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The con6ned acoustic phonons in free-standing quantum wells are considered in detail. She
Hamiltonian describing interactions of the confined acoustic phonons with electrons in the approx-
imation of the deformation potential and the corresponding electron transition probability density
are derived. They are used to analyze the electron scattering times (inverse scattering rate, momen-
tum relaxation time, and the energy relaxation time) in the test-particle approximation as well as in
the kinetic approximation. It is shown that the first dilatational mode makes the main contribution
to electron scattering in the lowest electron subband. The contribution of the zeroth mode and the
second mode are also essential while the modes of higher order are insignificant. Our analysis is

performed for both nondegenerate and degenerate electron gases. It is shown that electron scat-
tering by con6ned acoustic phonons interacting through the deformation potential is substantially
suppressed up to the electron energies corresponding to the energy of the first dilatational mode.

I. INTRODUCTION

Modern microfabrication techniques have allowed the
creation of free-standing quantum nanostructures which
have attracted considerable attention and have been
studied by several research groups. These structures are,
in fact, solid plates (slabs) or rods (bars) connected to
a solid substrate by a side of the smallest cross section.
The major feature of free-standing structures is that the
smallest dimensions of the structures may be as small as
a few interatomic distances. This attribute gives rise to
interesting physical phenomena and opens many possi-
bilities for applications. First of all, the electrons (holes)
in these structures are quantized. In fact, free-standing
structures represent waveguides for electron waves which
have features substantially diferent from more conven-
tional quantum structures. Such waveguides may have
very high potential-energy barriers for electrons, so ef-
fects related to hot but quantized electrons are possible.
The phonon subsystem will also undergo significant mod-
ification and quantization of the acoustic phonon spec-
trum in a way similar to the electron quantization should
occur.

Free-standing nanostructures have been fabricated
in several laboratories. Free-standing quantum wells
(FSQW's) made of various metals, such as Al, Ag, and
Au had been prepared by electron-beam evaporation or
molecular-beam epitaxy on a cleaved NaCl substrate and
by subsequently dissolving the substrate. ' The thick-
nesses of the films were as thin as 200 A and typical
areas of the surfaces were roughly 1 mm . Semiconduc-
tor GaAs and In Gaq As FSQW's have been fabricated
Rom spatially and compositionally modulated superlat-
tices using standard lithographic techniques and selective

etching. s In those structures FSQW's were suspended be-
tween two support posts and the quantum wells were
parallel to the surface of the substrate, so the FSQW's
remain as bridges. Such structures had reproducible well
widths from 80 to 200 A. The typical in-plane sizes of the
FSQW's were 2.5 x 0.25 pm .

Results of successful fabrication of &ee-standing quan-
tum wires (FSQWI's) and free-standing quantum dots
are reported in Refs. 4—8; additional references are given
in the review of Ref. 4. There are basically two di8'er-
ent approaches to FSQWI fabrication. In one of them
the FSQWI's are prepared in a manner similar to that
used for FSQW preparation with the difference that the
widths of such FSQW's are small and constitute only sev-
eral thicknesses; hence such quantum structures may be
considered as FSQWI's. This method had been used to
make InAs FSQWI's with widths of 2000—7000 A. and a
thickness of 150 A. . In another approach very long GaAs,
InAs, and Si whiskers were grown on a GaAs substrate by
metal-organic epitaxy. ' ' Quantum dots were obtained
by reactive ion etching whiskers in a mixture of CH4 and
Hz. ' The whiskers were directed along the (ill) di-
rection of the GaAs substrate, whatever the substrate
orientation, and. had typical lengths of 1 to 5 pm and
diameters of 100 to 2000 A.

There are several possible applications of the free-
standing structures. They may be used for prob-
ing the local properties of solids and there are sev-
eral works where such possibilities were demonstrated. '

Free-standing quantum structures may find applications
as very sensitive sensors of forces or displacements in
ways similar to those used for thin film sensors, and
there exists a variety of potential uses of free-standing
structures for electronic and photonic applications, e.g. ,
as low voltage field emitters, light emitting devices, and
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mirrors for optical resonators. 4' '~ Reference 6 reports
work in which the GaAs FSQWI's (whiskers) were grown
with built-in p-n junctions and Ohmic contacts were fab-
ricated at both sides of the structures. The photoe-
mission spectra as well as the photoluminescence spec-
tra were studied for these FSQWI's. The photoemission
spectra displayed redshifts which were not observed in
bulk structures grown in the same conditions. A sat-
isfactory explanation of this phenomenon has not been
found. The photoluminescence spectra revealed a strong
dependence on the orientation of the excitation light po-
larization with respect to the FSQW's axes. Si FSQWI's
illuminated with green light emit red light and this ef-
fect may be used in Si based optoelectronics. Optical
and transport properties of the FSQWI's were studied
theoretically in Refs. 13 and 14, respectively.

