Analytical expressions for zero-field splittings of $3d^5$ ions in low-symmetry fields and their applications

M. G. Zhao and M. Chiu

Institute of Solid State Physics, Sichuan Normal University, Chengdu 610068, People's Republic of China and Sichuan Centre for Theoretical Physics, Chengdu 610068, People's Republic of China (Received 16 November 1994; revised manuscript received 22 February 1995)

Analytical expressions for calculating the electron paramagnetic resonance parameters D, a, and F are developed using a complete diagonalization procedure for $3d^5$ ions in a low-symmetry field. As illustrations, the formulas have been applied to RbCdF:Mn²⁺, RbMnF₃:Mn²⁺, Rb₂CdF₄:Mn²⁺, and α -Al₂O₃:Fe³⁺. Calculations indicate that the optical and EPR spectra for Mn²⁺ ions in RbCdF₃, RbMnF₃, Rb₂CdF₄, and Fe³⁺ ions in α -Al₂O₃ can be interpreted uniformly.

I. INTRODUCTION

The spin-Hamiltonian (SH) rank-4 parameters a and Fas well as the rank-2 parameters D and E are important in describing electron paramagnetic resonance (EPR) spectra for $3d^5$ ions in low-symmetry fields. During recent decades some work¹⁻³ has been devoted to study of the rank-2 parameters, but only a few papers deal with the calculation of the cubic rank-4 parameter a,⁴⁻⁷ especially in the case of low symmetry in the framework of a complete diagonalization procedure (CDP). Because of the complexity of the problem, some approximations were used in earlier works.²

To fill this gap, in this work we develop analytical expressions of the zero-field splitting (ZFS) parameters D, a, and F for low symmetry. Calculations indicate that the optical and EPR spectra for the Mn²⁺ ions in RbCdF₃, RbMnF₃, and Rb₂CdF₄, and the Fe³⁺ ions in α -Al₂O₃ can be interpreted uniformly.

II. $D'_4(C'_{4v}, D'_{2d})$ SYMMETRY

A. Analytical expression for ZFS parameters

The Hamiltonian including the electron-electron repulsion, the spin-orbit interaction, and the crystal-field potential is given by

$$H = H_e + H_{\rm SO} + H_{\rm cf} , \qquad (1)$$

where

$$H_{e} = \sum_{i} [-(\hbar^{2}/2m)\nabla_{i}^{2} - Ze/r_{i}] + \sum_{i>j} e^{2}/r_{ij}$$

+ Trees correction + Racah correction , (2)

$$H_{\rm SO} = \sum_{i} \xi_d S_i L_i \quad , \tag{3}$$

$$H_{\rm cf} = \sum_{k,q} B_{kq} C_q^{(k)} \,. \tag{4}$$

The B_{kq} appearing in Eq. (4) are crystal-field parameters and $C_a^{(k)}$ the tensor operators. All other symbols appearing in Eqs. (2) and (3) have their usual meanings.

The irreducible representations of the double group C'_2 arising from the $3d^5$ configuration are Γ_3 and Γ_4 , involving a 126×126 matrix. This matrix is a function of the electrostatic parameters B and C, the Trees and Racah parameters α and β , the spin-orbit constant ξ_d , and the crystal-field parameters B_{20} , B_{22} , B_{2-2} , B_{40} , B_{44} , B_{4-4} , B_{42} , and B_{4-2} .

In the case of the double group $D'_4(C'_{4v}, D'_{2d})$, the matrix consists of two blocks of dimensions 62 and 64 which belong to the irreducible representations Γ_6 and Γ_7 (see Ref. 2), respectively. The irreducible basis functions and the Hamiltonian matrix are deposited in the AIP's Physics Auxiliary Publication Service.⁸

Following the SH method, the zero-field Hamiltonian in tetragonal symmetry is given by 9^{-11}

$$H = D [S_z^2 - S(S+1)/3] + (a/6)[S_x^4 + S_y^4 + S_z^4 - S(S+1)(3S^2 + 3S-1)/5] + (F/180)[35S_z^4 - 30S(S+1)S_z^2 + 25S_z^2 - 6S(S+1) + 3S^2(S+1)^2].$$
(5)

Solving the secular equations, the following eigenenergies $E(m_s)$ and corresponding eigen-vectors $|\psi\rangle$ are obtained:

$$E(\pm \frac{1}{2}) = a + 2F/3 - 8D/3 , \qquad (6)$$

$$|\Psi_{1}\rangle = |\pm_{\frac{1}{2}}\rangle,$$

$$E(\pm_{\frac{3}{2}}) = -\frac{1}{2}(a+2F/3)+4D/3$$

$$-[(a+2F/3+2D)^{2}+5a^{2}/4]^{1/2},$$
(7)

$$|\Psi_{2}\rangle = -\cos\alpha |\pm \frac{3}{2}\rangle + \sin\alpha |\pm \frac{5}{2}\rangle ,$$

$$E(\pm \frac{5}{2}) = -\frac{1}{2}(a + 2F/3) + 4D/3 + [(a + 2F/3 + 2D)^{2} + 5a^{2}/4]^{1/2} ,$$
 (8)

$$|\Psi_{3}\rangle = \cos\alpha |\pm \frac{5}{2}\rangle + \sin\alpha |\pm \frac{3}{2}\rangle ,$$

where

10 043

0163-1829/95/52(14)/10043(10)/\$06.00 52

©1995 The American Physical Society

t

$$an2\alpha = \frac{\sqrt{5a/2}}{a+2F/3+2D}$$
 (9)

Hence we have

$$\Delta_1 = E\left(\pm \frac{5}{2}\right) - E\left(\pm \frac{1}{2}\right)$$

= $-\frac{3}{2}(a + 2F/3) + 4D$
+ $(a + 2F/3 + 2D)(1 + \tan^2 2\alpha)^{1/2}$, (10)

$$\Delta_2 = E\left(\pm \frac{3}{2}\right) - E\left(\pm \frac{1}{2}\right)$$

= $-\frac{3}{2}(a + 2F/3) + 4D$
 $-(a + 2F/3 + 2D)(1 + \tan^2 2\alpha)^{1/2}$. (11)

$$|\frac{5}{2}\rangle$$
(CDP)= $a_1|^6S, \frac{5}{2}\rangle + a_2|^6S, -\frac{3}{2}\rangle$

ground state is given by

Solving Eqs. (6)-(11), we obtain

 $D = \frac{1}{28} \left[2(\Delta_1 + \Delta_2) + 3(\Delta_1 - \Delta_2) / (1 + \tan^2 2\alpha)^{1/2} \right],$

 $a = (\frac{1}{5})^{1/2} (\tan 2\alpha) [(\Delta_1 - \Delta_2)/(1 + \tan^2 2\alpha)^{1/2}].$

