(t) can be
expanded in power series of the displacements u~, and u'
can be expressed in terms of the vibrational eigenvectors
e(i, p), whose &equencies are (tb„. The contribution of the
pth mode to the Stokes part of the spectrum can be put
in the form:

II. RAMAN SCATTERING

The spectral density of the scattered light is given by
C(p) = ).AV(~(~ p) —e(' p)j

I p(q, cej ec f dte ('be( pqqj »*'bp(q, tjj,

where a and P are the direction of polarization of the
incident and scattered photon; her = Lu, —her, and q =
k; —k, are the exchanged energy and wave vector. The
fIuctuations of the dielectric constant can be described in
terms of the space Fourier transform of the macroscopic
polarizability density tensor P p(r, t)

be p(q, tj ec f dre ' ' etqpbretj,

which in atomic or molecular systems can be described
microscopically by using the effective microscopic polar-
izability tensor vr' &(t) of the ith scatterer at position r'(t)

r'(t) = ~'+ u'(t),

The quantities A.,~
= &, depend on the scattering mech-

anism. In the bond polarizability (BP) model A,~

Aq(h~;+q —b~; q) and the coupling coefficient is

C (p) = A~ ) e(i+1,p) —e(i, p)

= A~ e(N, p) —e(1,p) = —A~

for odd values of p, while CBP(p) = 0 for even values
of p. Let us discuss the physical origin of Eq. (6), i.e. ,
C=const. In a BP model, where the polarizability of the
bonds varies linearly with the bond length, the modu-
lation of polarizability of the whole chain, to be consid-
ered as a molecule for L (( A~;ght, is proportional to the
modulation of the length of the chain, e(N, p) —e(1,p),
produced by the mode p. In a continuum approxima-
tion, valid for long vibrational wavelengths (kza « 1),
the eigenvectors are given by
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e~(*) = cos(k„z), (8)
in a continuum approximation, but the scattering de-
pends on the microscopic details of the discrete structure.
Within a DID model the quantities of interest are

whose eigen&equencies are uz ——vkz, where v is the (lon-
gitudinal) sound velocity. The Raman coupling coeffi-
cient can be calculated in terms of the contributions of
the modes to the local strain:

&."p= (C."p) '

oc ) ) T p~(x'~)[e~(xj, p) —e~(x', p)].

(s)

All modes with odd p, i.e., the symmetric modes which
modulate the length of the chain, have the same Raman
coupling coefficient, even if the local strain increases lin-
early with A:z. This is so because the scattered waves,
whose amplitude increases with A:„, undergo destruc-
tive interference: half a vibrational wavelength, for odd
p, contributes because the contributions of the others
wavelengths cancel each other. Even if all Raman ac-
tive modes have the same coupling coefficient, the Ra-
man intensity of the first mode (p = 1) will be higher
than that of the other odd harmonics due to the factor
(n+ 1)/u K~T/u for K~T )) Ru. Therefore, in the
Raman spectrum of the linear chain, we expect a mode
at uri ——harv/L and the odd harmonic at ur = 3ui, 5uri, ...
with intensity decreasing as u

From Eq. (8) we obtain the scaling law for C(ur); com-
paring chains of difFerent lengths, for any mode and in
particular for the first one we have

1
C(ldi) OC —OC Ldi. (10)

Therefore, the Raman intensity, in the high-temperature
limit (K~T )) Kui) scales as

n+ 1
I(uri) = C((ui)

QJy

In the presence of a distribution of diff'erent chains, the
Raman activity of any mode is proportional to the length
of the chains.

In a dipole-induced dipole (DID) mechaiusm of light
scattering we have

DID
~p 2~ T(s)

( ij)
g~i ) o4 ~W'

IV. THE SPHERE

Passing to three dimensions, we are faced with the
problem that the vibrational dynamics is easily described

where o. is the bare polarizability of the elementary
scatterers, x'~ = x~ —x' is the equilibrium distances
of the pair of scattering units i, j and T

& (r)
—[V' V'pV'~(~ ~)] . The strong spatial dependence of the
dipole operators gives, for the linear chain, DID results
very similar to those of BP, which can be obtained for-
mally by limiting the sums in the DID expression to
nearest-neighbor elementary scat terers.