In this paper we will concentrate our main attention on
physical phenomena related to acoustic phonons in &ee-
standing quantum wells. The quantization of the acoustic
phonon spectrum results in modifications of the acoustic
phonon interactions with electrons and photons and man-
ifests itself in electrical and optical measurements. The
spectra of the acoustic phonons in opaque metal FSQW's
were investigated in Refs. 1 and 2. The authors claimed
that the Brillouin light scattering technique which they
used would work to detect any acoustical mode which
produces undulations at the surface. Acoustic phonon
confinement may also take place in quantum wells and
quantum wires lying on the substrate or buried in the
substrate. Quantized acoustic phonons were observed
even in conventional AlAs-GaAs-AlAs quantum wells by
the photothermal luminescence spectroscopy method.
The conductance of AuPd quantum Glms and wires with
widths of 200 A made on a silicon substrate has also been
studied. ' The variation in the conductance as a func-
tion of the applied electric Beld has periodic peaks which
authors have attributed to the electron interactions with
conGned acoustic phonons.

To describe quantitatively electron transport and op-
tical properties of the quantum structures it is necessary
to consider all of the acoustic phonon modes, their spec-
tra, and their interactions with electrons and photons.
Detailed understanding of confined acoustic phonons in
quantum structures and their spectra may also be sig-
nificant for some of the nondestructive diagnostic meth-
ods for microstructures where propagation of the acoustic
phonons is employed.

While there is an extensive literature on acoustic
modes in acoustical waveguides, resonators, and related
structures, ' there are relatively few works considering
this problem in a context of nanoscale structures.
In Refs. 23—27 acoustic modes in systems with two inter-
faces were investigated and attention was drawn primar-
ily to the modes localized between the interfaces. The
peculiarities of acoustic phonon modes due to planar de-
fects have also been considered; ' it is shown that a
few monolayers of difIerent material or even a built-in
electron sheet, interacting with phonons through the de-
formation potential, may result in localization of some
acoustic modes on the planar defect. A number of ar-
ticles have been devoted to one-dimensional acous-

tical phonons in cylindrical &ee-standing quantum wires
and their interactions with electrons. The similar prob-
lems for FSQW's are considered in Refs. 34 and 35 and
for FSQWI's of rectangular cross-section in Refs. 36 and
37.

In the following sections we will consider the acous-
tic modes in FSQW's and analyze the acoustic phonon
spectrum. Then we will consider electron scattering by
confined acoustic phonons interacting through the de-
formation potential. The electron relaxation times due
to this type of interaction will be obtained in the test-
particle approximation as well as in the kinetic approx-
imation for both nondegenerate and degenerate electron
gases. We will use the first-order perturbation theory to
determine the electron-phonon scattering rates. Though
the efFects of higher order such as a renormalization of
the acoustic phonon spectrum due to phonon interac-
tions with electrons are observable in a two-dimensional
(2D) electron gas, they are not significant for the electron
concentrations typical for semiconductor 2D structures;
therefore, we will not take them into account. The acous-
tical modes in a solid slab and their spectrum are known
from the theory of acoustics; however, we have to give
the appropriate expressions for modes and discuss their
peculiarities to provide fundamentals for consideration
of electron-phonon interactions. Moreover, the acoustic
modes have to be normalized to introduce the acoustic
phonons and this problem has not been solved in the
Geld of acoustics. This is one more reason to consider
the acoustic phonon modes in detail.