 $a + 2F/3 = \frac{1}{7} [2(\Delta_1 - \Delta_2)/(1 + \tan^2 2\alpha)^{1/2} - (\Delta_1 + \Delta_2)],$

In the SH approximation, the effective spin ground state approximately equals $|\frac{5}{2}\rangle$. However, it is an admixture of $|\frac{5}{2}\rangle$, $|\frac{3}{2}\rangle$, and $|\frac{1}{2}\rangle$ states in the framework of CDP (complete diagonalization procedure). In fact, the CDP

+smaller contributions arising from the $S = \frac{3}{2}$ and $S = \frac{1}{2}$ states. (15)

As an equivalent approximation,

$$|\frac{5}{2}\rangle(\text{CDP}) \simeq a_1 / (a_1^2 + a_2^2)^{1/2} |{}^6S, \frac{5}{2}\rangle + a_2 / (a_1^2 + a_2^2)^{1/2} |{}^6S, -\frac{3}{2}\rangle .$$
(16)

Here the factor $1/(a_1^2 + a_2^2)^{1/2}$ is the normalization constant $(\langle \frac{5}{2} | \frac{5}{2} \rangle = 1)$.

By means of the approximate equivalence between the SH and CDP,

$$\cos\alpha \simeq a_1 / (a_1^2 + a_2^2)^{1/2}$$
, (17)

$$\sin\alpha \simeq a_2 / (a_1^2 + a_2^2)^{1/2} . \tag{18}$$

Hence the following analytical expressions are obtained:

$$T \equiv \tan 2\alpha = \frac{2a_1a_2}{a_1^2 - a_2^2} , \qquad (19)$$

$$D = \frac{1}{28} \left[2(\Delta_1 + \Delta_2) + 3(\Delta_1 - \Delta_2) / (1 + T^2)^{1/2} \right],$$
 (20)

$$a + 2F/3 = \frac{1}{7} [2(\Delta_1 - \Delta_2)/(1 + T^2)^{1/2} - (\Delta_1 + \Delta_2)], \quad (21)$$

$$a = (\frac{1}{5})^{1/2} T(\Delta_1 - \Delta_2) / (1 + T^2)^{1/2} , \qquad (22)$$

with

$$\Delta_1(\text{CDP}) = E(\Gamma_7, \pm \frac{5}{2}) - E(\Gamma_6, \pm \frac{1}{2}) , \qquad (23)$$

$$\Delta_2(\text{CDP}) = E(\Gamma_7, \pm_{\frac{3}{2}}) - E(\Gamma_6, \pm_{\frac{1}{2}}) .$$
(24)

These expressions are general ones which are independent of the specific interaction model.

B. Analysis of the various approximations for Eqs. (19)-(24)

1. Cubic symmetry approximation (Refs. 5-7 and 9)

There is a ZFS of the ⁶S ground state in strictly cubic symmetry, the $|\pm\frac{5}{2}\rangle$ and $|\pm\frac{1}{2}\rangle$ states being, in general, 3a higher in energy than the $|\pm\frac{3}{2}\rangle$ states. In this case, we

have

$$T = (5)^{1/2}/2 ,$$

$$\Delta_1 = 0 ,$$

$$a = -\Delta_2/3 = \frac{1}{3} [E(\Gamma_6, \pm \frac{1}{2}) - E(\Gamma_7, \pm \frac{3}{2})] .$$
 (25)

2. Konig and Schnakig approximation (Ref. 2)

When $|(a+2F/3)/D| \rightarrow 0$ and $|a/D| \rightarrow 0$, we obtain

$$D \simeq \frac{1}{4} (\Delta_1 / 3 + \Delta_2)$$
 (26)

It is well known that the cubic crystal-field parameter 10Dq changes with metal-ligand (M-L) bond length R according to the equation

$$10Dq = CR^{-5}$$
, (27)

where C is a numerical factor which includes the position and values of the ligand point charges and the characteristics of the metal-ion wave function $R_{3d}(r)$. An experimental test of this equation is provided by the analysis of optical spectra under high pressure. Using bulk compressibility data, Minomura and Drickamer¹² have shown that the change in $\ln(Dq/Dq_0)$ with pressure coincides with the change in $-\frac{5}{3}\ln(V/V_0)$, as predicted from Eq. (1), for Al₂O₃:Ti³⁺, Al₂O₃:V³⁺, and Al₂O₃:Ni²⁺. Furthermore, Drickamer used high-pressure optical measurements (up to 150 kbar) combined with *P-V* data to show that in NiO the R^{-5} law [Eq. (1)] is satisfied within the accuracy of the data.¹³ These results were supported by subsequent works on Cr³⁺, Fe²⁺, Mn²⁺, Fe³⁺, and Co²⁺ ions in crystals.¹⁴⁻²⁰ In the framework of the Wolfberg-Helmholz semiempirical molecular-orbital (MO) theory,²¹ where 10Dq is associated with the

(12)

(13)

(14)

difference between the molecular-orbital energies $E(e_g)$ and $E(t_{2g})$, Burns and Axe²² computed the R dependence of 10Dq by calculating the exponent n in the equation $10Dq = CR^{-n}$. They found a value of *n* close to 5 in the fluorides of Ni^{2+} and V^{2+} . Values lying between 4 and 6 have been calculated for transition-metal ions in fluorides,²³ while the analysis of experimental data for Mn^{2+} doped fluoroperovskites²⁴ is consistent with $n \simeq 5$. This means that the R^{-5} law is a good approximation, in view of both the MO calculations and the experiments. Now let us study the relationship between the selfconsistent-field (SCF) MO model and our generalized point-charge model containing an average covalence. $^{3,4,14-20}$ It is known that the usual point-charge crystal-field model is not capable of yielding good crystal-field splittings for some clusters. However, when it is employed with a semi-SCF double- ζd orbital as has been done by Zhao and co-workers, it can be made to agree with the observed results. This is because the semi-SCF d-orbital model contains the contributions not only of the equivalent point charges and dipoles but also of the average covalency.

In the generalized point-charge model containing an average covalency, the semi-SCF (or parametrized) double- ζ orbital is given by

$$R_{d}(r) = a_{1}[(2\xi_{1})^{7}/6!]^{1/2}r^{2}\exp(-\xi_{1}r/a_{0}) + a_{2}[(2\xi_{2})^{7}/6!]^{1/2}r^{2}\exp(-\xi_{2}r/a_{0}), \qquad (28)$$

where $a_0 =$ Bohr radius =0.52918 Å and ξ_1, ξ_2 are the Slater exponents, with

$$a_1^2 + a_2^2 + 2a_1a_2[2(\xi_1\xi_2)^{1/2}/(\xi_1 + \xi_2)]^7 = 1$$
. (29)

The three approximate conditions are as follows:

(i) the overlap condition between R_d and R_d^w is given by

$$\langle R_d | d_d^w \rangle \simeq 1$$
, (30)

where R_d^w is Watson's SCF orbital;

(ii) an expectation-value condition is given by

$$\langle \mathbf{R}_d | r^{-3} | \mathbf{R}_d \rangle \simeq \langle \mathbf{R}_d^w | r^{-3} | \mathbf{R}_d^w \rangle ;$$
 (31)

(iii) one parametrization condition for $\langle R_d | r^4 | R_d \rangle$ yields reasonable crystal-field parameters.

