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Nanocrystals of diluted magnetic semiconductors: Model for magnetic polaron
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We present a simple model for the magnetic polaron associated with an electron-hole pair in a
semimagnetic semiconductor quantum dot. An exactly soluble Hamiltonian based on the effective-
mass approximation is used to calculate the equilibrium properties. The polaron binding energy
decreases with increasing temperature or magnetic field. Low-temperature magnetization and lumi-
nescence polarization show rapid saturation with magnetic field. Strong light-induced enhancement

of magnetization is predicted.

Semiconductor nanocrystallites, also called quantum
dots (QD’s), have been the subject of intense activity in
recent years.! In the strong confinement regime, when the
QD radius is much smaller than the bulk exciton Bohr
radius, the excitonic effect is negligible and linear opti-
cal absorption corresponds to electric-dipole transitions
from discrete valence-band levels to discrete conduction-
band levels.? The fundamental gap for the creation of
an electron-hole pair in a QD is higher than that in
the bulk. This confinement-induced blueshift increases
with decreasing QD size. High-quality nanocrystallites
of II-VI compounds have been fabricated and their opti-
cal properties investigated in great detail.® In particular,
well-characterized band-edge luminescence has been ob-
served in CdSe QD’s. On the other hand, semimagnetic
or diluted magnetic semiconductors (DMS’s) based on II-
VI compounds, such as Cd;_,Mn,Te, are known for gi-
ant magneto-optical properties and magnetic polarons.*
These effects arise from strong sp-d exchange interac-
tions between the band carriers and the Mn?* ions.
Bound magnetic polarons associated with shallow im-
purities (donors and acceptors) have been extensively
studied. Localized exciton magnetic polarons have also
been reported in bulk and epilayer Cd;_,Mn,Te (Ref. 5)
and in CdTe/Cd;_,Mn,Te heterostructures.® Acceptor-
bound magnetic polarons approach the saturation regime
at low temperature;” '3 the mutual spin polarization be-
tween the bound hole and the Mn ions situated in its orbit
tends to form a ferromagnetic cluster. A similar situation
is expected in an optically excited small DMS nanocrys-
tal, with an additional contribution from the electron. In
fact, such a QD should be a model for zero-dimensional
exciton magnetic polaron, provided the polaron forma-
tion time is shorter than the lifetime of the electron-hole
pair.

Wang et al.'* reported the first experimental investi-
gation of DMS nanocrystals. Zngo3Mng 7S crystallites
of average diameter ~ 25 A were grown in a glass ma-
trix. The observed photoluminescence (PL) peak at 2.12
eV corresponds to the well-known Mn?* internal emis-
sion. The PL excitation spectrum yielded a quantum-
confinement blueshift of 0.23 eV for the fundamental
gap. They also measured the static magnetic suscepti-
bility from 2.3 K to 314 K; the data fit the Curie-Weiss
law with a negligibly small © value, suggesting a smaller
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contribution of the antiferromagnetic Mn-Mn interaction
in the QD than in the bulk. More recently, Bhargava
et al.'® fabricated coated Mn-doped ZnS particles of di-
ameter varying from 35 to 75 A. They focused on the
characteristics of the Mn?* luminescence: a high lumi-
nescence efficiency and a dramatically short decay time
were observed. They also noted a negligible shift of the
PL-excitation (PLE) spectrum in a magnetic field. The
latter effect might be related to the formation of magnetic
polaron, as we shall see. However, Zn;_,Mn_S with the
bulk band gap above 3.8 eV seems unsuitable for studying
the magnetic polaron, because the PL spectrum is domi-
nated by the Mn emission. Moreover, the time of energy
transfer from an electron-hole pair to the Mn d shell is
short (< 500 psec),'® perhaps in the range of the polaron
formation time (~ 100 psec in the bulk).> Cd;_,Mn,Te
should be a better candidate for realizing the magnetic
polaron in a QD. CdTe nanocrystallites have been al-
ready investigated;>18 the strong confinement regime is
easily attained, the bulk exciton Bohr radius being ~ 70
A. Tt should be possible to choose the composition (z)
and size in order to have QD’s with a fundamental gap
below the Mn?* excitation. The theoretical estimatel” of
the time for the radiative recombination of an electron-
hole pair is in the nanosecond range. Thus magnetic
polaron formation is expected and its properties might
be investigated through the band-edge luminescence of
the QD.