II. EIGENMODES IN FREE-STANDING
QUANTUM %YELL

A. Basic equations

We will consider the acoustic modes in FSQW's ne-

glecting the distortion of acoustic vibrations resulting
&om contact with the solid substrate. This imposes re-
strictions on the in-plane wavelength, which should be
shorter than the characteristic in-plane size of the solid
slab. Small elastic vibrations of a solid slab can be de-
scribed by a vector of relative displacement u = u(r, t)
The Lagrangian I of an isotropic continuous medium can
be expressed in terms of vibrations as (see, for example,
Ref. 38)

L = — [pu —Au, , —2pu, „„]dr,=1 2 2. 2

where p is the density of semiconductor, A, p are the
Lame constants, u; &

is the strain tensor,

1 r'Ou, Bu, l
2 (BT~ BF; )

and a dot over u denotes difI'erentiation with respect to
time. The sum is assumed to be taken over repeated sub-
scripts. Equations of motion of elastic continua described
by (1) follow from the principle of the least action and
have the form
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0 tc~ Oo~ ~

Pat2 =
0 (2)

where cr; ~ is the stress tensor

o., ~ =Auj, g b;~+2pu;~,

2~ = s, V' u+ (s, —s, ) graddiv u,
Ot2

and 8, ~. is the Kronecker delta. Equation (2) can be
rewritten in vector form as

at z = +(a/2). It can be proved straightforwardly that
the operator 'D of the eigenvalue problem (5)—(7) is Her-
mitian, so the eigenfunctions, u (q~~, z), corresponding
to nondegenerate eigenfrequencies, u, are orthogonal.
We can also orthogonalize eigenfunctions corresponding
to equal eigenfrequencies using the Schmidt orthogonal-
ization procedure. We will use w instead of u to denote
the orthonormal set of eigenvectors, w (q~~, z), of prob-
lem (5)—(7), for which

o

yiz

(Bu + Bu,
) =0,

(4)

o, , = A divu+2p

at z = +(a/2). Our goal is to find eigenmodes for acous-
tic vibrations defined by Eqs. (3) and (5). We will look
for solutions in the following form:

where s~ = (A + 2p)/p and s& ——p/p are the velocities of
longitudinal and transverse acoustic waves in bulk semi-
conductors. The boundary conditions on the free surface
of the slab imply that the components of the stress ten-
sor corresponding to the normal direction to the surface
vanish. If we specify the coordinate system (which we
will use throughout this paper) in such a way that the
axis z is perpendicular to the semiconductor slab and the
surfaces of the slab have coordinates z = +(a/2), where
a is the width of the slab, the boundary conditions take
the form rr, = cr„, = 0, , = 0 at z = k(a/2); accord-
ingly, in terms of components of the displacement vector,
it follows that

B. Con6ned eigenmodes

The eigenvalue problem of Eqs. (5)—(7) can be solved
through the introduction of vector and scalar mechanical
potentials which define the vector of relative displace-
ment. ' The solution of this problem is known from
acoustics ' and we will use acoustical terminology to
identify eigenmodes. UVhat has not been done in the field
of acoustics is the norinalization of eigenmodes (this is
essentially a quantum mechanical problem); in addition,
interactions of confined modes with electrons have not
been investigated. A major feature of the confined modes
is the quantization of the phonon wave vector in the z
direction, i.e., the z components of the confined mode
wave vectors, q, take only some discrete set of values
at each particular in-plane wave vector, qll. There are
three different types of confined acoustic modes: shear
waves, dilatational waves, and Qexural waves. They are
characterized by their distinctive symmetries.

~ . dqllu(r, t) = ) u„(q[[,z) exp(iq/[ .
r/[

—ild„t)
(2')

17 u~(qadi, z) = —ld u~(qadi, z)

where 'V is the matrix differential operator,

(5)

where r~~ is the coordinate vector in the (x, y) plane, cu

is the set of frequencies of vibrations. From (3) we can
obtain the set of equations for eigenmodes, u (q~~, z), and
eigenfrequencies, ~ . This may be conveniently done if
we direct the axis x of the coordinate system along vector
q~~, so that q~~

= (q~, 0). Then the eigenvalue problem
takes the form

1. Shear loaves

These waves have only one nonzero component which
is perpendicular to the direction of wave propagation
and lies in the plane of the quantum well: u (q~~, z) =
(0, u„, 0), where

cos (q, „z) if n = 0, 2, 4, ...
sin(q, „z) if n = 1,3, 5, ...,

q, „=(7m/a) . The dispersion relation for shear waves
ls

u~ = sq q2 +q2.

2 d 2 2
Sg d 2 S)q~

0

(s, —s, )iq „
2 d 2 2

Sg d 2
—Sgq

0

(s2 —s~z) iq —„
0

2 d 2 2
8) d 2 Sgq~

(6)

These modes are similar to the transverse modes in bulk
semiconductors and the q quantization is based on the
simple rule stating that an integer number of half wave-
lengths fits in a semiconductor slab of width a.

