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We calculate surface-diffusion coefficients for hydrogen on the (100) face of nickel over a temperature
range from 40 to 1000 K. The calculations include tunneling contributions from discrete-energy states.
The results are in very good agreement with experiment. We find a dramatic leveling off of the Ar-
rhenius plot at approximately 66 K, below which temperature the diffusion coefficient is virtually in-
dependent of temperature. The existence and magnitude of such a transition temperature agrees well
with experimental findings and also with previous theoretical work based on path-integral transition-
state theory. The present treatment provides insight into the origin of the effect. We evaluate the transi-
tion temperature analytically in terms of local quadratic approximations to the potential and find it to
correspond approximately to the temperature at which the various low-energy bound-reactant states
contribute equally to the diffusion coefficient. The nearly temperature-independent diffusion rate below
the transition temperature corresponds to tunneling primarily from the ground state. The analytical ex-
pression for the transition temperature depends strongly on the magnitude of the frequency at the top of
the potential barrier. We also demonstrate that this transition temperature does not correspond to a
transition from over-barrier activated diffusion to tunneling diffusion, which has been previously pro-
posed, and that the surface-diffusion process proceeds largely by a tunneling mechanism even well above
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the transition temperature.

I. INTRODUCTION

Recent experimental' ~3 and theoretical* studies on the
low-temperature diffusion coefficient of H on Ni(100)
have shown a transition from activated Arrhenius
behavior at higher temperatures to a nearly temperature-
independent diffusion coefficient at a very low tempera-
ture. Lin and Gomer! first discovered this transition at
approximately 100 K using field-emission fluctuation
techniques to measure diffusion coefficients. Zhu and co-
workers?? later measured the diffusion coefficients using
laser-induced thermal desorption and found the transi-
tion to occur at approximately 160 K. Mattsson and co-
workers* studied the process using path-integral
transition-state theory with a potential function obtained
by the embedded atom method® (EAM) and found quali-
tatively similar results but with a transition temperature
at 40 K. All previous interpretations of the transition
temperature have been associated with a change in mech-
anism from an overbarrier process at high temperature to
tunneling diffusion at low temperature.

In the present paper, we report calculations of the
surface-diffusion coefficients for this process using canon-
ical variational transition-state theory®™% (CVT) with a
small-curvature tunneling (SCT) approximation®!?
based on quantized (Q) reactant states!* (SCTQ). In par-
ticular, we use the centrifugal-dominant small-curvature
semiclassical adiabatic ground-state tunneling approxima-
tion.'>!3 We use an EAM potential function that accu-
rately reproduces experimental binding energies, frequen-
cies, H-Ni interatomic distances, hydrogen equilibrium
distances above the surface, and the barrier height for
diffusion on the Ni(100) surface. We use the embedded-
cluster method!'>'® to model the surface. In Sec. II we
discuss the theoretical methods used, and in Sec. III we
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present and discuss the results, including a reinterpreta-
tion of the transition temperature. Section IV is a sum-
mary of the conclusions.

II. THEORY AND COMPUTATIONAL METHODS

A. Dynamics methods

Nickel crystallizes in a face-centered-cubic (fcc) lattice
structure, and a schematic for the (100) face is shown in
Fig. 1. The surface-diffusion process consists of an H

FIG. 1. Schematic diagram of the (100) face of Ni. Two
minimum-energy sites of fourfold symmetry are marked H(a),
and a saddle point of twofold symmetry is marked by a black
dot labeled fa. The arrow at the saddle point is a reminder that
the saddle point lies higher above the surface plane than do the
minimum-energy sites.
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atom moving from a fourfold minimum energy site (MES)
labeled H(a) in Fig. 1, through a twofold transition state
(f{a in Fig. 1), to another fourfold MES. The diffusion
coefficient, D (T), is given by

2
D(T):;\'_dkCVT/SCTQ(T) , 1)

where T is the temperature, A is the lateral distance be-
tween two MES’s (R,/ V2 for this diffusion process,
where R, is the lattice constant), d is the dimensionality
of the system (two for this and most surface-diffusion pro-
cesses), and k SVT/5CTQ( T is the rate constant determined
by CVT with the SCTQ tunneling correction. Equation
(1) assumes that the hops between the MES’s are uncorre-
lated, meaning that the H atom remains in the H(a) state
long enough to become thermalized and, therefore, have
no effect on each subsequent hop.!’

Equation (1) not only assumes that site-to-site hops for
this process are uncorrelated, it also assumes that corre-
lated and multiple jumps contribute negligibly to the
diffusion coefficient. Wahnstrom and co-workers'® have
tested the validity of these assumptions in extensive
wave-packet calculations for hydrogen diffusion on a me-
tallic surface, in their case for diffusion on a Cu(100) sur-
face. Their studies indicate that although correlated and
multiple jumps are significant for light adatoms (e.g., hy-
drogen) at very high temperatures, they are much less
significant at the lower temperatures, which form the pri-
mary focus of the present study. Specifically, for H on
rigid Cu(100), their studies showed that correlated and
multiple jumps contribute only 7% to the diffusion
coefficient at 300 K and only 2% at 200 K. Thus, the
neglect of correlated and multiple jump contributions for
the present comparison to experimental work is validated
to this level of accuracy.

The CVT method has been thoroughly discussed in
previous publications (see, for example, Refs. 6-8). We,
therefore, only briefly summarize it in the context of the
current work. We define a minimum-energy path (MEP)
in a mass-scaled coordinate system!°”?2 on a potential-
energy surface starting at the saddle point and following
the path of steepest descents towards the reactant and
product MES’s. The coordinates are scaled to a reduced
mass, u, of 1 amu. This is an arbitrary value that has no
effect on the calculated observables. We define a reaction
coordinate, s, along the MEP, where s=0 at the saddle
point, is negative on the reactant side of the saddle point,
and is positive on the product side.

The CVT rate constant is calculated as the equilibrium
one-way flux through a dividing surface orthogonal to the
MEP. The placement of the dividing surface is variation-
ally optimized so as to minimize the calculated one-way
flux and provide a true dynamical bottleneck for the reac-
tion. This is done by maximizing the generalized free en-
ergy of activation® for the process with respect to s. The
position, s, along the MEP at which the variationally op-
timized dividing surface (the canonical variational transi-
tion state) is ultimately placed is called SEVT(T), and the
CVT rate constant is defined as

kBT QCVT( T)
h QRX(T)

—Viiep(T)
kpT

kYY) =0 exp , ()
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where kj is Boltzmann’s constant, 4 is Planck’s constant,
o is a symmetry factor which accounts for the number of
equivalent paths from reactants to products for the reac-
tion [four for the (100) surface], Q“VX(T) and Q&(T) are
the quantized transition state and reactant partition func-
tions, and V%5 (T) is the potential energy of the system
at the canonical variational transition state [at sCYT(T)
along the MEP].

The vibrationally adiabatic ground-state potential-
energy curve is defined by

VE(s)=Vypp(s) +edan(s) , 3)

where Vygp(s) is the potential energy of the system at s
on the MEP, and 7, (s) is the sum over all vibrational
modes orthogonal to the reaction coordinate of the zero
point energies at s. Here and throughout this paper, G
denotes the ground state of modes transverse to the reac-
tion coordinate. (This should not be confused with the
ground state of the motion from the initial minimum-
energy site along the reaction coordinate, which will play
a prominent role below.) For the processes in this study,
there are a total of (N, +1) moving atoms (N, moving
nickel atoms and one hydrogen atom), which contribute
vibrational energy to the system. This yields F =3N,+3
vibrational normal modes (there are no unbound transla-
tions or rotations for a substrate-surface reaction or for
surface diffusion processes) for the reactant, and F —1
transverse modes for the generalized transition state.

The minimum-potential-energy curve, Vygp(s), de-
creases monotonically from s=0 to sk, where s® is the
value of s at the reactant MES. Thus, Vygp(s®) is the
classical global minimum of energy. However, in the
present case, the vibrationally adiabatic ground-state
potential-energy curve has a nonmonotonicity in the re-
gion of s =s®. To understand why this occurs, we ob-
serve the character of the orthogonal modes that contrib-
ute to €2, (s). Of the F vibrational modes in this pro-
cess, FF—3 modes are low-frequency lattice vibrations,
and three modes are high-frequency hydrogenic vibra-
tions. The vibrational modes are numbered starting with
the highest vibrational frequency (mode 1) down to the
lowest vibrational frequency (mode F). At this point, we
single out two particularly important vibrational modes.
Mode 3, with vibrational frequency ¥; in wave numbers,
is the lowest-frequency hydrogenic vibration, and mode
F, with vibrational frequency Uy in wave numbers, is the
overall lowest-frequency vibration. These two modes
trade character over the course of the reaction path,
causing the vibrationally adiabatic ground-state curve to
decrease nonmonotonically from the transition state to
the reactant. Specifically, at the generalized transition
state, ' —3 of the transverse modes are low-frequency
lattice vibrations, and the remaining two transverse
modes are high-frequency modes due to hydrogenic vi-
bration. The mode corresponding to the reaction coordi-
nate is mode 3, the lowest-frequency hydrogenic vibra-
tion. Over the course of the reaction path, however, the
character of the reaction coordinate changes, becoming
less and less hydrogenic in character. Finally, as s is very
nearly equal to s%, the mode corresponding to the reac-
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tion coordinate is almost completely mode F, the overall
lowest-frequency vibration, and there are F —4 trans-
verse low-frequency lattice vibrations and three trans-
verse high-frequency vibrations. As a result, the VS
curve reaches a minimum at the point at which the reac-
tion coordinate mode has lost its hydrogenic attributes,
and it has a local maximum at s =s®. For the process
studied in this paper, N, is 36, and F is 111. Figure 2
shows the Vygp(s) and VS(s) curves with two indepen-
dent scales (given on the left and right) for the ordinate to
account for the difference in energetic magnitude of the
two quantities. The double minimum only occurs in the
VS(s) curve, indicating that this feature is exclusively a
result of the transverse modes [see Eq. (3)]. This double
well considerably complicates the dynamics calculations.
This is discussed below.

