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Qnasielastic incoherent scattering in fractal systems
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The diffusive behavior of particles can be studied with the help of quasielastic light or neutron scatter-
ing. Diffusion within a fractal space does not follow the normal law ( r ) —t, r being the displacement in
time t. In this paper we study quasielastic scattering in fractal spaces and try to predict new features
which may be observed experimentally. Examples of such systems may be the AgI percolation clusters
in glassy AgI borate and phosphate superionic conductors, gel-type protonic conductors, and biological
systems. For such fractal systems our calculated line shape of scattered intensity, S(k, co), is found to be
oscillatory in nature unlike the Lorentzian centered at co=0, for normal diffusion. The maximum scat-
tered intensity S(k,O) has a power-law dependence on k. Also the half width at half maximum is found
to be independent of k.

I. INTRODUCTION

Naturally occurring systems ranging from coastlines
and cloud formations to porous rocks, capillary blood
vessels, and the interior space within liposomes are at
present being modeled as fractals. ' For macroscopic ob-
jects, identification of the fractal nature is relatively
easier. Standard methods are prescribed for determina-
tion of the fractal dimension. For microscopic objects
the situation is more complex. Indirect methods are
necessary and often it is possible to interpret the same
data using alternative models, fractal and nonfractal. So
it is desirable to obtain evidence of fractality from as
many different sources as possible. An added complica-
tion is that real objects are not deterministic fractals like
the well-known Koch curve or Sierpinski gasket, but are
statistical fractals and exhibit a fractal nature only within
a certain range of length scales.

For the study of microscopic systems, light, x-ray, or
neutron scattering techniques are normally employed.
Small-angle neutron scattering has been extensively used
to determine the fractal dimension of surface and volume
fractals. Here, there is again the possibility of ambiguous
interpretation of results. For example, the slope of the
straight line obtained by plotting ln(structure factor) vs
ln(energy transfer) is normally 4. Any deviation from 4 is
often identified with fractality. But polydispersity in the
size of the objects studied may also cause such deviation.

We suggest in this paper that quasielastic incoherent
neutron scattering (QINS) from diffusing particles
confined to a fractal space may exhibit certain charac-
teristic features not observed for normally diffusing parti-
cles. Quasielastic incoherent neutron scattering or light
scattering is an important tool for investigating diffusive
motion in condensed media.

Whereas coherent quasielastic scattering yields infor-
mation about pair correlation functions and their time
evolution, QINS effectively follows the diffusive motion
of particles and gives information about the difFusion
path and mobility. Particles diffusing within a fractal

space are expected to occur in interesting systems such as
protons in certain gel-type superionic conductors, Ag+
ions in percolating networks of AgI in AgI phosphate or
borate glasses, ' and in biological systems. In this paper
we consider the case of superionic glasses.

QINS experiments have been reported for single crys-
tals and glassy superionic materials. In single crystals
the scattering depends on the direction and magnitude of
the momentum transfer k of the neutron, but in glassy
samples the scattering is isotropic. The line shape of the
scattered intensity and the k dependence of the half-
width of the scattering profile are distinctive features, and
may serve as tests for different proposed theoretical mod-
els of ionic conduction.

The process of ionic conduction in superionic glasses is
not yet well understood. In (AgI) -(AgPO3) &

„and
(AgI)„-(Ag20, B203), „glasses a possible mechanism
may be ion transport through clusters of the AgI com-
ponent, which is known to be a good superionic conduc-
tor.

In this case an infinite cluster or percolation path
through the AgI phase is necessary for conduction. This
again gives rise to another interesting question. It has
been shown that the infinite cluster at the percolation
threshold exhibits a fractal structure, ' and diffusion
through a fractal shows anomalous behavior. This has
been observed for percolation clusters also.

Normally one expects the QINS intensity vs frequency
line shape to be a Lorentzian centered at co=0 and with a
ha, lf-width proportional to k2 for small k ii These rela-
tions have been derived assuming diffusion to be normal,
i.e.,

(r')-t,
where (r~) is the mean square distance traversed by a
diffusing particle in time t. The proportionality constant
contains the diffusion coeKcient D.

For diffusion in fractals, however, the diffusion is
anomalous with
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where d is an exponent other than 2, and depends on
the fractal dimension df of the medium and its connec-
tivity, which may be characterized by the exponent d„'
the spectral dimension. This has been suggested from
scaling arguments' and demonstrated by simulation on
deterministic' and random fractals like percolation clus-
ters. d„, d„and df are in general noninteger.

Our aim is to see how the QINS line shape is affected if
the diffusion law is given by Eq. (2) instead of Eq. (1). We
use values of the fractal exponents reported by different
authors for percolation clusters in three-dimensions to
calculate the QINS cross section. Here the fractional ex-
ponents do not permit analytical integration and the
scattering cross section has to be calculated numerically.
The line shape thus obtained is compared to the usual
Lorentzian curve.