The boundary conditions (5) become 2. Dilatatianal waves

de~
dZ

= —iq u
dtCy diaz, 8) 2Sgy —1q~ 2 tL~
dZ 8Z 8)

These waves are also called symmetric waves (in re-
spect to the midplane) and have two nonzero compo-
nents: u (q~~, z) = (u, 0, u, ), where
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where E is a deformation-potential coupling constant.
From Eqs. (18) and (19) it follows that

IId f:) e* '
I'(q~~, n, z) [c„(q~~) + c„(—q~~ )]

(20)

where

hE2 (.
(q// ~ z)

I
iq/[' -(q~~ )2 p

+ ~~~~ (q~~, z) l
ctz j

h E.'I d(q~~ u z) = +d, 22 pcs lqll)

x (q,'„—q ') (q,'„+q ')

aqx sin '
cos(q~ z) (22)

hE~I f( q~~

7?, , Z) = Ff
2 p La)~ (q~~ )

It is obvious for shear waves that I', (q~~, n) = 0. Hence,
shear waves do not interact with electrons; this is in line
with the fact that transverse phonons in bulk isotropic
solids do not interact with electrons through the defor-
mation potential. On the contrary, both dilatational and
Hexural waves contribute to the Hamiltonian for electron-
acoustic phonon scattering. Accordingly, the functions
I'g and I'y, describing the intensity of the electron in-
teractions with dilatational and Hexural waves are given
by

function into symmetric and antisymmetric states. Di-
latational phonons will interact only with electrons scat-
tered between two states of the same symmetry while the
scattering by flexural phonons will result in the electron
transition between two states of the opposite symmetry.

It is interesting to note that there is a significant sim-
ilarity between the Hamiltonian for electron interactions
with confined acoustic phonons and interactions with
confined and interface optical phonons (see, for exam-
ple, Ref. 40). In both cases electrons interact with many
phonon modes and spatial dependence of the Hamilto-
nian in the z direction is a linear combination of ei-
ther sin and cos functions or sinh and cosh functions
(in the case of optical phonons this corresponds to ei-
ther confined or interface phonons). However, the acous-
tic phonon energy is a strong function of the quantum
number, corresponding to motion transverse to the slab,
whereas the optical phonon energy dependence on the
value of the similar quantum number is weak.

The deformation potential which we have consid-
ered. above is the major mechanism of electron-acoustic
phonon interactions in FSQW's. Another mechanism of
scattering is the piezoelectric potential. The Hamilto-
nian for it in FSQW's has been obtained in Ref. 34. The
ratio of the piezoelectric potential strength to the defor-
mation potential strength is equal to (&"), where ei4
is the piezoelectric constant and q is the wave vector of
the participating in the scattering phonon. In bulk semi-
conductors the piezoelectric scattering becomes stronger
than the deformation-potential scattering at low lattice
temperatures and in low electric fields because electrons
are scattered mainly by acoustic phonons with small q.
In FSQW's there is a lower limit for q which is equal
to 7r/a due to the q, component quantization. For this
reason the deformation-potential scattering dominates in
FSQW's.

(
2 2) (

2 + 2) B. Transition probability density

aq&x cos '
sin(q~ z) The electron wave functions in a free-standing quan-

tum well have the form

From Eqs. (22) and (23) we may see an interesting fea-
ture of the functions I'g and I'y, they depend on the z
coordinate as functions cos(q~ z) and sin(q~ z) (obtained
from displacements associated with longitudinal vibra-
tions). Additionally, the eigenmodes (10), (ll), (15), and
(16) also have cos(qq z) and sin(q& z) terms which may be
associated with transverse vibrations; these transverse
terms were canceled in the calculation of functions I and
do not appear in the final results.

Another important property of the functions I'g and
I'y is their opposite symmetry. The function I'g is sym-
metric, but the function I'y is antisymmetric; this re-
sults in substantially di8'erent contributions to electron
scattering from dilatational and flexural phonons. If the
electron potential energy in the FSQW is a symmetric
function of the z coordinate, then the electron states
may be classified by the symmetry of the electron wave

@k[~
——exp(ik~~ r~~ ) p (z) / gL L„

where I and I„are the in-plane sizes of the 2D struc-
ture (L L„= A), n is a discrete index corresponding
to the quantization in the z direction (electron subband
number), and functions p (z) are eigenfunctions of the
1D Schrodinger equation. We assume that they are or-
thogonal, so that (rp„~ p ) = b . The electron spec-
trum has the form s = s + h k~~ /2m*. The acoustic