In Eq. (2), all modes are treated quantum mechanically
except for motion along the reaction coordinate. To
quantize the reaction coordinate, k7T is multiplied by a
ground-state transmission coefficient, kVT/G which ac-
counts for the tunneling along the reaction path (where
again G denotes the ground state of the transverse
modes). The transmission coefficient is the ratio of the
Boltzmann-averaged quantum transmission probability
across the VZ(s) barrier to the Boltzmann-averaged clas-
sical transmission probability across the same barrier.
The denominator must be consistent with CVT, for
which the implicit threshold energy (i.e., the energy
above which the probability for transmission is unity and
below which it is zero) is V(s =sSVT(T)). This gives the
following expression for the ground-state transmission
coefficient at the CVT level:®

J,”dE PS(E)exp(—E /k,T)

Y]

KCVT/G(T)=

) (4)
dE —E
vO(s=s$VT(T) exp( /ksT)
where PY(E) is the quantum transmission probability
defined by

PS(E)=1/{1+exp[26(E)]} , (5

where O(E) is the imaginary action integral® !0 for the
barrier transmission and depends upon the tunneling ap-
proximation used. When Eq. (4) is used to quantize the
reaction path, the final rate constant, i.e., the product of
Egs. (2) and (4), is denoted k CVT/5CT,

ER

= dv
CVT/GQ( T)=
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FIG. 2. Vibrationally adiabatic ground-state and MEP

potential-energy curves for surface diffusion. The left-hand or-
dinate is the energy, in kcal/mol, of the V7 curve. The right-
hand ordinate is the energy of the Vygp curve. The abscissa is
s, the reaction coordinate. The saddle point, {a, from which the
MEP is started is at s=0, and the reactant MES, H(a), is at
sR=—1.48 A. For s <sR®, the curves are defined by a reflection
around s%, resulting in a double minimum in the reactant well
of the ¥ curve. See Sec. I A for further discussion. The dot-
ted parabolic curve in the vicinity of the reactant well of the V¢
curve is the harmonic approximation to the curve, which is used
to obtain the harmonic energy eigenstates, EX. The dotted par-
abolic curve in the vicinity of the saddle point represents the
parabolic approximation to the curve which is used to obtain
approximate transmission probabilities, P°(EX).

When a particle tunnels through a barrier from a well,
as is the case for the current problem of an H atom
diffusing across a surface between minimum-energy sites,
it initially occupies discrete energy levels in the well, and
each site-to-site hop originates from a discrete energy
state rather than from an energy drawn from the continu-
um, as implied by Eq. (4). Under most (high-
temperature) conditions we can ignore this discreteness,
but at low temperatures it becomes very important. We,
therefore, define a ground-state (G) transmission
coefficient with a quantized (Q) reaction-coordinate state,
called GQ, in which contributions to the rate process
from all discrete well levels below the maximum of the
VS curve, called VAG, are summed individually. There-
fore, in Eq. (4), only energies above VAC are treated as a
continuum, and the GQ transmission coefficient becomes

M dER -
> —SPSEDexp(—E /ky )+ [ (dE P(E)exp(—E /ky T)

(6)

K

o

vS(s=s$VT(m)

The upper limit, M, of the summation is the total number
of well eigenenergies, ER, below VAC. We evaluate the
quantized energy of the mode corresponding to the reac-
tion path in the WKB approximation, and the well
eigenenergies are solutions to the well-known Bohr-

dE exp(—E /kyT)

Sommerfeld quantization condition:
s —
fs +ds\/2y.[E§—Vf(s)]=§(v+%), @)

where s, and s_ are the classical turning points, such
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that s_ <s®<s, <O0.

The definition of the adiabatic ground-state potential
energy curve in Eq. (3) applies only for s greater than s*
since the minimum energy path is only calculated from
the saddle point down to the reactant minimum-energy
well. To apply Eq. (7), the back side of the vibrationally
adiabatic ground-state potential-energy curve, i.e., ¥V 9(s)
for s less than s%, is needed as well. There is no unique
way of specifying this part of the potential for general
unimolecular reactions. For the reaction in the current
study, however, the metallic surface is periodic, and the
potential profile is symmetric about a given MES. There-
fore, VC(s) for s less than s® is simply determined by
reflection of the known part of the adiabatic potential (see
Fig. 2), and Eq. (7) is solved numerically to get EX.

To obtain dE® /dv for use in Eq. (6), we fit the energy
eigenstates to a quadratic equation,

ER=av+bv+c, (8)

which yields

dER
=2av—+b . 9)
dv
For the lowest and highest v, we base the fit on the lowest
and highest three levels, whereas for the intermediate v
we base the fit on levels v—1, v, and v+ 1. Note that this
technique is only possible when at least three energy lev-
els are open below V.

Since we use the WKB approximation for the
reaction-path mode, we must, for consistency, evaluate
the reactant partition function, Q®(7T), with the WKB
energy levels for this mode. The reactant partition func-
tion is given by the usual separable mode form as

ER m
R(T)= 10
o) I_Il vzoexp T , (10)
where e®™ is the vibrational energy of level v of mode m

of the reactant, the reaction coordinate mode is calculat-
ed with the WKB energy levels, and all other modes are
calculated with the harmonic energy levels. The fact that
the nature of the reaction coordinate changes over the
course of the reaction path presents a significant compli-
cation. The complication occurs due to the double well
(discussed above, see Fig. 2) that occurs in the Vf curve
in the proximity of s =s®. In order to motivate our
treatment of this complication as well as to provide a
qualitative basis for understanding our results, we first
consider a global harmonic approximation to the poten-
tial in the well, namely,

VE(s)=VE(s =s®)+Lhe(TR—vH)+ Ry,

1f3ls —s
(11)

where T R is the frequency in wave numbers of mode F at
s =s® (at which point mode F corresponds to the reac-
tion coordinate), and T X is the frequency in wave num-
bers at s =s® of mode 3 (which corresponds to the reac-
tion coordinate over most of the reaction path away from
s =sR®), f, is the force constant corresponding to this
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mode, and c is the speed of light. The well levels comput-
ed from this effective potential are

~V3(s=sR)+Lhcv ¥ +vhcv ¥, (12)

where v is a non-negative integer. Therefore,
dER
dv

Since Egs. (11) through (13) show that the reaction coor-
dinate has the character of mode F over a small path of
its range (i.e., for s very close to s®) and of mode 3 over
the rest, it is not physical to simply calculate modes 1
through F — 1 using harmonic energy levels with frequen-
cies U; through U,_; and then calculate mode F (the
low-frequency lattice vibration, which corresponds to the
reaction coordinate at s =s®) using WKB energy levels,
because that would effectively include mode 3 twice since
the energy separations in the reaction coordinate more
accurately reflect mode 3 as discussed previously. Con-
versely, it is also not physical to treat mode 3 as the
reaction-path mode, because mode 3 is transverse to the
reaction coordinate at s =s®. We need to calculate the
partition function such that the ground-state energy is
accurate at s =s® and the energy spacings are accurately
represented. To do this, we recognize that two modes
have mixed character and we replace Eq. (10) by

~hco¥ . (13)

F—1
QR(T=0%p(MOE(D 1 X1, (14)
m=1

m+3

where Q3 r(T) and QF 3(T) are the partition functions of
the mixed modes, and Q,{f(T ) are the partition functions
of the separable modes. The QR(T) are calculated har-
monically in the usual way, and we now consider the
mixed modes. The first quantity in Eq. (14) is a harmonic
mixture of mode 3 and mode F and is approximated by

B e

This function has the zero-point energy of mode 3 and
the energy spacing of mode F. The second quantity in
Eq. (14) is a WKB treatment of the reaction coordinate,
combining mode F with the WKB energy levels deter-
mined by Eq. (7). This quantity is given by

/k,,T

where Aeg is equal to the total zero-point energy of the
reactant calculated from the harmonic approximation to
all the modes, i.e.,

Q§F(T)= i exp | —hc ———+v (15)

v=0

OF3(T)= 3 exp , (16)

v=0

UF
- hC"2—+E5 —Ae

(17)

~|—

é

Several methods have been developed to approximate
PSY(E).87 1323725 Tunneling in systems with zero curva-
ture along the reaction path is well approximated with a
ZCT (zero-curvature tunneling) algorithm, which as-
sumes that the tunneling path coincides with the reaction
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path and uses the MEP as the tunneling path.!»?* Tun-
neling in systems with large curvature along the reaction
path may be approximated by the large-curvature-
version-3 (LCG3) method, '*2° and for systems with small
curvature along the reaction path, we use the SCT tun-
neling approximation (more completely labeled CD-
SCSAG, for centrifugal-dominant small-curvature semi-
classical adiabatic ground-state approximation).!> The
ground-state transmission coefficients for the ZCT,
LCG3, and SCT tunneling approximations were com-
pared, and the SCT approximation always gave the larg-
est transmission coefficient, indicating that the tunneling
process is most accurately represented by an approxima-
tion that assumes small curvature along the reaction
path. Thus, all results presented in this paper were calcu-
lated with the SCT tunneling approximation combined
with quantized reaction-coordinate states, which will be
called the SCTQ approximation.

