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Mossbauer sum rules for use with synchrotron sources
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The availability of tunable synchrotron radiation sources with millivolt resolution has opened pros-
pects for exploring dynamics of complex systems with Mossbauer spectroscopy. Early Mossbauer treat-
ments and moment sum rules are extended to treat inelastic excitations measured in synchrotron experi-
ments, with emphasis on the unique conditions absent in neutron scattering and arising in resonance
scattering: prompt absorption, delayed emission, recoilfree transitions, and coherent forward scattering.
The Srst moment sum rule normalizes the inelastic spectrum. Sum rules obtained for higher moments
include the third moment proportional to the second derivative of the potential acting on the Mossbauer
nucleus and independent of temperature in the harmonic approximation. Interesting information may
be obtained on the behavior of the potential acting on this nucleus in samples not easily investigated with
neutron scattering, e.g., small samples, thin films, time-dependent structures, and amorphous-metallic
high pressure phases.

I. INTRODUCTION

The recent development of tunable synchrotron radia-
tion sources using the Mossbauer efFect provide tools for
investigating properties of complex condensed matter
systems. The use of these tunable sources for studying
different types of elastic and inelastic transitions in crys-
tals' has opened a field of millivolt spectroscopy for in-
vestigation of the dynamics of complex systems which are
not accessible to other techniques like neutron scattering.
One example is the extension to millivolt spectroscopy
for systems previously studied by the Mossbauer tech-
nique for nanovolt spectroscopy; e.g., amorphous-
metallic high-pressure phases.

For Fe at 14.413 keV it is possible to prepare a mono-
chromatic beam with 6 MeV bandpass, tunable over a
few hundred eV. Furthermore it may be possible to
improve the energy resolution to 2 MeV levels using
different sets of crystals at an undulator based beam-
line. '

The synchrotron source offers possibilities beyond the
conventional Mossbauer spectroscopy by exciting nu-
clear resonances with an incident pulse much shorter
than the natural lifetime of the resonance. The disap-
pearance of the incident pulse and all prompt back-
ground scattered radiation before the detection of the sig-
nal leads to both an enormous background suppression
and the possibility of observing forward scattered radia-
tion completely separated from the incident beam, not
possible with other techniques. Prompt Rayleigh scatter-
ing and scattering by other nonresonant atoms give no
background. Forward scattering from many different nu-
clei is coherent by analogy with Bragg scattering, but is
essentially independent of the structure of the sample.
This allows the study of coherent radiation from many
nuclei in a sample, with the interesting time behavior of
speedup and quantum beats, simply by looking at for-
ward radiation without the need to choose Bragg angles,
and without even the need for an ordered structure.

In addition there is the well established difference of
the Mossbauer technique from other techniques; e.g. ,
neutron scattering, by being sensitive to a particular nu-
cleus like Fe in a sample, and having a high cross sec-
tion. It therefore gives information on the forces and
possible localized vibration modes and local forces in the
vicinity of the iron or other Mossbauer nuclei in compli-
cated and small samples, and allows investigation of this
information as a function of changes in the composition
or structure of the system and behavior near phase transi-
tions.

Many of the effects observable in Mossbauer experi-
ments with synchrotron radiation have been discussed in
detail by Hannon and Trammell. In this paper we focus
on one point not discussed in this excellent review, the in-
formation on inelastic excitations produced by hitting nu-
clei at specific positions in the lattice with a synchrotron
pulse. We shall see that sum rules originally derived for
moments of the energy spectrum of gamma rays emitted
from Mossbauer transitions' have now acquired a
significance in data analysis from synchrotron radiation
and have already been used in recent experiments. '

Moment sum rules have been applied in many other
areas of physics where a sudden momentum transfer
occurs on an efFectively pointlike constituent in a bound
system, from x-ray and neutron scattering" ' to
lepton-pair emission by heavy quarks bound in hadrons. '