phonons are characterized by the in-plane wave vector
q~~, the mode number m, and the symmetry o..

We are considering the electron-phonon interactions
though the deformation potential which may be repre-
sented by the scheme

(kll ~) + (qll m ~)

An electron with quantum numbers (k~~, n) absorbs (up-
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per sign) or emits (lower sign) acoustic phonon with
quantum numbers (q)), m, ri) and becomes an electron
with quantum numbers (kI), n').

The probability density for the transition from the ini-
tial state i to the final state f is given by the Fermi golden
rule

2~ 2
Wg~f — (f ~

Hq r
~
i) h(ef —e, ) (24)

where c,. and ef are the energies of the electron-phonon
system before and after scattering. Simplifying the inte-
gral (24) we may obtain

k]] inmk
II

'

2

~.'(" „,-+ -,'+ —,')
I
~-.-

I (vl,
—v-')'(v~', +a*

(~)(q )II

x tsc ' g(n', n, a, qi, ) 8k))+&)),k' b[e + &~' '(q~)) —e'] (25)

where function tsc = sin if ri = (dilatational) and function tsc = cos if n = (flexural), upper signs are for phonon
emission, and lower signs are for absorption. The parameters q~ and qz, in fact, depend on the type of mode
(dilatational or flexural); we have simplified notations and omitted n. The overlap integral, g(n, n, a, q), is given by
the formula 2a/2

g(n', n, o. , q) =
a/2

dz p„*,(z) rp„(z) tcs (qz)

where function tcs = cos if n = dilatational and function tcs = sin if n = (flexural). The argument q takes both
real and pure imaginary values.

If we take electron wave functions for a rectangular infinitely deep quantum well, the overlap integral may be
calculated analytically. For even n+ n' and a. = (dilatational) and also for odd n+ n' and n = (flexural) it takes
the form

g(n', n, n, q) = 32 (n' n q) [ 1 —(—1) +" cos 7rq ]

[ q —2 (n' + n )q + (n2 —n' ) ]

where q = a q/vr, if q is real. If q is a pure imaginary number, the overlap integral is equal to

32 (n' n p) [
—(—1) + + cosh vrp ]g (n', n, n, q) =

~2 [p4 + 2(n' + n2)P + (n2 —n' )2 ]

where J) = —i a q/m. If n + n' is an odd number and o. = (dilatational) or if n + n' is an even number and a.
(flexural) the overlap integral is equal to zero in accordance with the selection rules discussed in Sec. III A.

In the following two sections we will need to take the sums

A )k
]]

7
Ck im, q~],p

(26)

where P is used to denote either absorption or emission, and G is some given function which may depend on all
variables over which we take the sum. We will use functions G, such that 7& denotes either the scattering rate, or
the momentum relaxation rate, or the energy relaxation rate. We will also use (7& ) and (wP) which are defined
in a similar way to r& with the only distinction that we sum either only absorption terms or only emission terms.
There is an obvious relation between them: r& ——(r&b) i + (v.& ) . Here we will give a general formula how to
calculate the sum (26).

If we employ the formulas for transition probabilities (25) and integrate the b function of energy, we will obtain the
following result for scattering rates:

(
)

E2m
2.n

II

1
(n', n, ~, m, q), ) G

/sin@,
/

'

where

2

(~,„, + l w l)l +-.- l*(ar —a') (vi', +v-', , q,

&m (q)) )
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and angles 4, E [0, vr] are solutions of the transcendental
equation

We define the electron scattering rate, r(p) i, as the
function

m~ (q(() (m (s„—s„)(~)
r(p) ' 1 —f,) Wp~p

1
P

(30)

Actually, 4 is the angle between kll and qlt In the transi-
tion from Eq. (26) to Eq. (27) we have replaced the sum-
mation over a quasidiscrete variable by integration over a
corresponding continuous variable. Hereafter we will use
summation and integration over quasidiscrete variables
interchangeably for the sake of convenience.

IV. RELAXATION TIMES IN THE
TEST-PARTICLE APPROXIMATION

In accordance with Eq. (28), r(p) denotes the rate
for an electron to escape from a quantum state p due
to scattering if the nonlinear (in respect to b fp ) term in
the collision integral is neglected. In the case of a nonde-
generate electron gas r(p) is the electron scattering
probability density integrated over all final states. We
will use the electron scattering rate later in this section.

In the test particle approximation 8fp
——bp p, at t = 0,

where p0 is a momentum of the test electron. The kinetic
equation for b fp has the form

In this section we will use the notation fp for the elec-
tron distribution function. The temporal and the spatial
dependence of the distribution function is not important
for us and we omit the variables t and r. The variable p
is the electron momentum; however, for the sake of con-