In a continuum approximation we expand the relative
displacements of the scatterers,

1

e~(xj, p) —e~(x', p) = ) ~ ' x~',
Ozg

(14)

obtaining

~P ) ) A ( i) e( &P)

X$

where

A p~g(x') = ) T p~(x")x~'. (16)

). ).Be~(x', p)

). Be~(x, p)
aPpb g

&)

pb
X$

(i7)

where the sum on the point scatterers is converted into
an integral on the volume of the sphere.

This solves our problem: A p~p are quantities that de-
pend on the microscopic structure and on the scattering
mechanism (DID or BP) but not on the dynamics; the
vibrational dynamics will be treated in a continuum ap-
proximation. For each mode of the sphere, we need the
components of the local strain averaged over the volume
of the sphere:

e pdv = (e p) —R .f 4'

3

Actually the local strain is defined as

1
~f

Oe~ ~ep l
2 (Bxp Bx~ ) (1S)

but it can be shown that, by averaging over the volume
of the sphere, ( &' ) = ( &'~ ) .

As mentioned, a sphere has two types of vibrational
modes, spheroidal ones and torsional ones, but the latter
are not Raman active. Spheroidal modes involve both
stretching and shear motions and can be described in
terms of a scalar and a vector potential. ' ' Fol-
lowing Love, the components of the normalized eigen-
vectors e(7 ) are given by

Equation (16) becomes simpler if the quantities
A p~b(x ) are not site dependent. Though this is in prin-
ciple true only for infinite crystalline systems, we assume
that it holds also for our systems and obtain
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t9b)+4') g (kr)
xa

l
@)+g (kr) k r s 0 ( b)

1+1 (20)

where x and e are the Cartesian components of the po-
sition and of the normalized displacements, respectively.
The modes are classi6ed according to the angular indexes
l, m. Q~ = a„~r Yj (0, P) and b~ ——b~~r'Yj ~(8, P) are the
potentials with the symmetry of the spherical harmonics.
The ratio a„~/b„~ is given by the stress-free boundary con-
ditions. The functions 4'~( hr), 4'~(kr) are related to the
Bessel functions by the relations 4~(hr) = (—& ) j~(hr);
4'(z) =

&
. h and k are analogous to the wave vec-

tors of longitudinal and transverse phonons and are con-
nected to the frequency of the modes by the relations
~ = hVL, ——kVT, where VI, and Vz are the longitudinal
and transverse sound velocities. The index p = 1, 2, ...
labels the sequence of solutions with Gxed L, m in in-
creasing order of energy. These solutions for h„and
kz ——h„VL, /VT are given by the stress-&ee boundary con-
ditions. To calculate the Raman coupling coefBcient we
need normalized vibrational modes:

radius of the sphere B and on the values of the sound ve-
locity Vl. , VT . Actually one can calculate only the mean
strain (e„) for the l = 0 and l = 2, m = 0 modes and
then use symmetry considerations that give the results of
Table I, where we report (e p) for the spheroidal l = 2, m
modes. (e„)for the l = 0 and for the l = 2, m = 0 modes
have been numerically calculated by Eq. (22) for a few

low-p values and for VL, /VT = ~3, which corresponds to
the Poisson condition A = p, , where A and p, are the Lame'
constants. In Table II we report the squared values. The
other (e p) can be obtained from Table I.

Now we can calculate the Raman coupling coefficients
by using Eq. (15), provided we know the A p~g coeffi-
cients, which depend on the microscopic structure and
scattering mechanism. The A p~g values for a given
structure will determine the relative importance of the
E = 0 and 2 modes in the Raman spectra. The simplest
example is DID in a cubic Bravais lattice. In this case,
the nonzero A~pzg are

(21)

This fixes the value of the constant A in Eq. (20). Taking
the derivative of Eq. (20), we obtain

&ancxa = (23)
(24)

Becalm = [A(&)& *~+&(r)~-,~]r'&~ (~ &)
xj9

a"r, (e, y) a"Y, (e, y)
x~ Xp

8[2 'Yi (0, P)]
BX~Bxp

(22)

where A, B,C, ... are radial functions typical of each
mode with &equency ~„~.