To our knowledge, no theoretical study of semimag-
netic QD’s has yet been reported. Here we present a
simple model for magnetic polaron associated with an
electron-hole pair. The thermodynamical equilibrium
properties of the polaron are calculated. We also cal-
culate the Zeeman splitting of the exciton in the QD. We
first summarize the theoretical model and then present
some numerical results for Cd;_,Mn,Te quantum dots.

Theoretical studies of the electronic structure of non-
magnetic semiconductor QD’s have been based on either
the effective-mass approximation? (EMA) or the tight-
binding method.'® The EMA is known to grossly over-
estimate the confinement energies in small QD’s. How-
ever, the EMA wave functions have been found to be
sufficiently accurate for the optical properties.!® Our
model for semimagnetic QD’s is based on the EMA wave
functions for a spherical dot!? of radius a. The lowest
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conduction-band level corresponds to

. (r) = f(r)un,(r), (1

where the envelope function

1) = 25/ )

and u¢,(r) is the periodic part of the Bloch function at
T, with m = :i:%. In the spherical approximation the
wave functions for the highest odd-parity valence-band
level are
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where Wigner’s 35 symbols have been used. The ex-
change interaction between a band electron (spin s = 3)

and the Mn d electrons (total jonic spin S = 2) is given
by

HP ==Y J(r—Ry)s-S;, (5)

where ¢ labels the Mn ions. We follow the perturbation
approach and study its effects on the electron and hole
ground-state multiplets, by neglecting mixing with other
states. Now,
(U |H,

x|¥5) = _O‘Z |f(R:)[*(mls - Siln),  (6)

where |m) is an eigenstate of s, and o = (u,|J°(r)|u,),
with |u,) for the s-like orbital wave function. Similarly,
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where |u) is an eigenstate of j, (j = 2) and B8 =
(ue|J?(r)|ug). The Mn spin system is described in terms
of the individual S;, = m; values:

N
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where N is the total number of Mn ions in the QD. At low
Mn concentration (z), the antiferromagnetic interaction
between the Mn spins can be neglected, more so in a
QD than in the bulk.'* For a magnetic field B in the z
direction the Zeeman Hamiltonian

N
HZ = uBgMnB Z Siz- (9)

=1

The direct effect of the magnetic field on the electron
states is small. In the mean-field approximation S; in
Egs. (6) and (7) is replaced by the average (thermody-
namic and configurational) value Z(S,). Replacing the
sum over ¢ by an integral, we obtain the Zeeman split-
tings

ES =

m

—(Noza)m(S,) (10)
and
E} = —p(NozB/3)p (S:). (11)

Here Ny is the number of primitive cells per unit vol-
ume in the DMS crystal. The reduction factor p for the
valence-band states is given by

1 2
= ;;V/|F.,,“(r)] dr. (12)

Straightforward calculation yields

o= (IRO(T)|2 " %IRz(r)F) 2. (13)

This is simply related to the function v(y) calculated by
Efros:'”

p=l+o(), (14)

where + is the ratio of the light- and heavy-hole effective
masses. For CdTe, v ~ 0.16 and p ~ 0.8. We have
thus shown that the Zeeman splitting of the valence-band
edge in a QD is smaller than that in the bulk DMS. A
similar reduction factor was previously obtained?° for an
acceptor-bound hole.

In order to study the magnetic polaron it is neces-
sary to go beyond this mean-field approximation. The
Hamiltonian representing the polaron associated with an
electron-hole pair is given by the difference (HS, — HZ,),
with j of the valence-band electron going to —j for the
hole. An exactly soluble model is obtained by resort-
ing to a constant-coupling approximation that becomes
exact in the saturation limit. It can be written as

Hpol = —Ic(s : 2) + Iv(j . 2)’ (15)

where

(16a)

2:28,-

with © = NS,NS—1,N§S—2,...,
N,

0 (1/2) for even (odd)
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where V is the QD volume, and

I. (16b)
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Note that the isotropic spin Hamiltonian Hpy, applies
to zinc-blende DMS’s such as Cd;_,.Mn,Te; for wurtzite
DMS’s such as Cd;_.Mn,Se it is necessary to add a
crystal-field term Dj2 that represents the splitting be-
tween the A and B valence bands.!® It has been shown,
however,'? that the splitting is reduced in a QD by the
factor v(v), which is =~ 0.4 for CdSe.