ciseness we assume that this parameter also includes the
electron subband number. The collision integral, S, ac-
counting for electron scattering by phonons has the form

S = ).[ ~p p fp (1 —fp) —~p p fp (1 —fp ) j

P

where WP~P is a probability of transition from a quan-
tum state p to a quantum state p' per unit time. We
will also consider quantities Sg, defined as

S, = ) g(p) S(p)

Bbfp/Bt = S. (31)

If we multiply the kinetic equation (31) by g(p) and take
sum over p we obtain

Bg(po)/Bt = Sg, (32)

where the following relation has been used:

).g(p) bfp = g(po) .

From Eqs. (32) and (29) it follows that the equation
for g(pO) may be represented in the form

~g(PO) g(PO)
Ot rg(po)

where the relaxation time of the quantity g, rg(p), is
defined as

where g(p) is some function. The principle of the detailed
balance states

~p ~p fp (1 —fp) = ~p~p fp (1 —fp )

&g(p)
' g(p')

where f is the equilibrium distribution function (the
Fermi function). If we represent the distribution function
in the form

fp = f,'+bfp,
then the collision integral takes the form

This is the basic formula which determines all the relax-
ation times in the test particle approximation.

Momentum relaxation time. In this case g(p')
p' cos y, where p is the angle between p' and p,

r.(p)
'

0 fO
P bf
P

Energy relaxation time. In this case g(p) = s, where
e = p /2m* is the electron energy,

f,' —f,'+f0( f )bfpbfp

and the quantity S~ takes the form

(28)
r (p)

' g- 1 fo) Wp p 1 ——
P

(36)

1 —fS. = ) .[g(p') —g(p) j ~p p,
P)P

(29)

The formula for Sg does not contain nonlinear terms be-
cause they cancel out.

The formulas (30), (35), and (36) define the scatter-
ing time, the momentum relaxation time, and the en-
ergy relaxation time of the test electron for any mech-
anism of scattering. Applied to the electron scattering
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b the con6ned acoustic phonons these formulas specifyy
the functions G which appear in Eqs. (26) and (27). As

fO
follows from Eqs. (30), (35), and (36), G =

~ &, in

p cos pthe case of the scattering rate, G = 1—
in the case of the momentum relaxation time, and G =

1—f1 ——','
in the case of the energy relaxation time.1—fo

We have computed integrals in (30), (35), and (36)
numerically and obtained the electron scattering rates

and ~ as functions of energy. Calculations) +p

have been performed for GaAs FSQW of width 100 A. and
for both nondegenerate and degenerate electron gases in
a wide range of the lattice temperatures. In GaAs FSQW
of width 100 A the second electron subband is 168 meV
above the erst electron subband. Therefore, the popu-
lation of the second subband may be neglected and we
will consider only the lowest electron subband. In the
degenerate case we took the Fermi energy, e~ ——50 meV.
This energy corresponds to the electron concentration
n. = 1.4 x 10" cm —'.

The graphs of the functions 7,w„, and w, for the—1 —1 —1

case of a nondegenerate electron gas and for the lattice
temperatures T = 300, 77, and 4.2 K are represented in
Figs. 5, 6, and 7, correspondingly. The graphs for the
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FIG. 6. The electron scattering rate, r (a), the inverse
momentum relaxation time, r„(b), and the inverse energy
relaxation time, r, (c) as functions of electron energy. Non-
degenerate electron gas, T = 77 K, GaAs FSQW of width 100
A. . The solid lines correspond to acoustic phonon emission and
the dashed lines correspond to acoustic phonon absorption.
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FIG. 5. The electron scattering rate, r (a), the inverse

momentum relaxation time, r~ (b), and the inverse energy
relaxation time, r, (c) as functions of electron energy. Non-
degenerate electron gas, T = 300 K, GaAs FSQW of width
100 A.. The solid lines correspond to acoustic phonon emission
and the dashed lines correspond to acoustic phonon absorp-
tion.

C, (meV)
FIG. 7. The electron scattering rate, r (a), the inverse

momentum relaxation time, 7„(b), and the inverse energy
relaxation time, r, (c) as functions of electron energy. Non-
degenerate electron gas, T = 4.2 K, GaAs FSQW of width 100
A. . The solid lines correspond to acoustic phonon emission and
the dashed lines correspond to acoustic phonon absorption.
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relaxation rates corresponding to the degenerate case are
depicted in Figs. 8—10 also for the lattice temperatures
T = 300, 77, and 4.2 K. The solid lines in Figs. 5—10
correspond to acoustic phonon emission and the dashed
lines correspond to the acoustic phonon absorption. The