The general formulation is essentially the same for all
processes but the applications to data analyses for indivi-
dual processes can be very different. Mossbauer scatter-
ing of photons from a synchrotron source has the unique
features of being a two-step process with prompt absorp-
tion and delayed reemission and with frequently occur-
ring recoil-free transitions including coherent forward
scattering from different nuclei. These features, which
are completely absent in neutron scattering play a crucial
role in data analysis. Our purpose here is to use moment
sum rules to take them into account and obtain meaning-
ful results for experimental data.
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A central problem arising in understanding the spec-
trum of inelastic excitations produced by a synchrotron
pulse on a sample is the separation of the elastic and in-
elastic cross sections; i.e., the determination of the
Debye-Wailer or Mossbauer f factor. Samples used in
these experiments must be sufFiciently thick so that there
is appreciable inelastic absorption from the radiation off
resonance. With such thick crystals the radiation at the
resonance which is absorbed and scattered elastically is
both enhanced by coherent scattering from different nu-
clei and attenuated by absorption in passing through the
sample. The coherent elastic scattering is concentrated
into a sharp forward peak to give a very different angular
distribution from that of the inelastic scattered radiation.
The relative normalization of the elastic and inelastic
cross sections and the value of the Lamb-Mossbauer f
factor are not obtainable from the data alone. The sum
rules provide both a method of separating and normaliz-
ing the elastic and inelastic data without detailed
analysis and of obtaining localized information about
forces on and motion of the Mossbauer nucleus.

II. GENERAL FEATURES OF ELASTIC
AND INELASTIC TRANSITIONS

We first summarize some general features of the
different types of transitions that occur in the excitation
of nuclear resonance levels in a crystal by a pulse of syn-
chrotron radiation which is much shorter than the life-
time of the nuclear state. The nuclei in the crystal will be
in a complicated state of excitation after the pulse is over,
and the subsequent radiation will be a mixture of several
different types of transitions. The absorption and emis-
sion processes can both be either elastic or inelastic. In
elastic processes a photon is absorbed or emitted by the
internal degrees of freedom of the nucleus with no change
in the other degrees of freedom of the system. Inelastic
processes involve energy transfer to the other degrees of
freedom. In both absorption and emission inelastic
momentum and energy transfer can occur to the lattice
degrees of freedom via nuclear recoil. In emission there
is also the possibility of internal conversion with the
emission of an electron and subsequent x rays rather than
a gamma ray.

The synchrotron radiation pulse will generally have a
broad enough energy spectrum to excite both the elastic
and inelastic transitions. There will also be tunable
sources within this spectrum to enable separation of
different types of elastic and inelastic transitions. The
elastic excitation can be coherent over many nuclei in the
crystal with a subsequent speedup in the decay hfetime.
We can thus expect to observe two lifetimes in the detect-
ed radiation, the normal lifetime for decays of nuclei pro-
duced by inelastic excitation and a speeded-up lifetime
produced by the decay of the coherent or superradiant
state.

The emitted radiation would therefore consist of the
following components:

(I) Purely inelastic transitions giving photons with the
inelastic spectrum and also conversion electrons and x

rays, with the decay lifetime and angular distributions of
single nuclear excitations.

(2) Purely elastic transitions giving a coherent spec-
trum with the speeded up lifetime and a broadened natu-
ral linewidth produced by the speedup and a sharply
peaked angular distribution in the forward and/or Bragg
direction.

(3) Inelastic excitation and elastic emission. This will
give a photon spectrum with the natural linewidth and
the natural lifetime and the angular distribution of single
nuclear excitations.

(4) Elastic excitation and inelastic emission. This will
give the inelastic spectrum and also conversion electrons
and x rays, with the angular distributions of single nu-
clear excitations, but with the speeded-up lifetime.

For general orientation we note the very different ener-
gy scales arising in synchrotron Mossbauer physics. The
natural linewidths of nuclear transitions and nuclear
hyperfine and quadrupole splittings are in the nanoelec-
tronvolt range. This nanovolt spectroscopy is studied
with tunable Doppler-shifted Mossbauer lines from radia-
tive sources and by observing time-dependent quantum
beats following an excitation from photons generated by
a synchrotron pulse. In a completely different domain
are the typical lattice energies; e.g., characteristic tern-
peratures like Debye temperatures, which are in the
range of tens of rnillivolts. In this range one also finds the
free recoil energy which characterizes the inelastic spec-
trum of nuclear transitions as well as room temperature
thermal energies. The inelastic spectrum in this range
has not been experimentally explored in detail. The syn-
chrotron radiation pulse will generally have a broad
enough energy spectrum to excite both the elastic and in-
elastic transitions.