In the SCTQ and SCT approximations, '>!3 the imagi-
nary action integral in Eq. (5) is given by

9(E)=(27T/h)f:lds\/Z,ueﬂ(s)[VaG(s)—E] , (18)
0

where s, and s, are the limits of the tunneling path, and
Uer is an effective reduced mass which accounts for
reaction-path curvature in all normal modes. The calcu-
lation of g is fully discussed elsewhere. 122> 13

The quantized well method has been used in previous
work!* to calculate hydrogen diffusion coefficients on
Cu(100), but since these calculations were not made at ex-
tremely low temperatures, the excited-state population
was never negligible, and quantizing the reactant states
did not produce results appreciably different from the
original continuum calculation. In the current work, the
quantization makes a very noticeable difference in the
very low-temperature region (below 70 K).

B. Potential-energy function

9989

is estimated by the EAM formalism>26 as

y=3 F,-(ﬁi)+% 3 6, (R | (19)

i j#i
where the sums are over all atoms, and R i is the internu-
clear distance between atoms i and j. Each term in the
summation over i is a sum of two terms. The first term,
F(p;), called the embedding energy, is the energy to
embed atom i into a surrounding electron density, p;,
where

pi= 2 pj(R;) (20)
j#Ei
is the sum of the electron densities of all the other atoms
j at the location of atom i. The individual electron-
density contributions of each Ni atom are taken from sin-
gle determinant Hartree-Fock wave functions as

P;I(Rq):NsPs(Rq)_i_(N _Ns )pd(RU) (j =Ni atom) ,

2n

where N is the number of valence shell electrons (10 for
Ni) and N; is the effective number of s electrons (2 for
these calculations), and p, and p, are the spherically
averaged s- and d-like atomic densities described by Daw
and Baskes.® The contribution from the H atom is taken
as the electron density of the 1s shell,

__exp(—2R;;/ay)

PRE (j =H atom) , (22)
T ao

where a is the bohr radius. The embedding functions
for hydrogen and nickel have the functional forms given
in previous work:?’

F = - (23)
For a system with only one nonmetal atom, as in the n(p)=anp exp(—Byp)
current work, the total potential energy of the system, V, and
|
Ap exp(—ap)+ Bp’exp(—Bp)+ Cp exp( —vp), 0=p=<p.—A
FNi(P)= As(p—pc )5+BS(P_PL‘ )4Cs(p_pc )3+Ds? Pc —A <p Spc (24)

Dy, p.<p,

where the coefficients are determined semiempirically.

The second term in Eq. (19) is a repulsive pair potential, ¢,;, and is defined as a Coulomb interaction,

>
R;;

¢i;(R;;)=

(25)

where C is a constant, and Z (Ry;) is the effective charge for atom i or j and has the functional form taken from Foiles,

Baskes, and Daw,?®

Z(R)=Zy(1+bR )exp(—aR) ,

(26)

where Z, a, b, and c are determined semiempirically. To establish a cutoff for the electron-density contributions and
the pair potential, pj(R;;) in Egs. (21) and (22) and Z(R;;) in Eq. (26) are multiplied by a smoothing function, s (R),

J
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which has the form defined in previous work:?

1, R<R,
- |RZRAD 1 2R —2R,—A
S = —A 2’”.81[1 o A

0, R,+A<R,

where R, and A are chosen to be large enough to yield a
smooth potential cutoff.

There have been several parametrizations of EAM for
H/Ni to reproduce various experimental quantities.
Originally, Daw and Baskes® presented a parametrization
(we will call this EAM1) for hydrogen dissolution in bulk
nickel, which was fit to bulk parameters such as the elas-
tic constants (C,;, C;,, and C,,), the monovacancy for-
mation energy (Efy), and the sublimation energy (Eg).
Another parametrization, called EAM?2 in the present pa-
per, was presented by Rice et al.*® Their goal was to im-
prove the parameters so that hydrogen on the surface of
nickel is also treated accurately. The third and fourth
EAM parameter sets were proposed in conjunction with
embedded diatomics in molecules (EDIM), a method
developed to treat multiple adatoms on a Ni surface.
EAM3, presented by Truong, Truhlar, and Garrett?’
changed the embedding function for nickel from a spline
fit to an analytical function, changed the form of the hy-
drogen embedding function to eliminate unphysical re-
sults in the high-density region, and enabled the potential
routine to handle steps along the metal surface. EAM4
(Ref. 29) involved minor modifications to the smoothing
function [yielding the current smoothing function, Eq.
(27)]. It also involved some adjustments to allow calcula-
tions for three adatoms on a Ni surface. The EAM4
function gives a reasonable potential-energy surface for
many aspects of the H adatom dynamics, but it does not
predict accurate values for EL, Eg, and R, [where the
latter is the equilibrium bulk lattice constant, which is
3.52 A (Ref. 31)]. Since we intend to study subsurface dy-
namics in a later work, it is desirable that the potential
function accurately predict these bulk quantities as well
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, R.<R <R,+A Q7

[

as the surface quantities (hydrogen vibrational frequen-
cies, hydrogen-nickel equilibrium distances, and surface
binding energies).

In order to improve this situation, we made further
changes to the potential parameters to obtain a potential
function that we call EAMS. We started with the EAM4
Ni embedding function parameters of Eq. (24) and fine
tuned them by fitting the embedding function as closely
as possible to a set of embedding energies calculated by
the equation of state of nickel,? over a range of densities,
p, as was done in the spline fit of Rice et al. 30 1t is not
necessary, however, to attempt a global fit of Eq. (24) to
these energies over the entire range of densities because
there are some regions of the density range which are
more important for the process at hand than others. In
particular, the equilibrium densities felt by the lattice
atoms (both surface and bulk atoms) at the stationary
points of the reaction path (i.e., the minimum-energy sites
and saddle points) are very important because the result-
ing embedding energies calculated at these densities
greatly affect the energetics of the stationary points.
Similarly, the densities felt by the lattice atoms over the
course of the reaction path are very important in order to
accurately reflect the energies of the reaction path and
produce a realistic MEP. As a result, we paid particular
attention to the equilibrium atomic densities, p, of the lat-
tice atoms at all the stationary points of interest for the
present study.

The first row of Table I lists p, defined in Eq. (20), for
bulk Ni atoms and (100) surface atoms when no adatom
is present. For the surface Ni atom calculations, 36
atoms in the vicinity of the surface (chosen as those sur-
rounding two adjacent first-subsurface-plane octahedral

TABLE 1. Atomic densities p; (A7%) at the positions of surface and bulk Ni atoms for the case of a
nonrigid system. NC indicates that the adsorbed atom does not change p; for the Ni atom in question.
Numbers in parentheses are the number of equivalent atoms to which the altered p; applies.

Pi
Situation Footnote (100) surface atom Bulk atom
Clean surface a 0.0445 0.0670
H atom at H(a) b 0.0459 (4) NC
H atom at fa b 0.0500 (2) NC
H atom at O, c NC 0.0666-0.0673 (32)
H atom at OT d NC 0.0649-0.0691 (19)

?H atom infinitely separated from the surface.
*H(a) and }a are defined in Fig. 1.

°H atom adsorbed in an octahedral vacancy in the bulk.
9H atom adsorbed at a saddle point between octahedral and tetrahedral vacancies in the bulk.
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TABLE II. Parameter set for EAMS.