Clearly, condition (iii) is an empirical one. It must be pointed out that these orbitals have been shown to be successful in interpreting not only the free-ion spectra but also the *d*-*d* crystal-field transitions, the *g* factors, the zero-field splitting, and the high-pressure dependence of the optical spectra in a number of crystals.^{3,4,14-20} This means that the agreement between theory and experiments is not accidental and indicates that the technique may be used as a starting point for more sophisticated calculation of d^n ions in crystals. In a sense, it should be justified further by using an improving molecular-orbital calculation.

The pure electronic d-d spectrum of MnF⁴⁻ in vacuo and in RbMnF₃ has been computed at different values of the Mn²⁺-F⁻ bond length R, following an open-shell SCF MO methodology.^{23,25} This is an important development.

Following the generalized point-charge model containing an average covalency, $^{3,4,14-20}$ the semi-SCF orbital of the Mn²⁺ ion is given by²⁰

$$R_{d}(r) = 0.639 22 [10^{7}/6!]^{1/2} r^{2} \exp(-5r/a_{0}) + 0.600 00 [3^{7}/6!]^{1/2} r^{2} \exp(-1.5r/a_{0}) .$$
(32)

Using a computer, we find

$$\langle r^2 \rangle_0 = 2.7755 \text{ a.u.},$$

 $\langle r^4 \rangle_0 = 23.2594 \text{ a.u.},$
 $\langle r^{-3} \rangle_0 = 4.01557 \text{ a.u.},$

 $\xi_d^0 = 336.6 \,\mathrm{cm}^{-1}$

(observed, 347 cm^{$$-1$$}; SCF, 333 cm ^{-1}),

$$10Dq_0 = 5e^2 \langle r^4 \rangle_0 / 3R^5 = 9794 \text{ cm}^{-1} (R = 2.117 \text{ Å})$$

$$[SCF, 10\,020 \text{ cm}^{-1} (\text{Ref. 25})], \quad (33)$$

 $A_0 = 154167 \text{ cm}^{-1}$,

$$B_0 = 911 \text{ cm}^{-1}$$
 (observed, 915 cm⁻¹)

$$[SCF, 885 \text{ cm}^{-1} (\text{Ref. } 23)],$$

 $C_0 = 3273 \text{ cm}^{-1} \text{ (observed, } 3273 \text{ cm}^{-1} \text{)}$

 $[SCF, 3059 \text{ cm}^{-1} (\text{Ref. } 23)],$

$$P = g_3 g_n \beta_e \beta_n \langle r^{-3} \rangle_0 = 0.0187 \text{ cm}^{-1}$$

 $(SCF, 0.0187 \text{ cm}^{-1})$.

The usual crystal-field parameters B_{kq} can be calculated from the local structure data provided the expectation values $\langle r^n \rangle$ and the effective charge q in the crystals are known. In general, values of $\langle r^n \rangle$ in crystals are smaller in magnitude than the free-ion values $\langle r^n \rangle_0$ as are the Racah parameters B and C, the Trees parameter α , the Racah seniority correction β , and the spin-orbit coupling constant ξ_d in crystals. This arises mainly because of covalency effects involving the overlap between the central metal ion and the ligand orbits, which reduce the free-ion values. A reasonable approximation is made that¹⁴⁻²⁰

$$B = N^{4}B_{0} , C = N^{4}C_{0} , \alpha = N^{4}\alpha_{0} , \beta = N^{4}\beta_{0} ,$$

$$(34)$$

$$\xi_{d} = N^{2}\xi_{d}^{0} , \langle r^{n} \rangle = N^{2}\langle r^{n} \rangle_{0} .$$

N measures the average reduction factor due to covalency, which is to be determined from a *d-d* transition band. $\alpha_0 = 65 \text{ cm}^{-1}$ and $\beta_0 = -131 \text{ cm}^{-1}$. A value of N = 0.98496 was derived from the SCF MO *d-d* transition bands,²⁵ which leads to $B = 857.41 \text{ cm}^{-1}$, $C = 3080.48 \text{ cm}^{-1}$, $\xi_d = 323.5 \text{ cm}^{-1}$, $\alpha = 61.18 \text{ cm}^{-1}$, $\beta = -123.3 \text{ cm}^{-1}$, and $Dq = \frac{1}{6}N^2e^2\langle r^4\rangle_0/R^5 = 805.4$ cm^{-1} (R = 2.117 Å). The comparison between the SCF MO model and the generalized point-charge model is shown in Table I.

TABLE I. The comparison between SCF MO and generalized point-charge calculations (all numbers in cm^{-1}).

	SCF MO $(R = 2.117 \text{ Å})$ (Ref. 25)	Generalized point charge $(R = 2.117 \text{ Å})$
${}^{4}T^{a}_{1a}$	17 280	18 686
${}^{4}T^{a}_{2g}$	22 380	23 030
${}^{4}E(\vec{G})^{a}$	25 750	25 200
$^{4}A_{1}(G)^{a}$	25710	
${}^{4}T^{b}_{2a}$	28 780	28 550
${}^{4}E_{g}^{b}$	31 000	30 345
${}^{4}T_{1g}^{b}$	34 800	32 968
${}^{4}A_{2q}^{-3}$	41 980	40 9 1 4
${}^{4}T_{1g}^{\bar{c}}$	43 400	41 901
${}^{4}T^{c}_{2g}$	47 520	44 879

It can be seen from Table I that the generalized pointcharge model containing an average covalence is approximately equivalent to the SCF MO model rather than to a true electrostatic point-charge one, under the $Dq \propto R^{-5}$ law.²²⁻²⁵ This is an important improvement.