III. BASIC THEORY OF EXCITATION
BY SYNCHROTRON RADIATION

All the physics needed to understand the Mossbauer
effect had been published long before Mossbauer's
discovery. ' "" That photons could be scattered by
atoms in a crystal without energy loss due to recoil was
basic to all work in x-ray diffraction and crystallography.
All the quantitative calculations including the definition
and evaluation of the Debye-Wailer factor were well
known but not interpreted as a probability that a photon
could be scattered by an atom in a crystal without energy
loss due to recoil. In the wave picture of radiation the
Debye-Wailer factor written as exp(( —k x ) ) described
the loss of intensity of coherent radiation because the
atoms were not fixed at their equilibrium positions and
their motion introduced random phases into the scattered
wave.

The relation between Lamb's treatment" of neutron
capture in crystals and Ott's x-ray treatment was first
pointed out by Kaufman' ' and reported in detail in a
history of these developments. ' A general formulation
including these and other processes of momentum
transfer to bound systems is given in the quantum
mechanics book' which shows the relation of the dual
wave-particle descriptions of similar phenomena.
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The first article to use the name Mossbauer effect' ap-
peared at a time when the physics community either did
not believe in the effect or felt that it was not important
enough to be called by its discoverer's name. At that
time a number of sum rules' were derived along with
other results ' ' which remain pedagogically useful to-
day for teaching basic principles of quantum mechanics
to graduate students. ' The general state of confusion on
this issue can be seen in the panel discussion which took
place at the Second International Mossbauer confer-
ence. Further applications of the basic theory' "" for
the Mossbauer effect and for neutron scattering are re-
ported in Ref. 2.

We first consider the application of this basic theory to
the case of resonance excitation of a single bound nucleus
by a broad beam x-ray source. The cross section for this
excitation as a function of the incident gamma ray energy
will contain a peak at the resonance energy correspond-
ing to the elastic or no-recoil Mossbauer transition, and a
spectrum on both sides of the resonance energy corre-
sponding to inelastic transitions in which the state of the
lattice is changed. Consider a transition for photon ab-
sorption between some initial lattice state denoted by ~i &

and a final state denoted by ~f &. We denote the cross
section for this transition as o, &(E) and note that its in-
tegral over the entire relevant energy interval can be writ-
ten

f ~; g(E)dE =r
I
&fle'

where H is the Hamiltonian describing the lattice dynarn-
1cs,

1VH=g " + g V„„(x„,x ).
@=1 P p, ,v=1

(7)

X is the number of atoms in the lattice, M„ is the mass of
the atom which may be different from the mass M of the
Mossbauer nucleus for other atoms in the lattice, and
V„„(x„,x„) is some interaction potential depending only
upon the coordinates (x„,x, ) of the atoms and not on
their momenta.

Substituting the Hamiltonian (7) into the expression (6)
gives

Ak p„
&(E~—E, —R)"&=&i~ H —E,. — /i & (8a)

where the moments are defined relative to the centroid of
the spectrum, denoted by R, which is known' to be just
the free recoil energy for a nucleus of mass M,

(haik)

2M

The moments can be rewritten by using closure,

&(EI E; ——R )"
&
= &i~e "(H E; ——R)"e "~i &,

where k denotes the photon wave number, r„ is the coor-
dinate in the lattice of the nucleus being excited, and o. is
normalized to give the total integrated cross section over
all final states,

and we note that

&ii(H —E, )=(H —E, )ii &=0.

Then

(8b)

o =g f o; &(E)dE .
f

In the normal Mossbauer effect, the probability that the
transition takes place without any change in the state of
the lattice is given exactly by the Debye-Wailer factor.
In excitation by synchrotron radiation the same Debye-
Waller or Mossbauer fraction factor appears in the cross
section for the elastic transition in which the lattice
remains in its initial state,

o; . E E=o ie I i

& (Ei E; —R)"&—

2Rp,„
haik

Akp., ' "
H —E, —

& (EI E; —R)"&—
A'kp, „

M

(9a)

p.„li &,

(9b)