N,=2
ay==70.5461 eV A’

A =—126.5009308 eVA
C=—209.7682800 eV &’
=-1.657208422X 10 B, =

Parameters for py; N=10
Parameters for Fy

Parameters for Fy;

eVA' eVA"
Parameter for ¢ C,=14.3888 eVA
Parameters for Zy Z,=0.1959 a=1.795
Parameters for Zy; Z,=10.0 a=1.8633
Parameters for s R,.=5.0 A A=50 A

Bu=6.9507 A’
@=0.3362141252_ A
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vacancies as described in the following section) were al-
lowed to relax. For the bulk atom calculations, 52 atoms
(chosen as those surrounding two adjacent bulk octahe-
dral vacancies) were allowed to move. When a H atom
comes in contact with the lattice, it slightly changes p for
a small number of Ni atoms (i.e., a subset of those atoms
allowed to relax) that are in close proximity it. The sub-
sequent rows of Table I list g for the Ni atoms that are
most affected when a H atom is adsorbed or absorbed at
various sites. As a result, given the information in Table

1, the only data used for ﬁtting Eq. (19) were the selected
values of the embedding energles of Ref. 32 in the density
ranges from 0.0445 to 0.0500 A3 and from 0.0649 to
0.0691 A~ These density ranges sufficiently cover the
densities at each of the Ni lattice atom sites over the
course of the various processes that are to be studied with
EAMS. We then carried out the parametrization with
the goal to make R, accurate to within 0.01 A (for
reasons made clear in Ref. 16, R is very important for

0\:|1v|1[11|1vvv|r

-4 -

Fy() (eV)

16 2

e e e B B B R
0] 0.04 0.08 0.12 0.16 0.2

p (A

FIG. 3. Ni embedding function vs density. The solid line
corresponds to the EAMS parameter set using Eq. (24). The
dotted line corresponds to the set of values determined from the
-equation of state of Ni as in Rose et al. (Ref. 32).

tunneling calculations) and to improve the accuracy of
E¥, and E;.

The final EAMS Ni embedding function is plotted with
the energies of Ref. 32 in Fig. 3. All other functions in
the parameter set are identical to those in EAM4.%° The
EAMS parameter set is given in Table II, and Table III
lists the bulk quantities calculated using EAMS5 and com-
pares them to experiment"3*73% and to calculations us-
ing EAM4.% Some other EAM formulations?® use the
equation of state of nickel®? directly to calculate the
embedding function. In the current work, however, the
EAM potential is being used to make dynamics calcula-
tions. For computational efficiency and stability in such
applications, we want the embedding energy to be
represented as an analytical function of the density with
continuous first and second derivatives. This is especially
important for calculating the minimum-energy path and
the frequencies and ¥V curves along it. We believe that
EAMS is adequate for the studies presented here and is a
good starting point for later studies including subsurface
H below the (100) surface because it yields an accurate
value for the experimental lattice constant and because
the Ni embedding energy is an analytical function.

C. Details of the lattice

The nickel system is modeled by the embedded-cluster
method. !>16 The lattice is taken large enough to include

TABLE III. EAMS calculated values for equilibrium bulk
lattice constant (A), monovacancy formation energy (eV), sub-
limation energy (eV), and elastic constants (10'2 dyn/cm?) com-
pared to EAM4 calculations and to experiment.

Quantity Experiment EAM4 EAMS
R, 3.52% 3.54 3.5211
Ef, 1.39-1.70° 1.78 1.66
E; 4.45° 4.22 4.43
Cy, 2.465¢ 1.914 1.852
Chn 1.473¢ 1.244 1.238
Cu 1.247¢ 1.294 1.255

*Reference 31.
YReferences 34—37.
‘Reference 38.
9Reference 33.
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all the variable interactions for all atoms that may be
made movable (i.e., as far as the potential cutoff in all
directions from all potential movable atoms). The lattice
for these studies on the (100) surface consists of 666
atoms: 100, 98, 100, 98, 78, 78, 58, 38, and 18 atoms in
the first through ninth planes descending down perpen-
dicular to the (100) surface. The lattice is constructed
with the energetically minimized lattice constant, 3.5211
A (see Table III).

Calculations are made for a system in which several
atoms near the site of the diffusion process are allowed to
move. As in previous work, 16 the atoms allowed to move
are chosen as those which fall into the confines of dual
spheres of equal radii, which are centered near the reac-
tant and product sites. We eventually plan to combine
the current work on surface diffusion with a larger pro-
ject to involve hydrogen atom infusion beneath a surface
and subsurface diffusion, so the centers of the spheres are
chosen in such a way as to accommodate all processes to
be eventually studied so that all processes can be related
and treated in identical environments. Thus, for the (100)
surface, the spheres are centered at two adjacent octahe-
dral vacancies immediately beneath the two adjacent sur-
face atoms, which are nearest neighbors to the ia site in
Fig. 1, and the embedded cluster of moving atoms con-
sists of 36 atoms: 12, 16, and 8 atoms in the first through
third planes. Consistent with the discussion below Eq.
(3), we will, throughout this paper, use the variable N, to
define the number of moving atoms in the embedded clus-
ter. Since, as will be discussed in the following section,
lattice motion had almost negligible effects on the ener-

getics and dynamics of these surface processes [we per-
formed calculations on a rigid (N, =0) system, and the
results were qualitatively similar to those of the moving
(N, =36) system], we restrict our presentation of results
to the moving (N, =36) system unless otherwise noted.

III. RESULTS AND DISCUSSION
A. Energetics and vibrational frequencies

We present calculated binding energies, hydrogen-
nickel equilibrium interatomic distances, hydrogen equi-
librium distances from the surface plane, and hydrogen
vibrational frequencies for an adatom adsorbed at each of
the sites on the (100) surface and compare them to experi-
mental and other calculated values**!' 75! in Table IV. A
summary of the thermodynamics involved in determining
the experimental equilibrium binding energies is present-
ed in Appendix A. The H(a) binding energies, frequen-
cies, hydrogen equilibrium distances above the surface,
and H-Ni equilibrium distances are in very good agree-
ment with experiment. Activation energies can be calcu-
lated directly from rate constant data, and this will be
done in the following section and shown to lead to very
good agreement with experiment. However, our calcula-
tions indicate that the classical barrier height (4.00
kcal/mol) is very close to the high-temperature activation
energy (4.12 kcal/mol). Therefore, we are justified in
making an additional comparison, namely, using experi-
mental activation energies to estimate experimental bind-
ing energies for the ja site by approximately equating the

TABLE IV. Binding energies (kcal/mol), hydrogen-nickel interatomic distance (A), hydrogen height above the surface plane (A),
and hydrogen vibrational frequencies (cm™') calculated in this study for a moving (N, =36) Ni(100) surface compared to experimen-
tal and calculated values from the literature. For results from the literature, experimental values are listed first, followed by calculat-

ed values in parentheses.

Binding energy Ry Ry gurt Frequencies
Site EAMS Lit. EAMS EAMS Lit. EAMS5 Lit.
H(a) 64.76 64.410.6° 1.83 1.82-1.84° 0.50 0.5+0.1° 753 589¢
64.6+0.9¢ 1.9-2.0¢ 0.9-1.0¢ 5972
(62)f (1.78)8 0.3)8 621"
(62)i (1.8)! (0.32) (532)k
(69)8 (1.91) (0.8)! (588)8
(79) (1.92)i (613)°
(637)!
(686)"
(726)
524 387°
(645)8
ta 60.76 (63)8 1.56 0.93 1270 (1428)8
(77y 449
292i

2Christmann, Schober, Ertl, and Neumann, Ref. 42.
bStensgaard and Jokobsen (D/Ni), Ref.48.
‘Mértensson, Nyberg, and Andersson, Ref. 51.
dLapujoulade and Neil, Ref. 41.

‘Rieder and Wilsch, Ref. 46.

Nordlander, Holloway, and Norskov, Ref. 47.

eUpton and Goddard, Ref. 44.

h Andersson, Ref. 43.

iNorskov, Ref. 45.

'Umrigar and Wilkins, Ref. 49.

kK arlsson, Martensson, Andersson, and Nordlander, Ref. 50.
'Mattsson, Engberg, and Wahnstrém, Ref. 4.
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activation energies to classical barrier heights. (Usually,
this is not an accurate equation due to tunneling and
zero-point effects, !° of which the former may be the more
serious limitation, but if we use high-temperature rate
data, the tunneling effects should be negligible enough for
us to make a reasonable estimation for the adsorption en-
ergy for a hydrogen atom at the ja site.) The highest-
temperature measurements of the diffusion coefficients
are those of George et al.>? for the temperature range
223-283 K; they analyzed their data to obtain an activa-
tion energy of 4+0.5 kcal/mol. Taking this highest-
temperature activation energy as the best experimental
estimate of the classical barrier height and using it in
conjunction with the experimental equilibrium binding
energies available for the H(a) site (Table 1V) yields an
adsorption energy of a hydrogen atom at the ia site of
60.6+1.4 kcal/mol, with which the current calculations
(60.8) are in very good agreement.

We note at this point that although the EAMS5 parame-
trization seems to yield a very good potential-energy sur-
face for the Ni(100) surface, it does not accurately repro-
duce several experimental quantities for the Ni(111) sur-
face (especially activation energies and frequencies). Fur-
ther, it still has some of the bulk property flaws that were
present in EAM4. Specifically, the bulk modulus predict-
ed by the elastic constants is still low compared to experi-
ment, and the Cauchy discrepancy (C;,—Cy,) is still
negative, indicating that the curvature of the embedding
function is negative at the bulk equilibrium density. As
explained above, the present fitting procedure is especial-
ly designed to yield a useful representation of the poten-
tial and its first and second derivatives along the
minimum-energy path for surface diffusion on the (100)
crystal face and along the reaction path for the
octahedral-to-tetrahedral site-to-site bulk diffusion, and
we emphasize that it is not recommended for the (111)
surface or for calculations of the equation of state or lat-
tice modes of bulk nickel. A more globally accurate
EAM parametrization wil be presented in later work and
called EAM6.