C. Anomalous difFusion in fractals

For diffusion problems in Euclidean space, the function
G, (r, t} is of Gaussian type. But this sample behavior can
no longer be applied in fractal spaces. The form of the
function G, (r, t) for percolation clusters and several frac-
tal spaces has been studied by different authors. ' ' All
the proposed forms of G, (r, t) for fractals have the simple
scaling form

G, (r, r) —[ V, (t)] 'F

where V, (t) is the volume accessible to the random walk-
er in time t. Taking into account the scaling of the densi-
ty of the fractal substrate, this becomes

II. THEORY

A. The QINS cross section

The quantity measured in a scattering experiment is
the differential scattering cross section, which describes
the probability of an incident neutron or photon having a
certain energy being scattered into a definite solid-angle
element within a certain energy range. "

The scattering cross section is proportional to the
dynamical structure factor, which consists of two
parts —a coherent contribution due to interference be-
tween waves scattered from different nuclei, and an in-
coherent contribution due to scattering from waves origi-
nating from the same nucleus as it diffuses through the
medium. Van Hove scattering laws are

S„h(k,co)=(2m) ' f exp[i(k r cot)]G(r, t)dr dt—(3)

d —d
r f

G, (r t) —
&

exp
s

r
1/d (10)

where

df and d, are the fractal and spectral dimensions, respec-
tively, d is the embedding Euclidean dimension, and d is
the diffusion exponent defined earlier in Eq. (2).

The exact form of the function F (x), with x as the scal-
1/d

ing variable (rlt "), is controversial. Several authors
have considered scaling forms of F(x) using different ap-
proximations for some deterministic fractals and two-
dimensional (2D) percolation clusters.

We have taken the form of G, (r, t) suggested by
Guyer' as

for coherent scattering, and

S;„„h(k,co) =(2~) ' J exp[i(k r cot)]G, (r, t)d—r dt (4)

Q —1

B. Normal difFusion in Euclidean space

The function G, (r, t) is usually approximated by a
Gaussian as follows:"

G, (r, t}=[4my(t)] 3~2exp[ —r2/y(t)] .

For normal diffusion y(t) is linear in t,

y(r) =Dr,

(5)

(6)

D being the diffusion coef6cient. This expression for
G, (r, t) gives Eq. (1). The scattering law under these con-
ditions is a Lorentzian profile:

(k )
k D/n

incoh ~ 2+ ( k 2D)2
(7)

In the low-k limit the width of the quasielastic line at the
half maximum is proportional to k .

for incoherent scattering. G, (r, t) represents the proba-
bility of finding a nucleus at r at time t is the same nu-
cleus were at r =0 at t =0. See Springer. "

The expression for u [=d /(d —1)] is seen to be valid
only for loopless structures. However, it can be approxi-
mated for aggregates with a small number of loops. Per-
colation clusters are usually found to have only a small
number of loops' and, therefore, Eq. (10) is valid for per-
colation clusters with u taken approximately as
d j(d„—1). The results obtained for 2D percolation
clusters show good agreement with (10) where the calcu-
lated value of u from relation (11) is 1.53 and a fit to the
numerical data gives a slightly higher value, 1.65+0.1.
For 3D percolation clusters, we have taken u to be 1.37
according to relation (11).

The Sierpinski gasket is an example of a fractal struc-
ture with loops. The numerical value of u for Sierpinski
gasket comes out to be 1.9 W 0. 1 whereas the calculated
value [from relation (11)] is 1.76. Numerical calculations
have been performed on the Sierpinski gasket in different
x regimes to test the form of the scaling variable x. ' It
has been found that in the x &) 1 regime, i.e., the asymp-
totic limit, the form of the scaling function agrees with
the proposed form of Guyer. '

Our interest is to see how Eq. (10) is modified if G, (r, t)
is given by Eq. (8) instead of by Eqs. (5) and (6). We calcu-
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late S;„„h(k,c0) with parameter values reported in stan-
dard literature, for percolation clusters in three dimen-
sions.

We have taken d&=2. 51, d =3.68, d, =1.328, and
u = l. 37. With such values, the integral in Eq. (4)
reduces to

3.02

S;„„„(k,co) =2J dt
S

df —d +& sin(kr)r
kr

/'"~ uX exp[ (r/t — )"]dr, (12)

which cannot be calculated analytically any further. Even
for very small values of k, the asymptotic behavior can-
not be obtained because of the r integral ranging from
zero to infinity. The calculation has been done numeri-
cally for different k values and compared with the
Lorentzian. Preliminary calculations have been reported
by Tarafdar and Ballabh. ' The double Fourier integral
has been performed by the Gaussian quadrature method
and it has been found that the results are correct up to
three decimal places.

The QINS line shape is found to deviate significantly
from the Lorentzian. Further, the width at half max-
imum of the profile is independent of k. S(k,O), the peak
intensity varies, with k according to a power law. The
possible implications of these results are discussed in the
next section.