2R
&i~p,„H E,——

IV. SUM RULES FOR MOMENTS
QF THE INELASTIC SPECTRUM

Interesting properties of the inelastic transitions are
obtainable by generalizing sum rules originally developed
for Mossbauer emission' to apply to the moments of the
excitation energy spectrum,

where we have chosen our z axis in the direction of the
photon momentum k so that

haik. p„
M

Akp, „
P7l

' 2Rp,„
Ak

(9c)

The well-known results for the first and second mo-
ments are immediately obtained:

&(E~ E, —R)"&—:Q —fdE(E—~ E, —R)"0.; I(E)—1

0
&(Eg E; —R ) &=0, — (10a)

=g(Ei —E;—R)"l&fle' "'li &I',
f

&(E —E, —R)'&=

(4) where

M &i)p,'„~i & =4RT,„, (10b)
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ZfL (1 la)

Higher moments were not previously considered, since
they did not seem to be relevant to feasible experimental
tests at the time. Their evaluation also appeared to be
more complicated, since the Hamiltonian H appears ex-
plicitly in Eq. (9b) sandwiched between factors p,„with
which H does not commute. In contrast to the first two
moments which are equal to the values obtained simply
from classical billiard-ball kinematics for a noninteract-
ing gas, the higher moments depend upon properties of
the dynamics, i.e., upon the values of parameters in the
Hamiltonian (7) and introduce effects of quantum
mechanics, expressed by the explicit appearance of com-
mutators proportional to A. We shall see that they pro-
vide interesting information on properties of the lattice.

The relevant commutators needed to evaluate the
higher moments are

is the mean kinetic energy in the z directi. on for nucleus
p. We have assumed that there is no correlation between
the directions of k and p„, and therefore that the expecta-
tion values of all odd powers ofp,„must vanish,

(i~(p ){ 2r +k)i$ ) ()

This is generally true in all cases of interest, since it fo1-
lows from time reversal invariance of the interactions,
and holds automatically for a harmonic interaction.

These first two moments depend only on the free recoil
energy R and the mean kinetic energy T,„and are equal
to the classical expressions for these two moments for the
case of nuclear excitation in a noninteracting gas. The
first moment is completely independent of the dynamics
of the system and the temperature, while the second mo-
ment is proportional to the mean kinetic energy and is
thus a monotonically increasing function of the tempera-
ture. Ot

From the orthonormality of the linear transformation be-
tween nucleus coordinates z„and the normal coordinates

we obtain the useful relations

3N

Bz

N ()
(14b)

BXp

Bg
'

Bg

Gyp Bzp

For a harmonic crystal the commutators (12) become

3N (g.
[p,„,H] = i A g—Mco.g

3N

[p,„,[p,„,H] ]= —A' g Mao,
j=l p

(16a)

g2
[p,„,[p,„,H]]= —A g V „=—2A' V„"„.

Bz
(16b)

(&1[p.„[p.„H]] . (17a)

Thus

R 82 N
i, iEi E; —R) )= — i —ii x V „ il .

Bz@p ~—
1

Note that the double commutator (16) depends only upon
the force on the coordinate z„which is expressed in
terms of normal mode variables as a function of the fre-
quencies ~- and the expansion coe%cients of the coordi-
nate z„ in the normal coordinates gj. The value of the
double commutator for a harmonic lattice thus depends
only on the parameters of the Hamiltonian and is com-
pletely independent of the state of the lattice and of the
temperature. This feature is particularly interesting be-
cause the third moment of the energy spectrum can be
seen to be proportional just to this double commutator,

((E& E; —R) ) = — (i~[p,„,H]p, „+p,„[Hp,„]~i )

[p,„,H] = i R g —V, ,
p p, v=1

g2
[p.„[p.„,H] ]= —&'

~zp p, v=1

(12a)

For the case of a harmonic crystal, the potential energy is
a polynomial of second order in all coordinates, which
can be written

For a harmonic lattice this becomes

3N (jg .

((Ei E; —R)') =R R—g coj
' =RA2c~o, ,

BZ

where

(17b)

X
V,(x,x, )= V„"„(z„)+. . .

p, v=1
(13a)

Bg.