D. Applications of the formulas to the optical spectra and ZFS in RbCdF₃:Mn²⁺, RbMnF₃, and Rb₂CdF₄:Mn²⁺

The Mn^{2+} ions in fluoroperovskites provide good examples for examining the microscopic origin of the SH

theory of the $3d^5$ ions in crystals. As an illustration, formulas (17)-(24) will be applied to the specific examples of RbCdF₃:Mn²⁺, RbMnF₃, and Rb₂CdF₄:Mn²⁺. In Sec. II C we have given values of the electrostatic parameters *B* and *C*, the spin-orbit coupling constant ξ_d , the Racah parameter β , and the Trees parameter α . Further, the expectation values $\langle r^2 \rangle$ and $\langle r^4 \rangle$ of the Mn²⁺ ions in fluoroperovskites are

$$\langle r^2 \rangle = N^2 \langle r^2 \rangle_0 = 2.692 \, 64 \text{ a.u.},$$

$$\langle r^4 \rangle = N^2 \langle r^4 \rangle_0 = 22.5650 \text{ a.u.}$$

(35)

First, let us study RbCdF₃:Mn²⁺. The Mn²⁺-F⁻ bond length *R* in cubic RbCdF₃:Mn²⁺ is (2.146±0.012) Å by the superhyperfine splitting (HFS) method.²⁶ We have fitted our approximately equivalent SCF MO model to the experimental spectra^{27,28} and find $R(Mn^{2+}-F^-)=(2.1474\pm0.0005)$ Å ($Dq = \frac{1}{6}[N^2e^2\langle r^4\rangle_0/R^5]=750$ cm⁻¹) which is comparable to the value of $R = (2.146 \pm 0.012)$ Å by the HFS method,²⁶ which supports the determination of the bond length through the optical spectrum and the EPR spectrum on the basis of an approximately equivalent SCF MO model. The comparison between the observed and the calculated spectra is shown in Table II. It can be seen from Table II that the calcu-

TABLE II. Calculated and observed spectra for $RbMnF_3$ and $RbCdF_3:Mn^{2+}$ (all numbers in cm⁻¹).

Calc. $(R = 2.1474 \text{ Å})$		Obs. (Refs. 2 (300	Obs. (Refs. 27 and 28) (300 K)		.395 Å)	Obs. (Ref. 27) (77 K)	
O_h	O'_h	RbMnF ₃	RbCdF ₃	O_h	O_h'	RbMnF ₃	
19212	19 143	19 286	19 530±40	19 080	19010	19 151	
$({}^{4}T_{1}^{a})$	19 167				10 0 3 5		
	19 228			$({}^{4}T_{1}^{a})$	19 097		
	19 274			-	19 143		
23 343	23 235	23 120	23 670±50	23 266	23 159	23 106	
$({}^{4}T_{2}^{a})$	23 285			$({}^{4}T_{2}^{a})$	23 208		
	23 395			-	23 318		
	23 400	23 282			23 324		
25 200	25 186	25 202	25 230±20	25 200	25 186	25 208	
$[{}^{4}A_{1}^{a}(G),$	25 190	25 335		$[{}^{4}A_{1}^{a}(G),$	25 189	25 341	
${}^{4}E^{a}(G)$]	25 204			${}^{4}E^{a}(G)$	25 204		
	25 205			-	25 205		
26 179	25 280	25 500		25 924	25 568	25 575	
$^{2}\Gamma$ (doublet)	26414	25 610		(² Γ)	26 162	25 959	
28 670	28 505	28 110	28 350±70	28 639	28 475	27917	
$[{}^{4}T_{2}^{b}]$	28 524	28 385		$[{}^{4}T_{2}^{b}]$	28 493	28 385	
	28 768				28 7 37		
	28 879				28 846		
30 345	30 308	30 067	30070±50	30 345	30 3 10	30 140	
$[{}^{4}E^{b}]$	30 326	30 393		$[{}^{4}E^{b}]$	30 326	30 478	
	30 348				30 348		
32 590	32 520	32 414	32270±140	32 686	32 625	32,446	
$[{}^{4}T_{1}^{b}]$	32 535	32 630		$[{}^{4}T_{1}^{b}]$	32 705	32 789	

Calc. $(R = 2.1474 \text{ Å})$		Obs. (Refs. 27	and 28)	Calc. $(R = 2.139)$	5 Å)	Obs. (Ref. 27) (77 K)	
O_h	O_h'	RbMnF ₃	RbCdF ₃	O_h	O_h'	RbMnF ₃	
	32 624				32 746		
	32 688				32 785		
4 00 1 4	41 192	41 150		40.014	A1 160	11 159	
40914	41 185	41 152		$\begin{bmatrix} 4 & 4 \\ 0 \end{bmatrix}$	41 109	41 156	
[112]				[**2]			
41 753	41 551	41 920		41 790	41 581	41 920	
$[{}^{4}T_{1}^{c}]$	41 691			$[{}^{4}T_{1}^{c}]$	41 724		
	41 852				41 888		
	41 864				41 899		
44 447	44 326	43 9 1 4		44 554	44 431	44 200	
$[{}^{4}T_{5}^{6}]$	44 370			$[{}^{4}T_{2}^{c}]$	44 474		
	44 4 12				44 494		
	44 571				44 666		
				Double or	aitation (Pet	25)	
				38 160	38 020	38 300	
				$({}^{4}T_{1}^{a} + {}^{4}T_{1}^{a})$	38 070		
					38 194		
					38 286		
				10 246	42 160	43 200	
				$(47^{a} + 47^{a})$	42 109	42 200	
				$(1_1 1_2)$	42.415		
					42 467		
				44 280	44 196	43 900	
				$({}^{4}T_{1}^{a} + {}^{4}A_{1}^{a}, {}^{4}E^{a})$	44 224	10 900	
					44 301		
					44 348		
				16 522	46 3 1 8	46700	
				$(4T_{a}^{a} + 4T_{a}^{a})$	46 4 1 6	40700	
					46 636		
					46 648		
						17.000	
				47719	47 485	47 300	
				$(I_{1} + I_{2})$	47528	47800	
					47 989		
				48 466	48 345	48 400	
				$({}^{4}T_{2}^{a} + {}^{4}A_{1}^{a}, {}^{4}E^{a})$	48 397	48 900	
					48 522		
					48 329		
				49 425	49 320	49 200	
				$({}^{4}T_{1}^{a} + {}^{4}E^{b})$	49 491		
				50 400	50 277	50 800	
				$({}^{4}A^{a} {}^{4}E^{a} + {}^{4}A^{a} {}^{4}E^{a})$	50 372	50 800	
				(11, 2 11, 2)	50 408		
					50 4 10		
EDR parameter		$(9+2) \times 10^{-4}$					
a arameter		$(9 \pm 2) \land 10$ (Ref. 31)					
5.49×10^{-4}		$(4.7\pm0.2)\times10^{-4}$					
		(Refs. 32 and 33)					

 TABLE II. (Continued).

	÷	
- <u></u>	$D (10^{-4} \text{ cm}^{-1})$	
Calc.	CDP	Konig and Schnakig approx.
	60±0.05	55
Obs. (Ref. 30)	60±0.7	
	$a + 2F/3 (10^{-4} \text{ cm}^{-1})$	
Calc.	CDP	Konig and Schnakig approx.
	5.76±0.03	~0
Obs. (Ref. 30)	5.6±0.4	
	$a (10^{-4} \text{ cm}^{-1})$	
Calc.	CDP	Konig and Schnakig approx.
	6.14±0.03	~0
Obs. (Ref. 30)	6,1+0,9	

TABLE III. ZFS parameters of Rb₂CdF₄:Mn²⁺.

lated results are in good agreement with experiment.