III. RESULTS AND DISCUSSION

Figure 1 shows the quasielastic scattering line shape
calculated for anomalous diffusion and compares it with
the Lorentzian. It is seen that the two curves are
markedly different in shape, indicting that quasielastic
scattering may be used to identify anomalous diffusion
and hence the presence of a fractal diffusing space for
charge carriers in a superionic conductor. A striking
feature is the presence of weaker secondary maxima. The
line shape has an oscillatory nature, unlike the Lorentz-
ian.

Quasielastic incoherent scattering has been observed in
several superionic conductors. In SrC12 single crys-
tals the diffusing space is obviously Euclidean. In AgI
phosphase glasses, however, the diffusing path is prob-
ably through the percolating network consisting of AgI
clusters. At AgI concentrations close to 0.3, i.e., the per-
colation threshold, the quasielastic line shape is expected
to be similar to the calculated curve in Fig. 1.

It can be seen qualitatively that the experimental line
shape given by Rodriguez, Benassi, and Fontana agrees
better with our calculated curve than the Lorentzian fit,
which is actually a superposition of two Lorentzians. The
justification for using two Lorentzians is not clear. More-
over, the data points do appear to show an oscillatory na-
ture, and the presence of secondary maxima cannot be
ruled out. Another interesting point is that the data
showing variation of half-width with the AgI concentra-
tion appear to have a sudden change near the percola-
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FIG. 1. Plot of scattering intensity S;„„h vs co. Solid line
shows S;„,h calculated from present model and broken line the
closest Lorentzian. Units for co and S;„„hare arbitrary.

I ~k' (13)

In cases where there is deviation from the normal
diffusion law, e.g. , polymers, there is a different k
dependence. It may be seen, however, that for fractals
this result is not unexpected, because, being self-similar,
i.e., invariant on all length scales, fractals actually do not
have a small-k (long-wavelength) limit. A true fractal
never looks like a continuum, no matter how large the
wavelength of the probing radiation; on the other hand, a
lattice which has an intrinsic length scale looks like a
continuum for radiation with kAO and this gives rise to
the long-wave behavior. This basic difference of the
"normal" and fractal structures is incorporated in the
present calculation, through G, (r, t) in (10). A real glass,
however, will not be a fractal except within a certain

tion threshold around x close to 0.3.
A marked oscillating nature may also be noticed in the

experimental results reported by Fontana et al. Figures
8 and 9 of that paper show plots of IIt /g(co) vs frequency
shift. The small-frequency-shift region is identified as the
quasielastic region. The distribution of points here ap-
pears to be systematically oscillating rather than random-
ly scattered towards the large-k side. The authors focused
their attention on the fracton region and have not dis-
cussed this aspect, but it seems that the fractal nature has
also left its signature in this low-k region. The secondary
maxima probably represent excitations caused by long-
range correlations in the fractal.

The width of the central peak being independent of k
seems surprising since in normal lattices there is a
marked k dependence, and in the small-k limit, the width
at half maximum
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range of length scales. So one should look for this pecu-
liarity in the range of k values appropriate to such scales.
We have not come across experimental data on the k
dependence of QINS in superionic glasses or other sys-
tems which may exhibit such behavior, so we cannot
check this point.

A recent book on QINS gives a discussion of scatter-
ing in bound spaces, but there is no direct reference to
the situation in fractal spaces. However, the experimen-
tal data on water-soaked polymer membranes (p. 373)
show a regime where the half width at half maximum
(HWHM) remains constant with variation of k. It may
be possible to interpret those results by a fractal model.

lnS(k, O) plotted against ln(k) is shown in Fig. 2. The
points fall almost exactly on a straight line with slope
around 2.6. Within the limits of error, this appears to
imply a relation
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S(k,O)-(l/d f) (14) FIG. 2. Plot of ln[S(k, O)] vs ln(k).

as reported for small-angle scattering in fractals, since
the Hausdorff dimension df has been taken as 2.51 in the
present paper.

More experimental data on QINS in systems suggested
to have a fractal nature are required to verify the predic-
tions of the present paper. In view of the ambiguity usu-
ally present in identifying a real system as fractal, such
experimental studies covering different aspects of fractali-
ty are badly needed. Direct independent measurement of
the fractal dimension df, spectral dimension d„and
random-walk exponent d for the same fractal has not
been performed yet to our knowledge. This would also
serve as a test of the validity of the relations connecting
different fractal exponents suggested by Rammal and
Toulouse. '

Further work on superionic glassy systems and biologi-
cal systems such as liposomes would be useful. Proton
conductors are also promising candidates for QINS stud-
ies, due to the large incoherent scattering cross section of

protons. This has been discussed by Lechner. Studies
on gel-type proton conductors with large surface area
may also reveal non-Lorentzian line shapes.

Another superionic material where QINS may be tried
is SrC12-alumina composite. Here also ionic conduction
probably takes place through a percolation network, i.e.,
a fractal space, and the mobile Cl ion has a large in-
coherent scattering cross section.

In conclusion, QINS in fractal spaces with anomalous
diffusion promises to show interesting new features, and
further experimental and theoretical work in this field
should be rewarding.
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