B. Diffusion coefficients and transition temperature

The rate constants for the H diffusion process on
Ni(100) at several different levels of theory were calculat-
ed at temperatures ranging from 40 to 1000 K using the
POLYRATE (Ref. 12) code. Table V lists the diffusion
coefficients for the CVT level (with no tunneling correc-
tions) and CVT/SCTQ level as described in the previous
section.

First, we compare the current results to previous ex-
perimental and theoretical results at temperatures in the
range where tunneling does not appear to have a
significant effect. Figure 4 is an Arrhenius plot of the
diffusion coefficients in the range 200-400 K. The
current results are in excellent agreement with the experi-
mental results of George, DeSantolo, and Hall,*? and
Mullins et al.,>® who measured the diffusion rate with
laser-induced thermal desorption at several temperatures
between 211 and 283 K at coverages ranging from
6=0.12 to 1.00 (the current calculations all correspond
to the single-adatom limit, i.e., 8=0). The results also
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TABLE V. CVT (no tunneling), and CVT/SCTQ diffusion
coefficients (cm?/s) for H on a moving (N, =36) Ni(100) surface
as functions of temperature. Powers of 10 are in parentheses.

T (K) CVT CVT/SCTQ
40 9.42(—26) 5.66(—15)
45 2.77(—23) 5.87(—15)
50 2.64(—21) 6.37(—15)
55 1.11(—19) 7.52(—15)
60 2.53(—18) 1.01(—14)
70 3.47(—16) 3.18(—14)
80 1.42(—14) 2.08(—13)

100 2.65(—12) 1.08(—11)
120 8.91(—10) 2.33(—10)
200 1.10(—=7) 1.67(—17)
250 9.55(—17) 1.33(—6)
300 4.05(—6) 5.18(—6)
400 2.45(—5) 2.91(—-5)
500 7.18(—5) 8.17(—5)
600 1.46(—4) 1.63(—4)
800 3.57(—4) 3.83(—4)
6.15(—4) 6.51(—4)

1000

agree excellently with the theoretical results of Mattsson,
Engberg, and Wahnstrom,* who studied the process in
the single-adatom limit with path-integral techniques
with an EAM potential function and used numerical
Monte Carlo techniques for tunneling corrections. The
fact that the present semiclassical reaction-path calcula-
tions (which are a form of path-integral approximation)
agree well with the quantum Monte Carlo path-integral
calculations is very encouraging for future applications of
both methods.

The agreement with previous work at high tempera-
ture is very encouraging, but we will focus discussion on
the low-temperature results for which tunneling is very
important. We notice immediately that at very low tem-
peratures (below 70 K), the diffusion coefficient is approx-
imately independent of temperature, consistent with re-
cent experimental and theoretical findings.!™* We define
a transition temperature, T, as the temperature below

B e e
- Theory Experiment ]
ol —-e-CVT/SCTQ O Georgeetal. -
T o Mattssonetal. o Mullinsetal. -
s
E 5[
Q L
2 [
g 6
.7}
- ) T S S N R B U ST
25 3 3.5 4 4.5 5

1000/T

FIG. 4. Arrhenius plot of CVT/SCTQ diffusion coefficients
calculated over the range 200—-400 K and compared to previous
experimental (Refs. 52 and 53) and theoretical (Ref. 4) results.
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which this approximate temperature-independence sets
in.

To obtain a precise analytical definition of the transi-
tion temperature, it is helpful to make two simplifying
approximations. To motivate these, we consider Fig. 5,
which is an Arrhenius plot of three sets of CVT/SCTQ
diffusion coefficients, each at a different level of approxi-
mation. The first set, represented by circles, are the
diffusion coefficients on a Ni(100) surface with N, =36
calculated using the WKB approximations to the energy
levels, EX, i.e., the full high-level results given in Table V.
The second set, represented by squares, are the diffusion
coefficients on a Ni(100) surface with N, =36 calculated
using the harmonic approximation to the energy eigen-
states [Egs. (12) and (13)]. We note, very importantly,
that using the harmonic energy levels is not a trivial ap-
proximation. Table VI gives the energy well eigenstates
calculated by both the WKB and harmonic approxima-
tions. An extremely important difference between the
two sets of energy levels is that the energy separation be-
tween E& and E ¥ is much larger in the harmonic approx-
imation than in the WKB approximation. This has the
effect, which will be demonstrated shortly but can be seen
in Fig. 5, of causing the Arrhenius plot to level off more
dramatically below the transition temperature. However,
the harmonic results are qualitatively similar to the first
set of results in terms of the transition temperature, i.e.,
both sets of data appear to begin to level off at roughly

86 T
r +WKB,Np=36 .
I ~=-HO, N =36 ]
-9 -¢-HO, N =0 -
p -
E L
g |
=)
0‘7_ L
L L
2k
_15_||..!.|..l..xulnnnn
5 10 15 20 25

1000/ T

FIG. 5. Comparison of diffusion coefficients calculated at
three levels of approximation. The circles are the high-level re-
sults given in Table V. The squares are values determined by
making a harmonic approximation to the reaction-path mode.
The diamonds are values determined by making a harmonic ap-
proximation to the reaction-path mode and using a rigid
(N, =0) Ni surface.
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TABLE VI. Energy levels, E® (kcal/mol), with respect to
Vmep(s =s¥®), calculated using the WKB and harmonic approx-
imations to the reaction-path mode. Only levels below
VAG=137.98 kcal/mol are quantized.

v EXWKB) E X(harmonic)
0 34.00 34.10

1 34.90 35.59

2 35.84 37.09

3 36.68

4 37.40

5 37.94

the same temperature (slightly below 70 K). Thus, one
simplifying approximation we will make in the following
analysis of the transition temperature is the harmonic ap-
proximation. The reason for making this simplification is
that the harmonic approximation gives analytical expres-
sions for the energy eigenstates, which will allow us to
present an analytical expression for the transition tem-
perature. The third set of results in Fig. 5, represented
by diamonds, are the diffusion coefficients on a rigid
Ni(100) surface (N,=0) again using the harmonic ap-
proximations to the energy eigenstates. We note that
these results are nearly quantitatively identical to the
second set of results, indicating that lattice motion has
very little effect on the diffusion coefficients. Thus our
analytic analysis of the transition temperature will as-
sume a rigid latticee. The reason for making this
simplification is that on a rigid surface, the double
minimum seen in Fig. 2 does not occur. Since N,=0,
there are only two vibrational normal modes plus the
mode corresponding to the reaction coordinate, all of
which are high-frequency modes due to hydrogenic
motion. Therefore, since there are no low-frequency
modes corresponding to lattice motion, the mode corre-
sponding to the reaction coordinate is the same mode
over the entire course of the reaction resulting in a mono-
tonic V¢ from s=0 to s®. As a result, 7% in Egs. (11) and
(12) equals %, so the harmonic effective potential
reduces to

Vea(s)=VE(s =s®)+1f3(s —s®)?, (28)

which much more accurately represents the entire VS

curve away from s =s$V7, and the energy eigenstates are

ER=VE(s=sR)+(v+L)hcT¥ . (29)

Making the simplifications described above, we can un-
derstand the origin of the transition temperature from
Egs. (2) and (6). At very low temperatures, only the
ground state of the well is significantly populated, so only
the ER term in Eq. (6) remains. Integrating the denomi-
nator of Eq. (6) and keeping only E {,‘ terms yields the fol-
lowing harmonic approximation to the transmission
coefficient:
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_ER
hev RPC(ER)exp T
KCVT/QG(T)= — B (30)
—VEsSVT(T)]
kg T exp —]‘(BT——

Recall that the CVT/SCTQ rate constant is a product of
the semiclassical CVT rate constant and the ground-state
transmission coefficient. So upon combining Egs. (30)
and (2) and rearranging, the CVT/SCTQ rate constant at
low temperature becomes, in the harmonic approxima-
tion,

k CVT/SCTQ( T]ow )
CVT,
)
=ocﬁ§PG(E§)QTIOL
Q (Tlow)
Xexp VaG(SSVT(Tlow))_Eg_VI(V:/IYE'II;(TIOW) ]
kBTlow ’

(31)

where T, denotes a low temperature. We use an in-
dependent normal-mode approximation, and the harmon-
ic partition functions can be represented as a product
over the individual mode partition functions:

1 hcv,,
s PIT T
()= 11 ) (32)
m=1 1— _ hCUm
exp T

where m runs over all modes (M=3) for Q®(T) and over
all modes orthogonal to the reaction coordinate (M=2)
for QVI(T). For QX(T), the frequencies, v,,, are just
the frequencies of the reactant vibrations, 7 X, so the ex-
ponent numerator of Eq. (32) can be expressed in terms of
the total zero-point energy of the reactants, which is EX.
Therefore, Q ®(T) becomes

oR(T) 0 N {1 he
=exp |— —exp
ksT | 11, kyT

(33)