In addition, by means of this procedure, it is predicted that $\alpha = (dR/dT)/R = (16.5\pm0.4) \times 10^{-6} \text{ K}^{-1}$ [$R = (2.1474\pm0.0005)$ Å at 300 K and (2.1395 ± 0.0005) Å at 77 K], which is in good agreement with the experimental thermal expansion coefficient $(16.5\pm0.5) \times 10^{-6} \text{ K}^{-1}$ for RbMnF₃.^{26,29}

For tetragonal symmetry, the crystal-field parameters are given by

$$B_{20} = -2e^2 \langle r^2 \rangle (1/R_1^5 - 1/R_2^5) , \qquad (36)$$

$$B_{40} = e^2 \langle r^4 \rangle (3/R_1^5 + 4/R_2^5)/2 , \qquad (37)$$

$$B_{44} = \left(\frac{35}{2}\right)^{1/2} e^2 \langle r^4 \rangle (1/R_1^5)/2 , \qquad (38)$$

where R_2 stands for the bond length of $Mn^{2+}-F^-$ along the chosen Z axis, R_1 is the bond length of $Mn^{2+}-F^-$ in the plane which is perpendicular to the Z axis, e is the electronic charge, and $\langle r^n \rangle$ (n=2,4) the expectation value of the radial coordinate of an electron.

Using Eqs. (35)–(38) and Eqs. (17)–(24), we have fitted our ZFS expressions to the experimental ZFS parameters D and a,³⁰ and find R_2 =(2.1446±0.0002) Å and R_1 =(2.13±0.0002) Å, which are comparable to the values of R_2 =(2.146±0.015) Å and R_1 =(2.06±0.012) Å of K₂MgF₄:Mn²⁺ obtained by the HFS method.²⁶ The result is shown in Table III. It is interesting to note that the predicted value of $a + 2F/3 = (5.76\pm0.03) \times 10^{-4}$ cm⁻¹ is in good agreement with the experimental value of (5.6±0.04)×10⁻⁴ cm⁻¹ (Ref. 29). In addition, the predicted *d*-*d* transition bands shown in Table IV can be verified by further absorption experiments.

E. Discussion and conclusion of Sec. II

(a) We have studied in detail the analytical expressions for the ZFS of $3d^5$ ions in tetragonal symmetry. The main results are (i) $a(\text{calc})=5.49\times10^{-4}$ cm⁻¹ $[(4.7\pm0.2)\times10^{-4}$ cm⁻¹ (Refs. 32 and 33); $(9\pm2)\times10^{-4}$ cm⁻¹ (Ref. 31)] for Mn²⁺ in RbCdF₃, and (ii) $D(\text{calc})=(60\pm0.05)\times10^{-4}$ cm⁻¹ $[(60.2\pm0.7)\times10^{-4}$ cm⁻¹ (Ref. 30)], $(a+2F/3)(\text{calc})=(5.76\pm0.03)\times10^{-4}$ cm⁻¹ $[(5.6\pm0.4)\times10^{-4}$ cm⁻¹ (Ref. 30)] and $a(\text{calc})=(6.14\pm0.3)\times10^{-4}$ cm⁻¹ $[(6.1\pm0.9)\times10^{-4}$ cm⁻¹ (Ref. 30)] for Mn²⁺ in Rb₂CdF₄ which reveal that TABLE IV. The predicted ${}^{6}\Gamma \rightarrow {}^{4}\Gamma d d$ transition bands (all numbers in units of cm⁻¹).

O_h	D'_{4h}
19215	18 884
$({}^{4}T_{1}^{a})$	18 896
	18 993
	19 029
	19 046
	19080
23 345	23 080
$({}^{4}T_{2}^{a})$	23 116
	23 156
	23 255
	23 332
	23 348
25 200	25 185
$[{}^{4}A_{1}^{a}(G), {}^{4}E^{a}(G)]$	25 186
	25 187
	25 202
	25 205
	25 206
28 675	28 434
$({}^{4}T_{2}^{b})$	28 473
	28 475
	28 703
	28 739
	28 829
30 345	30 308
$({}^{4}E^{b})$	30 323
	30 326
	30 346
32 593	32 640
$({}^{4}T_{1}^{b})$	32 688
	32 725
	32 775
	32 840
	32 853
40 914	40 432
$({}^{4}A_{2})$	40 889
41 755	41 598
$({}^{4}T_{1}^{c})$	41 737
	41 750
	41 899
	41 920
	41 922

both the approximately equivalent SCF MO model and the ZFS expressions provide a reasonable interpretation of the microscopic origin of the ZFS of $3d^5$ ions in cubic and tetragonal symmetries. In view of the excellent agreement between theory and experiments achieved in this study, both the model and ZFS expressions are reasonable.

(b) Earlier works² calculated the rank-2 parameter Dor E only, with some approximations, due to the complexity of the problem, without consideration of the rank-4 ZFS parameters F and a. The analytical expressions used here show that the earlier approximate formu- $|a^2$ for D is a good one when |(a+2F/3)/D| < 0.1and |a/D| < 0.1. However, it is incorrect when $|(a+2F/3)/D| \sim 1$ and $|a/D| \sim 1$.

(c) The effective spin-Hamiltonian formalism for $3d^5$ in D'_{4h} is a good approximation within the framework of the microscopic CDP.

(d) The deduced $Mn^2 + -F^-$ bond length of $R = (2.1474 \pm 0.0005)$ Å at 300 K is comparable to the value of $R = (2.146 \pm 0.012)$ Å for RbCdF₃:Mn²⁺ obtained by the HFS method. Furthermore, the predicted thermal expansion coefficient and EPR cubic parameter $a = 5.49 \times 10^{-4}$ cm⁻¹ are in good agreement with experiments, which supports the determination of the bond length through the optical spectrum and EPR spectrum on the basis of an approximately equivalent SCF MO model.

III. C'₃ SYMMETRY

A. Analytical expressions for ZFS parameters in C_{3v} symmetry

The irreducible representations of the double group C'_3 arising from the $3d^5$ configuration are Γ_4, Γ_5^* and $\Gamma_6, \Gamma_5^* = \Gamma_4$, which yield 84×84 matrices which are functions of the electrostatic parameters B and C, the Trees and Racah parameters α and β , the spin-orbit constant ξ_d , and the crystal-field parameters B_{20} , B_{40} , B_{43} , and B_{4-3} .^{17,34,35} The irreducible representations and 84×84 matrix are deposited in the AIP's Physics Auxiliary Publication Service.⁸

In order to analyze the EPR spectrum, the spin Hamil-

tonian for the axially symmetry case about a threefold axis was used. This is given by 11

$$H_{s} = \beta(g_{\parallel}S_{z}H_{z} + g_{\perp}S_{x}H_{x} + g_{\perp}S_{y}H_{y}) + B_{2}^{0}O_{2}^{0} + B_{4}^{0}O_{4}^{0} + B_{4}^{3}O_{4}^{3}.$$
(39)

The symbols appearing in Eq. (39) have their usual meanings.