From Eq. (22), and from the orthogonality properties
of spherical harmonics, it results that only for the l = 0
and 2 modes the integral of the strain is difFerent &om
zero. This is easily seen by noting that x have the same
angular dependence as Y~, x xp as a linear combination
of Ye and Y2, and that the space derivative of the quan-
tities r Yj transform as r Yj

The values of the mean strain in Eq. (18) can be cal-
culated for all p, l, m using Eq. (22) and depend on the

where s is a constant, which depends on the structure.
By using in Eq. (15) the values of Table I for the

mean strains, we 6nd for the spheroidal l = 0 mode
B~~ = B» ——B,~ = 0: the l = 0 mode is not Raman
active in nanoparticles with cubic Bravais lattice and for
the DID scattering mechanism. This result could explain
why the l = 2 mode dominates the Raman spectra of sil-
ver nanoparticles.

For the l = 2 spheroidal mode, by averaging over the
Ave m components and over the directions of polariza-
tion [Ivv = -(I +I»+I ), I~v = -(I „+I„+I,)],
we obtain a depolarization factor IHv/Iv. v = 1/3. This
ratio is in quite good agreement with the few available ex-
perimental results for the scattering due to l = 2 modes.
Fujii et al. found IHv. /Ivv 0.27 for Ag particles in
silica glass and Abel found IJrv/Ivv 1/3 for Ag par-
ticles in KBr crystals.

The Raman intensities of the inner modes with respect
to the surface ones are given in Table II. All coupling
coefficients, that are proportional to the square of the

TABLE I. Relative values of the components of the strain, averaged over the sphere, for the m

components of the l = 2 spheroidal mode.

m
+2
+1
0

yy
~3

0

zz xy

0

yz
0

0

0
~3

0
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kR
4.43
10.49
16.07
21.6
27.05
2.64
4.86
8.33
9.78
12.16

hR
2.56
6.06
9.27
12.5
15.61
1.52
2.81
4.81
5.65
7.02

I
1

0.12
0.047
0.028
0.018

1
0.022
0.014
0.025
0.018

1
2
3
4
5
1
2
3
4m=o

/V hR = uR/Vz, ) for the surface modes (p = I)TABLE II. Adimensional frequencies (kR = uR/VT, hR = (u, z„
odes 2& &5 o t e = anf h l —0 d l = 2 m = 0 spheroidal modes; squares of( p )

the (c, ) (see teat); Raman intensity of the inner modes normalize to ose o e sur

1&e*.)l'
4.22
2.97
2.86l=o
2.83
2.81
7.2
0.54l=2
1.01
2.45
2.79

averaged strain, have comparable values, a result similar
to that of the linear chain: the local strains increase with
the radial wave vector, and indeed with &equency, but
their mean values on the sphere, which are proportional
to the amplitude of the scattered wave, present cancel-
lation effects. However, the surface modes dominate the
spectra because of the (n + I)/tu K~T/w factor in
the intensity of the scattering, as can be seen in the last
column of Table II.

The scaling law, which provides the dependence of the
Raman coupling coeKcient on the radius B of the parti-
cles, can be deduced from Eq. (22), by taking into ac-
count the mode normalization [Eq. (21)]. For any mode

~& the &equency scales as the inverse of the radius)m, pJ e
of the sphere (u oc 1/R), the normalized displacements
at the normalized position r/R scale as the square root

3of the inverse volume [e(r/R) oc R ~], the local strams
scale as e/R (&' oc R ~), and the integral of the strain
in Eq. (18) scales as the local strain times the volume
of the sphere (R~). Therefore, the scaling law for the
coupling coeKcient is given by

1
C(~) oc R oc —.

Taking into account the (n+1)/~ KIBT/ur2 factor, the
intensity is found to scale as

V. NONSPHERICAL PARTICLES

The results obtained in Sec. IV were for a &ee spherical
particle. It is interesting to discuss, at least qualitatively,
what is expected in real systems when the particle does
not have spherical symmetry and is embedded in an elas-
tic medium. Let us fn.st discuss the effect of a symmetry
lowering. The &ee vibrations of the sphere are labeled
with the angular numbers l, m and the radial number
p. All mode frequencies will be afFected by a lowering
of the spherical symmetry but to difFerent degrees. The
lowest modes will be very similar to those of a spheri-
cal particle, and we can use for them the labeling of the
spherical symmetry. The &equency of the spherical l = 0
mode will be related to a mean diameter of the particles,
and small protrusions on the surface of the particles will
have no important effects on it. For the l = 2 spherical

3.0

2.5

I((u) oc (u oc R . (26)

Spheres of different sizes contribute to the Raman scat-
tering proportionally to their volume for any allowed vi-
brational mode.