For Q€VI(T), the freqﬂuencws are those orthogonal to the
reaction path at s$V7, ie., 75T, Rearranging Eq. (3),
eS (s (TN=VEGST(T) - VGE(T), and QVI(T)

becomes, from Eq. (32),
V(s () — Vigep(T)
kgT

Q CVT( T)= exp

hc—CVT

exp T—
B

] . (34)

At very low temperatures, the products in Egs. (33) and
(34) approach unity, so the ratio of partition functions in
Eq. (31) can be approximated at low temperature as

xﬁ{l_
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QCVT( Tlow )
QR(Tyow)
Vs $ N (Tiow )= Vigep(Tiow) — E§
~exp kB Tlow
35)

Substituting Eq. (35) into Eq. (31), we arrive at the final
expression for the low-temperature limit (i.e., the point at
which only the ground state, E¥, is populated) of the
CVT/SCTQ rate constant in the harmonic approxima-
tion:

kCVI/SCIQT, =~ocTRPYER), (36)

and from Eq. (1),

A RpSEY) 37
2d ——o0cU;

Equation (37) is temperature independent, giving the
physical explanation for the low-temperature results in
Fig. 5, i.e., the low-temperature limit is reached when
only the ground state is populated. Recall from Table VI
that the energy separation between the ground and first-
excited states is larger in the harmonic approximation
than in the WKB approximation. As a result, the ground
state becomes dominant in the harmonic approximation
at a higher temperature than in the WKB approximation,
which causes the harmonic Arrhenius plot to level off fas-
ter than the WKB Arrhenius plot as seen in Fig. 5. We
stress again, however, that since Eq. (37) was derived har-
monically, Ef in that equation is the harmonic ground-
state energy. Therefore, it does not give a particularly
accurate estimation of the low-temperature limit to the
diffusion coefficient calculated with the WKB energy lev-
els. Extending the above treatment to the WKB method
is difficult because there are no generic analytical expres-
sions for the energy eigenstates in this method. Using
Eqgs. (8) and (9) for the energy eigenstates and energy sep-
arations yields the following approximate expression for
the low-temperature limit in the WKB approximation:

D(Ty,)~

dE{f,WKB
dv

kz UPG(E§WKB)
=0
D(Tioy, WKB)= -~ -

h b
(38)

where (dEXy 5 /dv)|,— is calculated in Eq. (9), and
E8wkp is the ground-state WKB energy level of the
reaction-path mode. Usmg the calculated values for
(dEvWKB/dV)|v =0 EOWKB’ and P (EOWKB) of 0.88
kcal/mol, 34.00 kcal/mol, and 9.68 X 10~ '3, respectively,
yields D (T, )=5.54X 10‘15 as the low-temperature
limit to the diffusion coefficient in the WKB approxima-
tion, consistent with the results in Table V and Fig. 5, in-
dicating that we have very nearly reached the low-
temperature limit to the diffusion coefficient.

Even though Eq. (37) is derived harmonically, and is
therefore not quantitatively accurate for the WKB low-
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temperature limit, it will still be useful in deriving an
analytical expression for the transition temperature, be-
cause, as mentioned, the harmonic and WKB results be-
gin to level off at roughly the same temperature. There-
fore, in order to obtain an analytical expression for the
transition temperature in terms of a concise number of
well-defined quantities, we will continue to use Eq. (37)
for the derivation. To get a quantitative grasp on the
transition temperature, we examine what the low-
temperature limit of the rate constant would look like if
we included excited-state terms. Following the same
steps as above with the inclusion of excited-state terms
Ef and E¥ in Eq. (6), the low-temperature diffusion
coefficient becomes, in the harmonic approximation,

2 2 —vheo §
D(Ty,)~ 3 ;‘—dacﬁ§PG(E§)exp 2
v=0

kB Tlow
(39)

For Eq. (39) to lose its temperature dependence and
reduce to Eq. (37), the v=1 and 2 terms in the summa-
tion must be negligible compared to the v=0 term. Fig-
ure 6 is a plot of the individual terms of the summation in
Eq. (39), using the SCTQ calculated values for PS(ER),
along with the full summation and the full calculated
diffusion coefficient (Table V) in the range T =40-100-K.
In the region of the transition temperature, the v=2 term
makes such a small contribution to the sum that the sum-
mation can be represented by two terms, yielding

)\,2 — R G R G, R hC‘l_lgz
D(T,)~—=—oct¥|PYES)+PCER)exp
low ™™ 74 3 0 ! kT,
(40)

Two factors cause the low-temperature results calculat-
ed by Eq. (39) to deviate slightly from the full calculated
values at the higher temperatures of this range. First, the
approximation made in Eq. (35) begins to fail because the
denominators of the partition functions begin to deviate
from unity. Second, the continuum of states above Vf‘c‘
in the numerator of Eq. (6) begins to become more popu-
lated, thus making the contribution of these states to the
diffusion coefficient non-negligible. For the low-
temperature region, however, Eq. (39) is an excellent ap-
proximation, and for purposes of discussion of the transi-
tion temperature region, Eq. (40) represents the diffusion
coefficient very accurately.

The precise identification of the transition temperature
is a matter of definition. Clearly, from Egs. (39) and (40)
and Fig. 6, the diffusion coefficient does not become truly
temperature independent until 7=0 K, because of all
nonzero temperatures, excited states still make some con-
tribution (albeit vanishingly small at very low T) to the
diffusion coefficient. Therefore, to define the transition
temperature as the point at which the diffusion coefficient
is fully temperature independent is pointless. Instead, we
want to define the transition temperature in such a way
that it can relate to visual observables of the Arrhenius
plot. In Fig. 6, the Arrhenius plot is approximately
linear above 85 K and approximately horizontal below 55
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FIG. 6. Individual terms in the summation for the low-
temperature harmonic approximation to the diffusion
coefficient, Eq. (39), using the true adiabatic potential-energy
curve to calculate transmission probabilities. The heavy solid
line is the full summation, and white circles are the full
CVT/SCTQ diffusion coefficient calculated for the current work
using the ground-state transmission coefficient in Eq. (6) and not
making the approximation of Eq. (35). The other three curves
are terms in Eq. (39).

K, so the transition temperature should be defined some-
where within this range. A suitable quantitative
definition for the transition temperature is the tempera-
ture at which the Arrhenius plot reaches maximum cur-
vature, which occurs when the third derivative of the log-
arithm of the diffusion coefficient with respect to 1/T is
zero. Solving for T in the expression

*{logo[D(T
d { ogdl?g/;);ow)]} =0 , 1)
with D(T),,, ) from Eq. (40) yields
ro—_ —hews 42)
i . PSER) | -
B PYER)

At this point, Eq. (42) contains transmission probabili-
ties, limiting its usefulness for experimentalists, because
these are not measurable quantities. To develop an
analytical expression for the transition temperature in
terms of a small number of parameters of the system, we
make a further simplification that the V'S curve, through
which the particle is tunneling, can be represented by a
parabola. We then follow the treatment of a previous
study>* to get approximations for these transmission
proba;ls)ilities. For a parabola, PY(E) can be approximat-
ed as

1

G =
PHE) 1+expla(V,—E)] ’

(43)
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where V) is the adiabatic barrier height, E is the energy
at which tunneling occurs with respect to the adiabatic
zero, and
o= 27
he|v
where |7 | is the magnitude of the imaginary frequency

at the top of the barrier in wave numbers. Substituting
Eq. (43) into Eq. (42) yields, after some algebra,

_ hel|v ¥
o 2mkg

(44)

(45)

Equation (45) is a very important result because it de-
pends only upon the magnitude of the imaginary frequen-
cy at the top of the barrier, |7?|.

This result is not immediately obvious. One’s instinct
is that the transition temperature would be directly pro-
portional to the frequency of the reaction path, 7 X, be-
cause this frequency is proportional to the separation of
the energy levels [see Eq. (13)]. As T X decreases, the
energy-level separation decreases, and the point at which
temperature independence begins to set in (i.e., the point
at which only the ground state is significantly populated),
would have to decrease to a lower temperature. This is,
in fact, true. However, recall that Eq. (45) is defined as
the point of maximum curvature of the Arrhenius plot.
At very low values of 7 ¥, the temperature at which tem-
perature independence fully sets in indeed becomes very
low because the shift in the slope of the Arrhenius plot
becomes very spread out. However, even though this
spreading out of the transition causes the actual point of
maximum curvature (the transition temperature) to be-
come less visibly defined, it remains relatively constant.