Bz
(1gb)

3X
V„=g —Mco, g

p, v=1 j=1
(13b)

where a11 the terms beyond the first do not contribute to
the double commutator (12b). The potential energy can
also be expressed in terms of the coordinates g and the
frequencies cuj of the normal modes,

is a weighted mean square average lattice frequency, and
the subscript z denotes that it is determined by normal
modes with motion in the z direction. The weighing fac-
tors are seen from the normalization relation (14a) to be
normalized to unity. For a harmonic crystal the third
moment can also be expressed in terms of the force on the
coordinate z„



52 MOSSBAUER SUM RULES FOR USE WITH SYNCHROTRON SOURCES 10 077

&(E —E, —R)'&= 2' R
PP (19)

This result is independent of the lattice wave function ~i )
and therefore also of the temperature. For an isotropic
crystal this result is a simple function of the characteris-
tic temperature of the lattice; e.g., the Debye or Einstein
temperature. For an anisotropic crystal, the result will

depend upon the angles between the crystal axes and the
photon direction, and can give information about the pa-
rameters of the anisotropic lattice. If the crystal is not
harmonic, the expression (17b) depends upon the coordi-
nates of various atoms in the lattice and therefore on the
temperature.

The fourth moment can now be evaluated using the
same commutators. We immediately discard expectation
values of all odd powers ofp,„and obtain

& (Ef E, ——R ) ) =
& i~ p,„+[p,„,H](H E; )p—,„~i )M

& i~ p,'„—[p,„,H]'~ i )

2N

&i~ p'+i'' g v ~i&

P p, v=1

For a harmonic lattice this becomes

(20a)

3X
(20b)

VI. USE OF SUM RULES FGR THICK SAMPLES
WITH MANY NUCLEI

These results are easily generalized to the case where
thee are many nuclei in the lattice which can be excited
by the Mossbauer transition, but the intensity of the in-
cident beam is suf6ciently weak so that only one photon
is absorbed. Since the single excitation cross sections for
inelastic transitions by individual nuclei are independent,
the total rate for inelastic transitions in an experiment is
obtained in the usual manner by summing over all nuclei
in the target.

The elastic transitions require special attention.
Coherent effects like superradiance can enhance the
transition matrix element for photon emission. The
coherence changes the angular distribution of the radia-
tion and the enhancement produces a corresponding
speedup in the lifetime of the excited state. These effects
were originally predicted by Trammel, further
developed theoretically and observed in very beautiful
experiments. ' An excellent review of these develop-
ments has been given in Ref. 9, where the particular
coherent state is called a "nuclear exciton. "

The speedup of the elastic transition also broadens the
linewidth of the nuclear exciton and therefore affects the
integrated total cross section (2). However, this coher-
ence does not affect the inelastic excitation spectrum in a
lattice by synchrotron radiation. The moments can still
be obtained from by the above analysis and Eqs. (17)—(20)
but corrections are necessary to the normalization pro-
cedure, both because of the enhanced elastic contribution
and because radiation in the resonance peak can be at-
tenuated in passing through a sample which is still
sufficiently thin to leave radiation off resonance

unaffected. Since these effects at resonance are all at
(Ef E; ) = (Ef—E; )"=0, w—e can write

&(E,—E, )"&,
&(E,—E, )"&,„=

en

(21)

&(E,—E, )&,
&(E,—E, )).„=

en

Thus

R
K,„

(22a)

&(E,—E, )),„
&(Ef E; )"),„=&(Ef E;))— —

R
(22b)

These moments can now be measured by using tunable
sources with an energy bandwidth small compared with
the free recoil energy R. The moments can be normal-
ized either by integrating over the entire spectrum, or by
integrating only over the inelastic spectrum and remov-
ing the elastic peak. The normalization factor K,„will be
difFerent in the two cases, but the result (22b) applies to
both cases.

The value of the factor EC,„can be calculated theoreti-
cally for samples suf6ciently thin so that there is no at-

where &(Ef E; )"),„den—otes the experimental moment,
defined relative to (Ef E; )=0, obse—rved when coher-
ence efFects may be present, &(Ef E, )"), denotes th—e
moment for the case of a single nucleus, and K,„denotes
a normalization correction factor which is the same for
all moments.