Finally, in Fig. 1 we show the &equencies of the
quadrupolar and symmetric surface modes of a &ee vi-
brating sphere, as a function of the ratio of the longi-
tudinal and transverse sound velocities. For graphical
reasons, we show the quantities kB for the quadrupolar
L = 2 mode and hB for the symmetrical l = 0 mode. The
frequency of the modes are given by cu2 ——(kR) VT /R and
~p ——(h,R) Vl, /R

1.5

1.0
1.5 2.0 2.5

VL/VT

3.5 4.0

FIG. 1. Adimensional frequencies of the surface modes of
a free sphere as a function of the ratio between the longi-
tudinal and transverse sound velocities VL, /Vr. Solid line:
hR = tupR/Vr, for the symmetric I = 0 mode; dashed line:
kR = &u2R/VT for the quadrupolar I = 2 mode.
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modes we will approximate the particle as an ellipsoid:
the modes with m = 0, +1,+2 are no longer degener-
ate and the splittings depend on the eccentricity. At
higher l values, protrusions on the surface with a small
radius of curvature become more and more important.
The simple rules for spherical symmetry, i.e. , Raman ac-
tivity of the t = 0 and 2 spheroidal modes and much
higher intensity &om the surface mode with respect to
inner modes, will be partially relaxed. In fact, a sur-
face protrusion with a given radius of curvature tends to
vibrate according to modes that, as regard energy and
wave function, are similiar to the modes of a sphere with
that curvature. Therefore, we expect that the Raman
spectrum of a nonspherical particle will contain contri-
butions &om all Inodes: the relative Raman activity of
the high-&equency modes with respect to the symmetric
and quadrupolar surface modes, will depend on'the de-
tails of the shape of the particle. For example, Na colloids
in a NaC1 crystal show a continuous Raman spectrum.
This is interpreted by a continuum distribution of radii
of curvature of the surface, which has a &actal structure
as shown by small-angle x-ray scattering. However, in
nearly spherical particles, we expect that the results of
the preceding section hold, but with some enhancement
of the Raman activity of the high-&equency harmonics.

Recently, Ferrari et al. have observed Raman peaks
with important high-&equency tails in films of silica con-
taining Ag nanoparticles. The tail is attributed to the
deviation from spherical shape; the relative importance
of the tail decreases after laser annealing, which increases
the size and smooths the surface of the particles. How-
ever, only a few experiments have been done on this sub-
ject; Raman measurements on nanoparticles with well-
defined shape would be very interesting.

VI. MATRIX EFFECT

The results for free particles were obtained assuming
stress-&ee boundary conditions. In the presence of an
external medium the new boundary conditions consist in
requiring the continuity of the vibrational displacements
and of the stress at the interface. The acoustic phonons
of the medium are re&acted and reBected at the interface,
and the important parameters are the ratios of densities
and sound velocities. The resulting stationary waves will
have the symmetry of the particle. All low-&equency
acoustic vibrations involve the whole systems, the parti-
cle and the surrounding medium. To follow the evolution
resulting &om the discrete spectrum of the &ee particle
to the continuum one, a useful quantity is the projected
density of states (PDOS), defined as the mean-square dis-
placement of modes at &equency ur within the particle.
We will discuss first the one-dimensional problem, which
is very simple and provides the same qualitative results
of the more complicated three-dimensional case.

A. Linear chain

We consider the longitudinal acoustic modes of a seg-
ment of length L with linear mass density p and longitu-

dinal sound velocity VI, embedded in an infinite medium
with density p and velocity VL, . Taking the origin at
the center of the segment, the symmetric Raman-active
mode with frequency cu is given by

e(x, u) = A(u) sin(kx), ~x~ & L/2,
(27)

(kL'i ' ( &V,
A(u) sin

~
~

+ ( ~
cos(kL/2)

& 2 ) Ep-&~-i

(28)

and can thus calculate the PDOS and the Raman spectra.
In Fig. 2 these quantities are reported for some values of
the parameter a = ~ . For o. && 1, the PDOS shows