The coordinate system is chosen such that the Z axis coincides with the symmetric axis C_3 . The spin-Hamiltonian matrix elements are calculated in terms of the effective spin vectors. The spin ground state of the $3d^5$ configuration in a crystal is an admixture of $S = \frac{5}{2}, \frac{3}{2}$ and $\frac{1}{2}$ spin states. In the effective spin-Hamiltonian formalism,^{7,9,10} the "spin" is described by an effective spin S'. In the case of high spin, $S' = \frac{5}{2}$, in $3d^5$ ions in a crystal field. This is a good approximation.

By means of the approximate equivalence between the SH and CDP, the following ZFS expressions are obtained:

$$D = [9\Delta_1/(1+T^2)^{1/2} + \Delta_1 - 2\Delta_2]/56 , \qquad (40)$$

$$a - F = [3\Delta_1 / (1 + T^2)^{1/2} + 18\Delta_2 - 9\Delta_1] / 28 , \qquad (41)$$

$$a = 3\Delta_1 T / [80(1 + T^2)]^{1/2} , \qquad (42)$$

with

$$T = -2a_1a_2/(a_1^2 - a_2^2) , \qquad (43)$$

$$\Delta_1 = E(\Gamma_4, -\frac{5}{2}) - E(\Gamma_4, \frac{1}{2}), \qquad (44)$$

$$\Delta_2 = E(\Gamma_{6,\frac{3}{2}}) - E(\Gamma_{4,\frac{1}{2}}), \qquad (45)$$

$$D = 3B_2^0$$
, (46)

$$a - F = -180B_4^0 , \qquad (47)$$

$$a = (9/\sqrt{2})B_4^3 , \qquad (48)$$

where $E(\Gamma_4, -\frac{5}{2})$ and $E(\Gamma_4, \frac{1}{2})$ denote the eigenenergies of the Γ_4 CDP ground sites for $\left|-\frac{5}{2}\right\rangle$ and $\left|\frac{1}{2}\right\rangle$, respectively. $E(\Gamma_6, \frac{3}{2})$ is the eigenenergy of the Γ_6 CDP ground state for $|\frac{3}{2}\rangle$. a_1 and a_2 denote the CDP eigenvector of the ground state of Γ_4 :

$$|\frac{1}{2}\rangle(\text{CDP}) = a_1|^6S, \frac{1}{2}\rangle + a_2|^6S, -\frac{5}{2}\rangle + \text{small contributions arising from the } S = \frac{3}{2} \text{ and } S = \frac{1}{2} \text{ states }.$$
 (49)

These expressions are general ones which are independent of the specific interaction model.

B. Analysis of the various approximations for Eqs. (40)-(45)

1. ZFS in a cubic field (Refs. 6 and 7)

There is a ZFS of the $3d^5$ ground state in strictly cubic symmetry, the $|\pm\frac{3}{2}\rangle$ state being, in general, 3a higher in energy than the $|\pm\frac{1}{2}\rangle$ state. In this case we have

$$T = \sqrt{80}$$
, (50)

$$D = F = 0 , \qquad (51)$$

$$a = \Delta_1 / 3 . \tag{52}$$

This is the conventional cubic approximation. Calculations indicate that the ZFS is highly dependent on Dq, ξ_d , B, and C.

2. Small-(a - F) approximation (Ref. 17)

When
$$|a/D| \ll 1$$
 and $|(a-F)/D| \ll 1$, we obtain

$$D \simeq (5\Delta_1 - \Delta_2)/28 , \qquad (53)$$

(41)

D (10		10^{-4} cm^{-1} $a - F$		$F (10^{-4} \text{ cm}^{-1})$		$a (10^{-4} \text{ cm}^{-1})$	
$B_{20} \ (cm^{-1}) \\ B_{40} \ (cm^{-1}) \\ B_{43} \ (cm^{-1}) $	CDP	Febbraro's approx.	CDP	Febbraro's approx.	CDP	Febbraro's approx.	
-942.34 -17 241.15 27 598.93	2407.9	2547.3	166.5	~0	94.4	≃0	
536.25 18 381.11 25 604.93	1120.5	1203.9	99	≃0	74.1	~0	
-470.42 -18 513.31 25 266.03	948.5	1025.4	91	~0	70.9	≃0	
-435.837 -19 563.125 23 568	39.4	103.3	59.6	~0	60.3	≃0	

TABLE V. Comparison between accurate and approximate formulas (B = 823.26 cm⁻¹, C = 2957.77 cm^{-1} , $\alpha = 58.74 cm^{-1}$, $\beta = -118.38 cm^{-1}$, $\xi_d = 320 cm^{-1}$).

$$a - F \simeq \frac{3}{14} (3\Delta_2 - \Delta_1)$$
 (54)

This is a good approximation.

3. Febbraro's approximation (Refs. 34 and 35)

When $|a/D| \sim 0$ and $|(a-F)/D| \sim 0$, we obtain

(55) $D\simeq\Delta_2/2$.

Calculations show that, in general, this approximation is a good one when |a/D| < 0.1 and |(a-F)/D| < 0.1 as shown by Table V. However, it is incorrect when $|a/D| \sim 1$ and $(a-F)/D| \sim 1$.

C. Calculation and results

In the generalized crystal-field model by Zhao et al.¹⁴⁻²⁰, the C_{3v} (D_{3d}) crystal-field parameters B_{kq} and the electrostatic parameters are as follows:

$$B_{20} = [-eq \langle r^2 \rangle / 2] \sum_{i=1}^{6} (3\cos^2\theta_i - 1) / R_i^3, \qquad (56)$$
$$B_{10} = [-eq \langle r^4 \rangle / 8] \sum_{i=1}^{6} (35\cos^4\theta_i - 30\cos^2\theta_i + 3) / R_i^5.$$

$$B_{40} = [-eq \langle r^4 \rangle / 8] \sum_{i=1}^{\infty} (35 \cos^4 \theta_i - 30 \cos^2 \theta_i + 3) / R_i^5 ,$$
(57)

$$B_{43} = -B_{4-3} = [3\sqrt{35}eq \langle r^4 \rangle / 12] \\ \times \sum_{i=1}^{6} (\cos\theta_i \sin^3\theta_i) / R_i^5, \qquad (58)$$

$$B = N^{4}B_{0}, \quad C = N^{4}C_{0}, \quad \alpha = N^{4}\alpha_{0}, \quad \beta = N^{4}\beta_{0},$$

$$\xi_{d} = N^{2}\xi_{d}^{0}, \quad \langle r^{k} \rangle = N^{2}\langle r^{k} \rangle_{0}. \quad (59)$$