The normalization factor X,„can be determined exper-
imentally from the first moment and then applied to ex-
pressions for the higher moments. Substituting the result
for the first moment (10a) we obtain
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~incoherent 1 f
F, „j'+(1 f)+a— (24a)

intconv

F,~„df+(1 f)+a— (24b)

The net speedup factor for the decay rate relative to that
of a single nucleus is

F, „df +(1 f)+a-
Fspeed (25)

The decay rate for the elastically excited coherent state
is the sum of the normal inelastic decay rate and the
enhanced elastic decay rate. In this case the loss due to
internal conversion is reduced, because the probability
that a given excited nucleus will emit a photon rather
than ejecting an electron has been increased.

Thus in experiments where the detector sees only the
inelastic channels like conversion electrons or x rays, the
branching ratios for these detection modes are seen from
Eqs. (24a) and (24b) to be reduced relative to that of the
speeded-up coherent forward radiation. This bias must
be taken into account in calculating the factor K,n.

Since the coherent effects do not change the inelastic
excitations, the normalization factor K,„should be the
same for the coherent case as for a single nucleus if the
experimental normalization for the moments is calculated
only by integrating over the inelastic spectrum. For this

tenuation of the resonance radiation in passing through
the sample, from the values of the speedup factor denoted
by F, „d for the superradiant component or nuclear exci-
ton and the Debye-Wailer or Mossbauer fraction factor
commonly denoted by f Note, however, that in experi-
ments where the nuclear excitation is detected by the de-
cay of the excitation into a particular decay channel the
value of K,„can depend upon the branching ratio for the
decay into the observed channel.

This is particularly important in the case where the
detector sees only the inelastic channels like conversion
electrons or x rays. The speedup factor changes the rela-
tive branching ratios for decays into different channels,
since the speedup applies only to the Mossbauer fraction
of the radiation which is proportional to the Debye-
Waller or Mossbauer fraction factor f. The total decay
rate includes also the incoherent processes of inelastic
gamma ray emission, proportional to 1 f, and in—ternal
conversion which is described by the internal conversion
coefficient a. The partial widths for incoherent gamma
emission and internal conversion are not enhanced by su-
perradiance and are the same as for a single excited nu-
cleus. Thus the total decay width I „,is

I„t=[F,„Q+(1—f)+a]l r, (23)

where F,P„d denotes the speedup factor for the superradi-
ant component and I z denotes the partial width for gam-
ma decay by a single nucleus. The relative probabilities
or branching ratios for incoherent gamma emission and
internal conversion are correspondingly reduced,

case the integral is just the total inelastic probability for
the single nucleus case; namely 1 f—. Thus we obtain

K inelastic
en (26)

VII. CONCLUSIONS
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The development of tunable synchrotron radiation
sources in the millivolt range provides the possibility of
experimental tests and applications for moment sum rules
originally derived for the emission of Mossbauer reso-
nance radiation and hitherto used primarily for pedagogi-
cal purposes. These sum rules are shown to be very use-
ful in obtaining crucial information from inelastic reso-
nance scattering data.

The first moment sum rule enables the normalization
of the inelastic scattering data and the determination of
the Lamb-Mossbauer f factor. This moment is equal to
the free recoil energy of the resonant nuclear transition
and is independent of the structure of the bound system,
its wave function, and the temperature.

The second moment is proportional to the mean kinet-
ic energy of the resonant nucleus and is a function of the
temperature and the wave function describing the motion
of the nucleus in the bound system.

The third is proportional to the second derivative of
the potential acting on the resonant nucleus. This is the
force constant seen by this nucleus if the forces are har-
monic. For a harmonic system this moment depends
only upon the force constants in the Hamiltonian of the
system and is independent of the wave function of the
system or the Hamiltonian.

The fourth moment is the sum of two terms. One term
is proportional to the mean value of the fourth power of
the resonant nucleus momentum; the second term is a
function of the constants appearing in the system Hamil-
tonian and of the wave function describing the motion of
the resonant nucleus in the bound state. The theoretical
value of this moment is easily calculated for any particu-
lar model.

These sum rules can be particularly useful for
Mossbauer synchrotron experiments performed in cases
where inelastic excitations are not accessible to other ex-
perimental techniques like neutron scattering. The ad-
vantages of the synchrotron Mossbauer technique are dis-
cussed in detail in Ref. 2, and include the ability to use
small samples and thin films, the speed of the measure-
ment with the possibility of investigating short-lived
structures and the time development of phase transitions,
and the ability to focus on a comparatively rare constitu-
ent in a sample.
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