quantities w for phonon absorption are obviously neg-
ative due to the factor [1 —e'/s]; however, to make plots
more compact we use the same axes as for the energy re-
laxation rate corresponding to the phonon emission and
plot them as positive functions. An important conclusion
we can draw from analyzing these graphs is that the first
dilatational mode makes the main contribution to the
electron scattering (and to the momentum and energy
relaxation); however, contributions of the zeroth and the
second dilatational modes are also essential. Modes of
higher order may be neglected without losing calculation
accuracy. The functions w and ~„are very similar;
however, w is slightly larger. This fact will be of use
when we do the kinetic analysis of the relaxation times
in the next section. At low lattice temperatures where
the acoustic phonon absorption is negligible, the acoustic
phonon emission is significantly suppressed up to the elec-
tron energies corresponding to the energy of the first di-
latational phonon (see Fig. 7). This happens as a result of
the fact that the zeroth mode makes only a small contri-
bution to electron scattering. The increased significance
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I
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FIG. 9. The electron scattering rate, r (a), the inverse
momentum relaxation time, r„(b), and the inverse energy
relaxation time, 7; (c) as functions of electron energy. De-
generate electron gas, s~ = 50 meV, T = 300 K, GaAs FSQW
of width 100 A. The solid lines correspond to acoustic phonon
emission and the dashed lines correspond to acoustic phonon
absorption.
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FIG. 8. The electron scattering rate, r (a), the inverse
momentum relaxation time, r„(b), and the inverse energy
relaxation time, r, (c) as functions of electron energy. De-
generate electron gas, s~ = 50 meV, T = 300 K, GaAs FSQW
of width 100 A. The solid lines correspond to acoustic phonon
emission and the dashed lines correspond to acoustic phonon
absorption.

of the first mode is related to the fact that the parame-
ter q~ for the zeroth mode is pure imaginary (see Fig. 1);
therefore the Hamiltonian for the electron-phonon inter-
actions has surface bound character [see Eq. (22)] and has
a small overlap with electron wave function of the ground
state. The modes of the order higher than one also have
low interaction intensity with electrons because of more
frequent spatial oscillation than in the first mode.

The relaxation times for the degenerate case look more
complicated; however, their behavior will be quite clear
if we analyze the factor X = (1 —f, )/(1 —f ), which

stands under the integral (or under the summation sign)
in Eqs. (30), and (34)—(36), and distinguishes this case
from the nondegenerate case. If c—e~ )) T and e' —e~ )&
T, then 2= —1. Thus, if the electron energies before
scattering, e, and after scattering, z', are slightly higher
than the Fermi energy, the relaxation rates are the same
as for the nondegenerate case. The energies r and e'
are related by the equality !

s —s' != Ru, where Ru is
the energy of the emitted or absorbed acoustic phonon.
So, the relaxation rates for the degenerate case coincide
with the relaxation rates for the nondegenerate case for
energies larger than the Fermi energy plus fur plus a few
T.

For energies r —c~ && T, e' —e~ && T, the factor
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X = exp('&'). The value of the factor X is different
for phonon emission and phonon absorption. In the case
of phonon emission X = exp ( hu—r/T) and in the case
of phonon absorption X = exp (her/T). The energy de-
pendences of the relaxation rates for energies lower than
the Fermi energy are basically the same as for domains
of high energies; however, these pieces of graphs are mul-
tiplied by the factor X = exp( Ru/—T) for the phonon
emission and the factor X = exp (Ru/T) for the phonon
absorption.

If we take into account the fact that ~ —1 meV for
a GaAs FSQW of width 100 A, the transition from the
energies lower than c~ to the energies higher than c~ is
very steep for the case of T = 4.2 K [exp (bur/T) 15.8],
smooth for the case of T = 77 K [exp (Ru/T) 1.16,
and is practically invisible for the case of T = 300 K
[exp (Ru/T) = 1.04].

cupied. We will study the electron transport properties
on the basis of solving the kinetic equation for electrons.
In the case of a linear response of the electron gas to the
applied external force F we may represent the electron
distribution function in the form

f fo+1PPf
p ) (37)

where the function fq„depends on the absolute value of