P VL
sharp peaks, at the &equencies of the sequence

C

~~
CO

Q) 1
C

CQ

E
6$

0—

1

p, I
~ i
I ~

g
I

II
IIr

I
I
I
I
I
I
1
I

I
'e ~

4, I

lP

l~
I
\
l
I

\
a

~~

JQ

1
(fl0
Cl
CL

I

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
4
I
I
I
I
I

l I
1 II I

I
I
I I

I I

I 's I

I I
\ I
I I

I
I

Il I

I
~ g

1
I

Y &

It

i
1 I I
1 I

1
I I
I I

I I I
1 I I
1 I I
I I 1
1 i I
I I 1

I I
I I
I I
I 1
I

t I l
II i

Y I
Y
, 1

I ~

~
+

/

0 ..'-' '
i I I

4 5

FIG. 2. Projected density of states and Raman intensity
of the longitudinal acoustic modes of a segment of length
L with linear density p and longitudinal sound velocity VL„
embedded in a medium with p and Vl. ——Vl. . Solid
lines: p /p = 0.05; dashed lines: p /p = 0.5; dotted lines:
p /p=2.

e (x, ~) = A (~) sin(k x) + B (~) cos(k x),
)xf & I./2

with the condition ~ = kVI, ——k~VI.~. The boundary
conditions are given by the continuity of the displace-
ment e(x, u) and of the stress pVI cle(x, ur)/Ox at the in-
terface (~x~ = L/2). The presence of the finite segment
has negligible effects on the density of states (DOS) of the
composite system, which is the same as that of the infi-
nite medium, i.e., a constant DOS in the low-&equency,
nondispersive part of the spectrum. This is achieved by
the condition A2 (~) + B2 (u) =const. With this condi-
tion, we obtain
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~ = Vl, k„, k„= —p, p = 1,3, 5, ..., (29)P' P L'
since this case approaches the &ee boundary conditions.
As o. decreases and approaches the value n = 1 the peaks
in the PDOS become increasingly broad and shift to-
wards high energy. This is especially true for the first
peak.

As in Eq. (9), the Raman coupling coefficient C(ur)
of the mode with frequency w is proportional to the
squared amplitude of the modulation of the segment
length caused by that mode. The upper part of Fig.
2 shows the high-T Raman spectra:

(30)

The zeros of the Raman spectra are for u = VL, k
VL, (2~/L)n (n = 1, 2, ...), i.e. , for vibrations with nodes
at the boundaries. The 1/A)2 term shifts the Raman
peaks towards low energy. The lowest-energy peak ex-
tends down to cu = 0 with finite intensity. The case
o. ( 1(dotted line in Fig. 2) is more similar to fixed
boundary conditions (n = 0) than to free boundary con-
ditions (n = oo), and the maxima of the PDOS are for
modes that have nodes near to the boundary. However,
these modes have very low Raman activity, and therefore
the Raman spectrum consists of broad bands without any
correlation with the shape of the PDOS. Strong Raman
scattering occurs at low &equency with a shape that is a
zero-centered Lorentzian with a width at half maximum

31
I' 2o.V 2pV V
2 L p V L'

as can be seen from Eq. (28) in the limit of k = w/Vl, m
0. Figure 2, upper part, shows only the tail of the
Lorentzian, which reaches a maximum of about 6 at
cu = 0. We will see that this "quasielastic" scattering
is not present in the three-dimensional case.

(32)

In this case, Eqs. (15) and (17) give

B"p — ) co~kg A p ~e'"'dg.
v

(33)

Under the assumption that A(r) has two constant val-
ues A' for the sphere and A for the medium, with a
mismatch LA = A' —A, we have

B p
—— ) co~kgb, A p~g e' 'dU,

V sphere
(34)

since the term

sphere of Table II. By increasing p /p the lines broaden
and shift in a way similar to that observed for the one-
dimensional case, but here the intensity goes to zero at
low &equency. Figure 3 also shows the Raman spectrum
for p = p (dotted line). In this case all mechanical
parameters, densities, and sound velocities are the same
for the sphere and for the surrounding medium. Actually,
Raman scattering also occurs in this case if a mismatch of
the acousto-optical properties of the particle and medium
is present.