For the Ee³⁺ ion, we have¹⁷

For the Fe⁻¹ ion, we have

$$B_{0} = 1130.22 \text{ cm}^{-1} \text{ (SCF, } 1100 \text{ cm}^{-1}\text{)},$$

$$C_{0} = 4111.45 \text{ cm}^{-1} \text{ (SCF, } 4000 \text{ cm}^{-1}\text{)},$$

$$\xi_{d}^{0} = 588.946 \text{ cm}^{-1} \text{ (SCF, } 575 \text{ cm}^{-1}\text{)},$$

$$\langle r^{2} \rangle_{0} = 1.890.39 \text{ a.u.},$$

$$\langle r^{4} \rangle_{0} = 11.464.85 \text{ a.u.},$$

$$\alpha_{0} = 40 \text{ cm}^{-1}, \quad \beta_{0} = -131 \text{ cm}^{-1},$$
(60)

which are in good agreement with the optical bands of the free ions.¹⁷

As an illustration, the formulas (40)-(49) and (56)-(60)will be applied to the specific example of α -Al₂O₃:Fe³⁺. For Fe^{3+} -doped corundum, we have found N=0.864from the optical absorption spectra in α -Al₂O₃:Fe³⁺ crystals. In the calculation, q = valence charge = -2e. The good agreement between theory and experiments shows that q = -2e is a reasonable value for the Fe³⁺ ion.³ It will be used in our calculations.

Using N=0.864 and diagonalizing the Γ_4 matrix (84×84), and Γ_6 matrix (84×84) in the C'_3 double group, and then substituting the values of Δ_1 , Δ_2 , a_1 , and a_2 deduced into the analytical expressions for D, a - F, and a, we obtained the results shown in Tables VI and VII. It can be seen that the theoretical values are in good agreement with the experimental data. Apparently, the models that have a correct and clear physics meaning will be those which agree well with experimental results. It is noted that, in the calculation of D, a, and F presented, the parameters N and q used were obtained from independent optical measurements, without introduction of any adjustable parameter. Therefore it is safe to say that these models are reasonable.

TABLE VI. Calculated and observed *d-d* transition for α -Al₂O₃:Fe³⁺ (all values are in units of cm⁻¹). For the α -Al₂O₃ single crystal, to within the range of experimental error, the structure data are $R_1 = R_2 = R_3 = 1.857$ Å, $R_4 = R_5 = R_6 = 1.966$ Å, $\theta_1 = \theta_2 = \theta_3 = 62.7^\circ$, $\theta_4 = \theta_5 = \theta_6 = 46.7^\circ$ (Refs. 36 and 37).

21		CDP	
O_h	C 3v	C'3v	Observed (Ref. 40)
$\overline{{}^{4}T_{1}(G)}$	10070	9 790	9450-9700
	100 445	10 048	
		10 229	
		10 392	
		10 473	
		10 493	
${}^{4}T_{2}(G)$	14 203	14 229	14 350
	14 330	14 262	
		14 315	
		14 373	
		14 399	
		14 401	
${}^{4}A_{1}(G)$	18 200	17 977	17 600-17 800
${}^{4}E(G)$	18 188	17 998	
		18 101	
		18 143	
		18 188	
		18 199	
${}^{4}T_{2}(D)$	20 294	20 18 1	
-	20 455	20 191	
		20 341	
		20 533	
		20 562	
		20 823	
${}^{4}E(D)$	22 283	22 299	22 120-22 200
		22 313	
		22 319	
		22 328	
$^{4}T.(P)$	25 862	25 652	25 680-26 700
1 1(1)	26 468	25 805	
	20100	25 945	
		26 141	
		26 330	
		26 457	
A .	20.015	201(7	20.000
$^{-}A_{2}$	30 015	30 167	29 000
		30170	

D. Discussion and conclusion of Sec. III

(a) In the spin-Hamiltonian formalism for the trigonal symmetry, we have⁹

$$\Delta_1(\mathrm{SH}) = \frac{1}{3} [(a - F + 18D)^2 + 80a^2]^{1/2}, \qquad (61)$$

$$\Delta_2(\mathbf{SH}) = \frac{3}{2}(a - F) - D + \frac{1}{6}[(a - F + 18D)^2 + 80a^2]^{1/2} .$$
 (62)

To gain insight into the equivalence between the SH and our CDP Eqs. (40)-(49), we substitute the calculated values of the ZFS parameters of Table V into Eqs. (61) and (62), and obtain the result shown by Table VIII. It can be seen that the CDP values are in excellent agreement with the SH ones. It follows from this that our CDP Eq. (40)-(49) are accurate ones within the framework of crystal-field theory. In other words, the spin-Hamiltonian formalism is a very good equivalent approximation for the ZFS of $3d^5$ ion in a C_3 symmetry crystal field.

(b) The analytical expressions reported here for the EPR parameters D, a - F, and a in a trigonal crystal field within the framework of the CDP are general formulas, independent of the specific interaction model. They are also valid when spin-spin and other interactions are involved in Eq. (1).

(c) Earlier works^{34,35} calculated the rank-2 parameter D only, without consideration of rank-4 ZFS parameters a and F, because of the complexity of the problem. The present accurate scheme shows that Febbraro's approximation is a good one when |a/D| < 0.1 and |(a-F)/D| < 0.1. However, it is incorrect when $|a/D| \sim 1$ and $|(a-F)/D| \sim 1$.

(d) For α -Al₂O₃:Fe³⁺, taking $B_{20} = 0$ and $B'_{40} = 0$, we find that D = 0, F = 0, $a(\text{cubic}) = 225 \times 10^{-4} \text{ cm}^{-1}$, and $a(\text{trigonal}) - a(\text{cubic}) = 29 \times 10^{-4} \text{ cm}^{-1}$, which indicate that the trigonal crystal-field components have a remarkable contribution to the rank-4 parameter a.

(e) The generalized crystal-field model and the analytical expressions (40)–(49) can simultaneously account for the optical bands and EPR parameters D, a - F, and a for the α -Al₂O₃:Fe³⁺ crystal. In the calculation for D, a, and F, the parameters N and q used were obtained from

TABLE VII.	Calculated and	observed ZFS	for α -Al ₂ O ₃ :	Fe ³⁺ (all valu	es are in 1	units of 🛾	10 ⁻⁴ cr	n').	