the momentum, p, and does not depend on the direction
of p.

Momentum p has polar coordinates (p, P) . If we mul-
tiply the kinetic equation for electron distribution func-
tion f with collision integral (28) by p/p and integrate
over the polar angle P, we obtain the following equation
for f,p-.

V. KINETIC RELAXATION TIME
F:) Wp~p o f]p cos p o f]p

P I
0

In this section we will use the kinetic approach to ana-
lyze the electron relaxation times. We restrict ourselves
by the case where only the lowest electron subband is oc-

We are looking for the solution of Eq. (38) in the repre-
sentation

0.03

Of@fg„———rg(p) F
Bp

(39)

0.02 r
t

0.01

l

0.03
t

C4
0.02 l

l

i

0.0 1

.(p) = (J ) + (s) ):~.-.
P

fo
x v-, (p') 0

p cos (p

(4o)

or the equivalent equation

p' cosy rq(p') 1 —fp

It follows from the consideration given below that wq(p)
may be interpreted as a momentum relaxation time in
the kinetic approximation (or kinetic relaxation time).
From Eqs. (38) and (39) we may obtain the Fredholm
equation of the second kind for the function ~q(p),

0

0.004 (41)

I

C4

0.002
I ~
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PIG. 10. The electron scattering rate, 7 (a), the inverse
momentum relaxation time, r„(b), and the inverse energy
relaxation time, r, (c) as functions of electron energy. De-
generate electron gas, s~ = 50 meV, T = 300 K, GaAs FSQW
of width 100 A. The solid lines correspond to acoustic phonon
emission and the dashed lines correspond to acoustic phonon
absorption.

The equation for rq(p) in the form (41) differs from the
formula (35) for the momentum relaxation time in the
test-particle approximation only by factor ~q(p')/7y(p).
This factor is equal to unity if the scattering is elastic, so
in the elastic scattering approximation rq(p) = 7~(p). In
general, we have to solve the Fredholm equation of the
second kind.

The kinetic relaxation time is directly related to the
electron mobility p, = ewq/m*, where 7q is the averaged
kinetic relaxation time expressed by the formula

Jo ds (s/T) r~(s) fr (1 —f~)
I defo
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We have solved the Fredholm equation (40) and
Eq. (41) for function wq numerically by iterations taking
~„as the initial approximation. The energy dependence
of v z is similar to the energy dependencies of the mo-
mentum relaxation time, w„, and inverse scattering rate,
w, and, because of this, we do not give graphs for 7y.
The main conclusion we may derive from this similar-
ity is that the relaxation times vz and 7 are very good
approximations for the evaluation of the electron trans-
port properties due to the electron scattering by confined
acoustic phonons.

VI. SUMMARY

We have analyzed the confined acoustic modes in
FSQW's. The dilatational and flexural modes may con-
tain terms localized near the surface of the quantum well
as well as terms propagating throughout the width of the
quantum well. The lowest flexural mode is completely
localized near the surface while the lowest dilatational
mode is completely localized only if the in-plane wave
vector is large enough. The higher order modes always
have propagating terms. Localization near the surface
is present for high values of the in-plane wave vectors.
The Hamiltonian for electron-acoustic phonon interac-
tions has symmetrical form for the case of the dilatational

phonons and antisymmetric form for the case of the flex-
ural phonons. Accordingly, if the potential energy for
electrons in the quantum well is a symmetric function,
so that the electron states may be classified by the sym-
metry of the electron wave functions into symmetric and
antisymmetric states, then the dilatational phonons will
interact only with electrons scattered between two states
of the same symmetry while the scattering by the flexural
phonons will result in the electron transition between two
states of the opposite symmetry. We have calculated the
rate of electron scattering by confined acoustic phonons
and the corresponding relaxation times for the case of
the infinitely deep quantum well for electrons. We have
found that the first dilatational mode makes the main
contribution to the electron-phonon scattering. The in-
creased significance of the first mode is related to the fact
that the Hamiltonian for electron-acoustic phonon inter-
actions for the zeroth mode has surface-bound character,
so its interaction with electrons is weakened. The modes
of the order higher than one also have low interaction
intensity with electrons because of more frequent spatial
oscillations than in the first mode.
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