We will discuss in some detail this limiting problem. In
this case, to describe the vibrations of the composite sys-
tem we do not need to work in spherical symmetry. The
low-&equency acoustic modes are phonons with defined
wave vector and longitudinal or transverse polarization,
which travel in the composite system without any re&ac-
tion or reHection at the interface. Consider a phonon
with wave vector k, given by

B. The sphere

The matrix efFects on the spheroidal modes of the
sphere can be calculated as for the segment by consider-
ing the continuity of the components of the displacement
and of the stress at the interface. The l = 0 symmet-
ric modes are simpler to calculate because they involve
only radial displacement and stress, i.e., the o„„com-
ponent of the stress tensor. As in the one-dimensional
case, the "infinite spherical" surrounding medium has
a constant density of states for fixed l and m; the u
dependence of the low-&equency acoustic modes is as-
sured by the sum over the difFerent I,, m, values. In the
one-dimensional case, longitudinal and transverse vibra-
tions have a separate nature, and thus a single param-
eter, o, = ~&, is needed. On the other hand, spher-p~&
ical modes are neither transverse nor longitudinal, and
as a consequence the parameters p /p, Vr, /Vr„VL, /VT,
VL, /VT are independent. In Fig. 3 we show the be-
havior of the 1 = 0 symmetric spectrum for Vr, /VI, = 1,
Vl. /VT = VL, /Vz = ~3, and for some values of the pa-
rameter p /p. For p /p = 0.02 we obtain sharp peaks
with &equencies and intensities close to those of the &ee
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FIG. 3. Calculated Raman spectra of the I, = 0 modes of
a sphere of radius R, mass density p, and longitudinal and
transverse sound velocities VL, and Vz embedded in an elastic
medium with parameters VL, /VT = Vz, ~/VT~ = 3 . Solid
line: p /p = 0.05; dotted dashed line: p /p = 1/3; dotted
line: p /p = 1; dashed line: p /p = 3.
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~m,
V

(35)

vanishes. The last integral is over the total volume of the

sample, and its vanishing is equivalent to the well-known
physical result that no Raman scattering is observed &om
acoustic phonons in crystals. By integrating, Eq. (34)
becomes

) eoz b,A~p—&g ~
[sin(kR) —kR cos(kR)] ~, (36)

which gives the amplitude of the wave scattered by the phonon with wave vector k- The Raman spectrum ls obtained
by squaring Eq. (36) and summing over It and over the three polarization directions of the phonons. For each
ransversal or longitudinal phonon branch this can be done in two steps, 6rst over the direction of propagation and of

polarization of phonons, and then over the module of k. Since su~ ——VL, k, and uz ——VT k in the low-&equency acoustic
bands, the frequency spectrum is given by the k dependence of Eq. (36):

I'&(cu = V, k, ) oc p(u) [sin(k, R) —k, R cos(k, R)]
n+ 1 1

JJ

where the index 8 labels the contribution of transverse
or longitudinal phonons. In the high-temperature limit,
the frequency dependence of the term (n + 1)/w
K~T/(hu2) is balanced by that of the low-frequency den-
sity of states p(ur) u . The spectrum given by Eq.
(37) for longitudinal phonons coincides with that of Fig.
3(c), for l = 0 spheroidal modes in the absence of me-
chanical mismatch (h = k~). In fact, in this case the
l = 0 spheroidal modes with wave vector h are nothing
but a symmetrical spherical wave packet of longitudinal
phonons with k~ ——h. The Erst, more intense peak occurs
at hB = 2.082, to be compared with the values for the
&ee sphere given by Fig. l.

This study shows that the surrounding medium very
much affects the shape of the Raman spectrum of a spher-
ical particle. The discrete spectrum of the free particle is
a good approximation only if the medium has a density
(or sound velocity) much lower than that of the sphere.
In general, one should be very careful in deducing the
mean size of the particles &om the energy position of the
Raman peak and the size distribution &om the linewidth.
There are two sources of line broadening, an inhomoge-
neous one in the presence of a size distribution of parti-
cles, and a homogeneous one caused by the interaction of
the particles with the surrounding medium.