	D (calc)		D (obs) (Refs. 38 and 39)
CDP formulas ^a 1784		Febbraro approx. 2063	1718±2,1682±2
	(a-F) (calc)		(a - F) (obs) (Refs. 38 and 39)
CDP formulas 322		Febbraro approx . $\simeq 0$	329±2, 333±2
	a (calc)		a (obs) (Refs. 38 and 39)
CDP formulas 254	,	Febbraro approx. $\simeq 0$	241±4, 262±20

 $^{a}D(\text{spin-spin}) = -6$, D(spin-spin-SO) = 2, $D(\text{Orbach-Das-Sharma}) \simeq 0$ (see Ref. 3).

D (CDP)	a -F (CDP)	a (CDP)	Δ ₁ (SH)	Δ ₁ (CDP)	Δ ₂ (SH)	Δ_2 (CDP)
39.4	59.6	60.3	313.039	313.183	206.520	206.645
948.5	91	70.9	5 725.237	5 725.355	2 050.610	2 050.727
1120.5	99	74.1	6759.611	6759.442	2 407.805	2 407.750
2407.9	166.5	94.4	14 505.630	14 505.510	5 094.665	5 094.600

TABLE VIII. Comparison between SH and CDP (all values are in units of 10^{-4} cm⁻¹).

independent optical measurement, without introduction of any adjustable parameter. Therefore it is safe to say that these models and results are reasonable. Of course, our calculated values must be justified by further measurements.

ACKNOWLEDGMENTS

This work was supported by National Scientific Fund of China (Grants No. 86-330 and No. 186-87) and by the Committee of Education of Sichuan Province of China.

- ¹J. C. Hempel, J. Chem. Phys. 64, 4307 (1976).
- ²E. Konig and R. Schnakig, Phys. Status Solidi B 77, 657 (1976); 78, 543 (1976).
- ³M. G. Zhao, M. L. Du, W. L. Yu, and B. Shang, in Sino-Japan Bilateral Workshop on Statistical Physics and Condensed Matter Theory, edited by Xie Xide (World Scientific, Singapore, 1986), pp. 348-353.
- ⁴W. L. Yu and M. G. Zhao, Phys. Rev. B 37, 9254 (1988).
- ⁵H. Watanabe, Phys. Rev. Lett. 4, 410 (1960).
- ⁶M. J. D. Powell, J. R. Gabriel, and D. F. Johnston, Phys. Rev. Lett. 5, 145 (1960).
- ⁷W. Low and G. Rosengarton, in *Paramagnetic Resonance*, edited by W. Low (Academic, New York, 1963), p. 314.
- ⁸See AIP document No. PAPS PRBMDO-52-10043-68 for 68 pages of irreducible basis functions and the Hamiltonian matrix of 3d⁵ ions in low-symmetry fields. Order by PAPS number and journal reference from American Institute of Physics, Physics Auxiliary Publication Service, Carolyn Gehlbach, 500 Sunnyside Boulevard, Woodbury, New York, 11797. Fax: 516-576-2223, e-mail: janis@aip.org. The price is \$1.50 for each microfiche (98 pages) or \$5.00 for photocopies of up to 30 pages, and \$0.15 for each additional page over 30 pages. Airmail additional. Make checks payable to the American Institute of Physics.
- ⁹B. Bleaney and K. W. H. Stevens, Rep. Prog. Phys. 16, 108 (1953).
- ¹⁰A. Abragam and M. H. L. Pryce, Proc. R. Soc. London Ser. A 205, 135 (1951).
- ¹¹A. Abragam and B. Bleaney, *Electron Paramagnetic Resonance of Transition Metal Ions* (Clarendon, Oxford, 1970).
- ¹²S. Minomura and H. G. Drickamer, J. Chem. Phys. **35**, 903 (1961).
- ¹³H. G. Drickamer, J. Chem. Phys. 47, 1800 (1967).
- ¹⁴M. G. Zhao, J. A. Xu, G. R. Bai, and H. S. Xie, Phys. Rev. B 27, 1516 (1983).
- ¹⁵M. G. Zhao and Y. F. Zhang, IEEE Trans. Magn. **19**, 1972 (1983).

- ¹⁶M. G. Zhao and M. L. Du, J. Phys. C 20, 4467 (1987).
- 17 M. G. Zhao and M. Chiu, Phys. Rev. B 49, 12556 (1994). Note that D(obsd) in Table II was misprinted as 1106.
- ¹⁸M. G. Zhao, M. L. Du, and G. Y. Sen, J. Phys. C 20, 5557 (1987).
- ¹⁹M. G. Zhao, Phys. Status Solidi B 184, 441 (1994).
- ²⁰M. G. Zhao, G. R. Bai, and H. C. Jin, J. Phys. C 15, 5959 (1982).
- ²¹M. Wolfsberg and L. Helmholz, J. Chem. Phys. 20, 837 (1952).
- ²²G. Burns and J. D. Axe, J. Chem. Phys. 45, 4362 (1966).
- ²³E. Francisco, M. Florez, Z. Barandiaran, G. Fernadez Rodrigo, V. Luana, J. M. Recio, M. Bermejo, L. Seijo, and L. Pueyo, Cryst. Lattice Defects Amorph. Matter **15**, 45 (1987).
- ²⁴F. Rodriguez, M. Moreno, A. Tressaud, and J. P. Chaminade, Cryst. Lattice Defects Amorph. Matter 16, 221 (1987).
- ²⁵M. Flovez, L. Seijo, and L. Pueyo, Phys. Rev. 34, 1200 (1986).
- ²⁶M. T. Barriuso and M. Moreno, Phys. Rev. B 29, 3623 (1984).
- ²⁷F. Rodriguez and M. Moreno, J. Chem. Phys. 84, 692 (1986).
- ²⁸A. Mehra and P. Venkateswarlu, J. Chem. Phys. 47, 2324 (1967).
- ²⁹E. Dormann, D. Hone, and V. Jaccarino, Phys. Rev. B 14, 2715 (1976).
- ³⁰A. H. M. Schrama, Physica 68, 279 (1973).
- ³¹A. H. M. Schrama, Physica 66, 1311 (1973).
- ³²T. P. P. Hall, H. Hayes, R. W. H. Stevenson, and J. Wilkens, J. Chem. Phys. 38, 1977 (1963).
- ³³R. Teck and J. J. Krebs, Phys. Rev. B 5, 1677 (1972).
- ³⁴S. Febbraro, J. Phys. C **20**, 5367 (1987).
- ³⁵S. Febbraro, J. Phys. C 21, 2577 (1987).
- ³⁶K. Moorjani and N. Meavoy, Phys. Rev. 132, 504 (1963).
- ³⁷D. S. McClure, J. Chem. Phys. 38, 2289 (1963).
- ³⁸G. S. Bogle and H. F. Symmons, Proc. R Soc. London Ser. A 73, 537 (1959).
- ³⁹S. Lee, C. M. Brodbeck, and C. Yang, Phys. Rev. B 15, 2469 (1977).
- ⁴⁰G. Lemann and H. Harder, Am. Mineral. 55, 98 (1970).