To better understand, then, why |7¥| should have an
effect on the transition temperature, it is helpful to evalu-
ate the transition temperature in another way. For an ar-
bitrary value of U §, the summation in Eq. (39) is over all
states. Making the parabolic approximation for PY(E),
Eq. (39) becomes, after some algebra,

AL

D(Tlow)=§acv§exp(—aEa)
x 3 lexp [heo®lam—1— ||, e
v=0 ’ kBTlow

Equation (46) can be represented by a converging
geometric series if a <(1/kg Ty, ), but the series diverges
if a>(1/kgT),, ). Now, to clarify, consider the lower
limit of TX, in which the energy spacings of the bound
states approach zero, yielding an infinite number of
bound states. If the parabolic approximation, Eq. (43), for
PY(E) is made, it can be shown (see Appendix B) that the
ratio of contributions to the low-temperature diffusion
coefficient, Eq. (39), of any two successive energy eigen-
states is a constant. Therefore, when this ratio equals 1,
all contributions are equal. This can be seen for the
current system in Fig. 7, which shows the individual con-
tributions to the low-temperature diffusion coefficient us-
ing the parabolic approximation for the P(ER) values.
[Note that in Fig. 6, which uses the exact SCTQ calculat-
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FIG. 7. Individual terms in the summation for the low-
temperature harmonic approximation to the diffusion
coefficient, Eq. (39), using the parabolic approximation to the
adiabatic potential-energy curve to calculate transmission prob-
abilities.

ed PS(EX) values, the contributions do not exactly inter-
sect. This is because the true V7 is not a true parabola.
At this point it becomes important to note that the indi-
vidual contributions differ by about an order of magni-
tude from Figs. 6 to 7. This is because the approximation
in Eq. (43) is less accurate for processes, such as the
current one, with low barrier heights. However, the er-
rors are in the same direction and of about the same size
for PS(E®) and PS(E®), and they cancel out when used
in Eq. (45), making the latter equation accurate.] Below
the temperature at which all state contributions are
equal, the sum of the individual state contributions (i.e.,
the diffusion coefficient) converges. Above this tempera-
ture, the sum diverges. Therefore, when a=(1/kz T\, ),
the individual contributions are equal. Solving for T in
this expression yields Eq. (45). This demonstrates that
the point of maximum curvature on the Arrhenius plot
corresponds to the temperature at which all individual
state contributions (in the parabolic approximation) are
equal. The magnitude of the frequency at the saddle
point, |7 ¥, is related to the width of the barrier. There-
fore, when this frequency increases, the width of the bar-
rier decreases, making it easier for a particle to tunnel
through the barrier at low energy, thus making its contri-
bution to the diffusion coefficient larger. As a result, the
temperature at which the contributions are equal be-
comes higher, thus raising the transition temperature.

To determine |7 1| for this process, the V,,G curve from
s=—1.2tos=1.2 A (where sR~—1.5 A) was fit to a pa-
rabola,

VE(s)=Vo—tuQmelv|)2s?, (47)
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where again p is the scaling reduced mass of the system
(1 amu). Solving for the magnitude of the imaginary fre-
quency in Eq. (47) yields |57%| =288 cm™!. Using this
value in Eq. (45) gives a transition temperature of 66 K,
which agrees very well with the high-level results in Fig.
5. Alternatively, if we chose to use Vygp(s) to make this
calculation, the results would be similar. Computing the
second derivative of Vygp(s) at its maximum yields
|5¥=292 cm ™! (see imaginary frequency for the }a site
in Table IV), resulting in a nearly identical transition
temperature.

We remind the reader here that the derivation of Eq.
(45) involved several simplifications, which affected the
quantitative values of the diffusion coefficients. As a re-
sult, we do not recommend Eqgs. (37), (39), (40), or (46) as
extremely accurate approximations to the low-
temperature limit to the diffusion coefficient (although
they are reasonably accurate within one or two orders of
magnitude). Instead, we offer the values given in Table V
as our most accurate approximations to the diffusion
coefficients. They were calculated using the WKB ap-
proximation to the reaction-path mode, used a moving Ni
surface with N, =36, and used the true adiabatic
potential-energy curve to calculate transmission probabil-
ities. However, the three main simplifications used to
derive Eq. (45) (harmonic approximation to the reaction-
path mode, rigid surface, and parabolic approximation of
the V¢ for transmission probability calculations) do not
affect the qualitative nature of the transition to tempera-
ture independence as it has been defined in this paper.
Hence, Eq. (45) gives a very good approximation to the
transition temperature. As a further test, we also applied
this treatment to H diffusion on Cu(100) with
CVT/SCTQ tunneling calculations*® and found Eq. (45)
to produce accurate results for that system as well. [For
the approximate potential function used in the
H/Cu(100) studies, the transition temperature deter-
mined by Eq. (45) is 106 K, and this result is visually con-
sistent with an Arrhenius plot of the diffusion coefficients
from those studies.] We therefore conclude that this
equation is useful for correlating results on different sys-
tems.

It is also of interest to relate T, to the EAMS func-
tions and parameters. Since T, is a function of the imag-
inary frequency at the saddle point, we varied the param-
eters in the potential-energy functions and determined
which of the EAMS5 parameters most influence this fre-
quency. While no one parameter or combination of pa-
rameters is able to substantially and exclusively affect
|5 ¥, the pair potential parameters, particularly Z,, a,
and b, tend to affect it with the least damage to the other
energetics of the system. In particular, |T¥| increases
with decreasing a or increasing Z, or b. The embedding
energy parameters (ay and By ) tend to affect binding en-
ergies and equilibrium heights above the surface more
than |7?| and the other frequencies.

As a final note on the interpretation of the transition
temperature, previous work!~3 has suggested that this
temperature represents a transition from over-barrier ac-
tivated diffusion to tunneling diffusion. To better under-
stand the transition temperature and evaluate this inter-
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pretation, we define a quantity, F,, (T), as the fraction of
the process that occurs by a tunneling mechanism,

D,,(T)
D(T) °’

where D (T) is the full calculated diffusion coefficient, Eq.
(1), and D, (T) is the diffusion coefficient calculated us-
ing only the bound energy states below VAS. At these
energies the diffusion proceeds by a tunneling mecha-
nism, and in the energy continuum above VAC, it
proceeds by an activated over-barrier mechanism.
D, (T) is calculated by using only the summation in the
numerator of Eq. (6) for the ground-state transmission
coefficient. Figure 8 is a plot of F,,(T) over a tempera-
ture range from 40 to 200 K. At the transition tempera-
ture, 66 K, F, . (T) is about 96%, and tunneling still
dominates well above ‘this temperature. We conclude,
therefore, that this temperature does not represent a
dramatic shift from activated to tunneling diffusion. In-
stead, from the discussion below Eq. (46), it represents
the temperature at which all energy eigenstates (ground
and excited) of the reaction-path mode contribute to the

Fyo(T)= (48)

.diffusion coefficient about equally.

At this point it is useful to compare the calculated
low-temperature diffusion coefficients and transition tem-
peratures to previous work. Figure 9 is an Arrhenius
plot of the CVT/SCTQ diffusion coefficients along with
previous experimental and theoretical results that have
explored the low-temperature region. Lin and Gomer!
used the field-emission fluctuation technique®’ and Zhu
and co-workers>® used linear optical diffraction tech-
niques to examine this process at low temperatures. The
Mattsson, Engberg, and Wahnstrom results are from the
study* discussed above with regard to higher tempera-
tures in Fig. 4. The latter study also included the temper-
ature range down to 25 K, but to preserve the resolution
of the Arrhenius plot and enable adequate visual compar-
ison to all previous results, only results down to 40 K are
shown in Fig. 9. The values for the diffusion coefficients
plotted are from the 6=0.9 coverage experiments of Zhu
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FIG. 8. Percentage of diffusion process occurring by a tun-
neling mechanism, F,,,(T), over the range T =40-200 K.
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FIG. 9. Arrhenius plot of CVT/SCTQ diffusion coefficients
for 40-100 K compared to previous experimental and theoreti-
cal results. The locations of the transition temperatures deter-
mined in each study are compared in the label.

et al.> For the 6=0.7 coverage experiments of Lee
et al.,? a two-part linear plot is derived from the
diffusivities (Arrhenius preexponential factors) and ac-
tivation energies in two temperature ranges (120-160 K
and 160-200 K) reported in Ref. 3. For the Lin and Go-
mer experiments, the high-temperature region of the plot
is derived from the preexponential factors and activation
energies, and the low-temperature regions are estimated
from the fits for this data in Ref. 1. The calculations of
Mattson, Engberg, and Wahnstrdm* like ours, are for
0=0. It is possible that the comparison of our results to
previous experiments suffers from the fact that the exper-
iments are performed at nonzero coverages and our cal-
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culations are in the single-adatom limit. However, Lin
and Gomer! very thoroughly tested the coverage depen-
dence of this diffusion process, and they saw very
minimal variation of Arrhenius activation energies and
preexponential factors and transition temperature loca-
tions over a coverage range from 0 equals 0.25 to 6 equals
0.95. Lee et al.’ reported similar weak coverage depen-
dence of the diffusion coefficients for 6 from 0.3 to 0.8.
We conclude, then, that the extrapolation to 6=0 is
probably valid, at least for semiquantitative and qualita-
tive interpretation of the experiments.