Finally, we present the spectra calculated for two phys-
ical systems, which have been extensively studied by
Raman scattering because of their interest for appli-
cations in nonlinear optics. Figure 4 shows the VV
Raman spectrum of the symmetric modes calculated
with the parameter suited for CdSO 4Seo 6 in silica glass

(p~/p = 2.3/5. 4, VL,~/VL, ——5960/3850J VL, /VT ——2.3J
VL,~/VT~ = 5960/3790). For comparison, we also
show the spectrum calculated for a quasi&ee particle, ob-
tained with p = p(Si02)/10. For this system the matrix
effect is quite important in broadening the Raman lines.
We note that the experimental Raman spectra obtained
by Champagnon, Andrianasolo, and Duval and by Fer-
rari, Champagnon, and Barland have a shape very sim-
ilar to that in Fig. 4. This seems to indicate that most of
the observed linewidth has a "homogeneous" origin. The
width of the size distribution, obtained by assuming an
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FIG. 4. Calculated Raman spectra of the L = 0 modes of a
sphere of radius R of CdSp 4Sep. s ln silica glass (dashed line).
The solid line is for p = p(SiOq)/10 (see text).

I

inhomogeneous origin for the whole linewidth, is indeed
overestimated.

Figure 5 shows the Raman spectrum calculated with
parameters suited for Ag particles in silica glass (p /p =
2.2/10. 5, VL, /VL, = 5960/3650, Vl. /VT = 3650/1660,
Vl, /VT = 5960/3790). ' The spectrum for a
"quasi&ee" Ag sphere, obtained by putting p
p(Si02)/10, is again shown for comparison. In this case,
the small shift and the small linewidth of the surface
mode allow us to use with conMence the &ee-sphere
model. We note that the calculations are performed for
the L = 0 spectrum, but the experimental Ag spectrum is
assigned. to the l = 2 vibrations. However, in this case we
expect that the matrix effect is small for all modes, and
not only for the l = 0, because of the low p(Si02)/p(Ag)
ratio.

The two above examples suggest how one can obtain
information on the size distribution from an experimen-
tal spectrum in the presence of both homogeneous and
inhomogeneous broadening. One can try to 6t the data
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by calculating the convolution of the homogeneous spec-
trum with a hypothesized size distribution (the quantity
to be determined), and by taking as weights the Raman
activities given by Eq. (24).

A complication can arise in the presence of electronic
resonances. This is the case of both examples discussed
above. The resonance with electronic excitations is very
important because it strongly enhances the Raman sig-
nals but can cause size selection if the energies and wave
functions of surface plasmons or excitons depend on the
size of the particle. In this case, the line shape of the
Raman peak depends on the excitation frequency, as ob-
served in some systems. ' ' However, this effect does
not prevent the use of Raman scattering as a very simple
and powerful tool for the determination of the sizes of
nano clusters.
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VII. CONCLUSIONS

The Raman scattering &om the acoustic vibrations of
a small crystalline sphere can be obtained by calculat-
ing two sets of quantities. The erst set consists of the
mean components of the strain tensor relative to each
vibrational mode. They are evaluated within a contin-
uum approximation, which considers a vibrating homo-
geneous sphere. The second set are parameters related
to the crystalline structure and to the physical mecha-
nism of scattering and must be calculated for the sys-
tem under study. The mean strains are different &om
zero only for the symmetric (l = 0) and the quadrupolar
(l = 2) spheroidal vibrations, which are indeed the only
Raman-active modes, as pointed out by Duval on the
basis of symmetry arguments. Symmetric vibrations
cause polarized spectra; quadrupolar vibrations cause de-
polarized spectra with a depolarization ratio depending
on the structure parameters. For cubic Bravais lattices
and for the DID scattering mechanism, the symmetric vi-
brations are not Raman active, and the quadrupolar vi-
brations have a depolarization ratio of 1/3. The Raman
activity of the surface modes and of a few low-&equency
inner modes has been calculated-for a particular value of
the ratio between the mean longitudinal and transverse

FIG. 5. Calculated Raman spectra of the l = 0 modes of a
sphere of radius R of silver in silica glass (dashed line). The
solid line is for p = p(Si02)/10 (see text).

sound velocities, VL, /VT = ~3. Inner modes have quite
low Raman activities with respect to surface modes.

The effect of a surrounding elastic medium has been
taken into account. The discrete spectrum of a &ee
sphere evolves into a continuum one as p /p increases.
The homogeneous profile of the Raman spectrum must
be taken into account when we deduce the particle size
distribution. Resonance effects with electronic excitation
and deviation &om the spherical shape cause a partial
loss of validity of the deduced laws.

New experimental data are needed to check the results
of the present study. In particular, it would be very inter-
esting to compare the Raman spectra of systems with a
given distribution of particles embedded in different host
media.
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