The CVT/SCTQ diffusion coefficients are in reasonably
good agreement with the experimental quantities, but the
low-temperature results are somewhat difficult to com-
pare due to various locations of the transition tempera-
ture, i.e., since the experimental transition temperatures
are higher than our calculated value, the diffusion
coefficients tend to become independent of temperature at
higher temperatures than the present calculated values.
As a result, at very low temperatures, the diffusion
coefficients are in disagreement. We note here that al-
though the 144- and 160-K transition temperatures of
Zhu and co-workers?? are indeed transition temperatures
as they have been defined in this paper (i.e., they
represent the temperature at which curvature of the Ar-
rhenius plot is a maximum), the diffusion coefficients do
not become independent of temperature below these tem-
peratures. Instead, the activation energies (i.e., the slopes
of the Arrhenius plots) merely shift to lower (nonzero)
values at these temperatures. This indicates, from previ-
ous discussion, that excited states are still substantially
populated. [It would be interesting to see if at very low
temperatures, the linear optical diffraction experiments
would reveal a more complete temperature independence.
This has, in fact, been seen in very recent linear optical
diffraction studies by the same research group for H on
Ni(111).5®] In contract, the diffusion coefficients mea-
sured by Lin and Gomer! become temperature indepen-

TABLE VII. Activation energies (E,, kcal/mol) and preexponential factors (D, cm?/s) for surface
diffusion of H on Ni(100) for several temperature ranges compared to experimental values. Powers of

10 are in parentheses.

E, D,
T (K) CVT/SCTQ Experiment CVT/SCTQ Experiment
40-50 0.050 1.05 (—14)
55-65 0.54 1.06 (—12)
70-80 2.1 1.07 (—7)
85-95 3.2 1.02 (—4)
100-140 3.7 3.22 1.55 (—3) 8. (—6)°
120-170 3.9 1.2% 2.81 (—3) 1.5 (—9)°
156-161 4.0 3.5¢ 3.38 (—3) 8. (—6)°
170-200 4.0 3.5° 4.30 (—3) 1.1 (—6)®
211-263 4.1 3.540.3¢ 4,97 (—3) 2.5 (—3)
223-283 4.1 4+0.5¢ 5.35 (—3) 4.5 (—3)r
300-400 4.1 5.58 (—3)

2Lin and Gomer, Ref. 1.

®Lee, Zhu, Deng, and Linke, Ref. 3.

¢Zhu, Lee, Wong, and Linke, Ref. 2.
9Mullins, Roop, Costello, and White, Ref. 53.
°George, DeSantolo, and Hall, Ref. 52.
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dent below the transition temperature of 100 K, indicat-
ing that below this temperature, only the ground state is
significantly populated. This, in fact, is the physical
significance of our transition temperature of 67 K. As a
result, we are very encouraged by the location of our
transition temperature compared to the 100-K value re-
ported by Lin and Gomer, and we are not discouraged by
the higher transition temperatures of Zhu and co-
workers. The CVT/SCTQ transition temperature of
roughly 67 K is, to our knowledge, the only theoretical
approximation to predict a transition temperature so
close to the experimentally reported values. The results
of the path-integral studies by Mattsson, Engberg, and
Wahnstrom showed the transition temperature to occur
at about 40 K, somewhat low in comparison to experi-
ment, and this low temperature is not shown in Fig. 9.
The latter calculations made use of the original EAM
potential-energy function [i.e., EAM1 (Ref. 5)]. Al-
though the differences between EAM1 and EAMS are
certain to contribute slightly to the different transition
temperature observed by Mattsson et al., the energetics
predicted by EAM1 and EAMS5 for the process under
consideration here are very quantitatively similar and un-
likely to account for the nearly 30-K difference in the
temperature at which excited states begin to become
negligibly populated. The different dynamics methods
are far more likely to be the primary cause of these
conflicting results.

Finally, when the data in Figs. 4 and 9 are fit to the Ar-
rhenius equation,

D(T)=D,exp

RT | (49)

where R is the gas constant, the preexponential factors
(diffusivities) and activation energies can be extracted and
compared, and this is done in Table VII, where in each
row the CVT/SCTQ values are obtained by fitting Eq.
(49) to the calculated D (T) values at two temperatures.
The values are in very good agreement with those of Mul-
lins et al. and George et al., and they are in moderate
agreement with those of Lin and Gomer and Zhu and
co-workers. Again, however, direct comparisons of these
quantities at specific temperatures are limited because of
the various locations of the transition temperatures.

IV. SUMMARY

We have used an embedded atom method potential-
energy function and small reaction-path-curvature mul-
tidimensional tunneling calculations with quantized reac-
tant well states to calculate surface-diffusion coefficients
for H on Ni(100). We find the energetics and dynamics to
be for the most part in very good agreement with experi-
ment. We present an interpretation of the transition tem-
perature, and by using the harmonic-well and parabolic-
barrier models, we presented a concise analytical approx-
imation for this quantity that is dependent only upon the
magnitude of the imaginary frequency associated with
the top of the barrier.
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APPENDIX A

This appendix explains how we obtained “experimen-
tal” values for the equilibrium dissociation energies, D,,
from available experimental quantities. The process we
need to consider in order to calculate D, values for com-
parison to the binding energies of an H atom at a surface
minimume-energy site of fourfold symmetry [i.e., H(a)] in
Table III is

H-Ni(ad)—H(g)+Ni(s) . (I

The D, value is the classical energy change in this pro-
cess at 0 K. Thus, it excludes both zero point and
thermal energy, i.e.,

D,[H-Ni(ad)]=Dy[H-Ni(ad)]—AE,p(I) , (A1)

where D, is the thermodynamic dissociation energy at O
K, Ezp is zero-point energy, and AX(J) denotes the
change in variable X during process J.

Consider the generic process:

A—B . (Im

The enthalpy change for a process (II) at temperature T
and pressure P is

AHr(ID=AEp(ID+PAV(II)=AE;(I1)+RTAn,(II) ,
(A2)
where AE is the energy change for the process at tem-

perature T, AV is change in volume, An, is the change in
moles of gas, and R is the gas constant. Note that

AE,=D, . (A3)
Hence,
D,=AE(I)—AE,p(I) . (A4)

We will obtain AE(I) by combining thermodynamic data
for two other processes:

2H-Ni(ad)— H,(g)+2Ni(s) (IT1)
and

H,(g)—2H(g) . (Iv)
This yields

D,[H-Ni(ad)]=L1[AE(III)+AEy(IV)]— AE (1)

=1{AE,(II1)+Dy[H,(g)]} —AEp(I) .
(A5)

Since the experimentally available datum for process III
is AH at a finite temperature, we note that
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AH(II1)=AEy(II1)+ A(PV) #(III)
+Er[H,(g)]—Eo[Hy(g)]

—2A53Om(ITT) + Ag'gttice(I11) (A6)

where Ag?d°m and Ag'®i® are the vibrational energy
contributions of the adatom and lattice modes, respec-
tively. We assume that Ae2"i*(III) and the vibrational
contribution to Er—E, for H,(g) are negligible, that
A(PV)r is primarily due to Ang, and that rotation and
translation may be treated classically.®® Then Eq. (A6)

becomes
J

3
D,[H-Ni(ad)]=1AH(II1)+1D[Hy(g)]—IRT+N shc 3 +-= |,

10 001

AH(II)=AE(II1)+ IRT —2Ae3*°™(IIT) . (A7)

If we also assume that the phonon frequencies do not
change appreciably upon desorption (our calculations
with EAMS5 confirm that this is a good assumption to
within 0.1 kcal/mol), then Eq. (A5) becomes
D,[H-Ni(ad)]=1{AH(III)+Dy[H,(g)] — ZRT}
+ Ae3Fatom(TIT) + Agddatom() | (A8)

Letting the adatom frequencies in wave numbers be
denoted by U, with m=1, 2, 3 and making the harmonic
approximation® yields

U

<l
3

(A9)
m=1 | exp(N 4hcv,, /kpT)—1 2

where N , is Avagadro’s number. The H, dissociation energy at O K including zero-point energy, D,[H,(g)], is known
experimentally to be 103.25 kcal/mol,*® and v,,, m=1, 2,3 are 605116, 387, and 387 wave numbers. 1 Then, for each
experimental value of AH (III) we can calculate D,[H-Ni(ad)], and these values are listed in Table IV.

APPENDIX B

We need to show that by making the parabolic approximation for PY(E), Eq. (43), the ratio of the contributions of
any two successive harmonic energy eigenstates to the low-temperature diffusion coefficient in Eq. (39) is constant.
Therefore, we need to prove that the ratio of the contribution of state (n+2) to that of state (n+1) is equal to the ratio
of the contribution of state (n+ 1) to that of state n. From Eq. (39), we need to show

_ SR _ =R
PG(En+2)exp (n +2)hcv PG(E,,H)exp (n +1hcv

kgT kgT
R) R (B1)

G —(n +1)hcv G —nhcv

P®(E, ; )exp —————-——-——kBT PO(E, )exp ——————kBT

Cross multiplying yields

PCE, . )%E, ., )=P%E, ,)PYE,) . (B2)

Using the harmonic values, Eq. (13), for the energy separations, making the parabolic approximation, Eq. (35), and fur-
ther assuming that exp[a(Vy—E)]>>1for E=E,, E, ,,,and E, ,, yields

exp[2a(E, +hcvR—V,)]=exp[2a(E, +hcvR—V{)],

which proves Eq. (B1).
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