The Zeeman Hamiltonian can be rewritten as

Hz = ppgmBE, . (7)

In the absence of the magnetic field, Hp, represents
the total polaron Hamiltonian in a zinc-blende DMS
nanocrystal. Noting that J = s + j + ¥ commutes with
H,,, the polaron eigenvalues and eigenstates can be de-
duced analytically by using the theory of addition of three
angular momenta. In fact, the good quantum numbers
are s, j, ¥, J,and M = J,. We first add s and ¥ to ob-
tain 0s. In nontrivial cases the two values o0, = ¥ + % are
compatible with a given J. This leads to a 2 x 2 matrix
for a given set of (J, M). The matrix elements of j- X
are calculated by using the Racah coefficients.?! The two
energy levels for a given (J, M) are

I, I,
A D) =2+ 2[T+ )~ (E+ 37 - ]]

+3H{(C+ )L+ (T + HL)P
YLI[(J — %) — 4)}3. (18)

The corresponding eigenstates are linear combinations of
los =X + %,j = %,J,M) and |0, =X — %,j = %,J,M).
The ground state of the polaron is given by ¥ = NS and
J =¥ — 1 with the energy

Eo=A_(NS,NS —1) (19)

with all Mn spins aligned parallel to the electron spin and
antiparallel to the hole angular momentum. We shall
see that the magnetic behavior at low temperature is
superparamagnetic with the cluster spin NS. The first
excited state of the polaron is given by ¥ = NS — 1
and J = ¥ — 1. The excitation energy decreases with
increasing QD size. The highest-energy states correspond
to ¥ = NS and J = ¥ 4+ 1 with the energy Eg.. =
A (NS,NS+1) ~ —E,. Note that in order to calculate
the partition function we also need the number of ways
b(X) to obtain a given value of ¥ out of N spins S. It is
given by

b(X) =a(X) —a(Z+1), (20)

where a(o) is the coefficient of X in the expansion of
(X—S +Xv~5+l + ... +XS)N

In the presence of a magnetic field and/or uniaxial dis-
tortion (Dj2), J is no longer a good quantum number,
but M = J, is. The polaron eigenvalue problem can
then be solved by numerical diagonalization of 8 x 8 or
smaller matrices. The calculations are similar to those
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FIG. 1. Polaron binding energy (meV) vs temperature (K)
in Cdo.95Mng.o5Te quantum dots. Curves A, B, and C corre-
spond to the dot radius a = 15, 16.5, and 18 A, respectively.

for an acceptor-bound polaron.!3

Here we present some results for nanocrystals of
Cdg.95Mng g5 Te with Noa = 0.22 ¢V and NoG = —0.88
eV. The thermodynamic equilibrium properties of the
magnetic polaron are calculated. Figure 1 shows the
zero-field binding energy as a function of temperature
for different QD sizes: a = 15, 16.5, and 18 A with
N = 10, 14, and 18, respectively. The binding energy
decreases faster in larger QD’s, because the energy levels
get closer. Experimentally, the polaron binding energy
should be observable as a redshift of the PL peak with re-
spect to the absorption or PLE maximum. Time-resolved
PL seems to be the most appropriate tool for investigat-
ing the polaron dynamics.® Figure 2 presents the polaron
binding energy as a function of magnetic field at differ-
ent temperatures: T = 1.8, 4.2, and 10 K for a QD with
N = 10. It is obtained by subtracting the Zeeman shift
2(Ic + 31,)|(.)| of the electron-hole excitation energy
from |(Hpo1)|. Notice how rapidly the polaron shift van-
ishes with applied field at low temperature. It is tempting
to relate this effect to the reported absence of magneto-
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FIG. 2. Polaron binding energy (meV) vs magnetic field
(tesla) in Cdo.esMno.osTe quantum dots of radius 15 A.
Curves A, B, and C correspond to T = 1.8, 4.2, and 10 K,
respectively.
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FIG. 3. Degree of circular polarization of the electron-hole
pair luminescence in Cdo.9sMng.osTe quantum dots of radius
15 A vs magnetic field. Curves A, B, C, D, and E correspond
to T = 1.8, 4.2, 10, 20, and 30 K, respectively.

luminescence in ZnS:Mn quantum dots.®

Figure 3 shows the field dependence of the degree of
circular polarization of the recombination radiation in a
QD with N = 10 at different temperatures. It is calcu-
lated from the relation

_3in(3,=8) — (=5 Dl + (3 D) = n(=3,-3)]
Bn(3,—5) + (3. DI+ 03 ) (=5, -3
(21)

c

where n(u,m) is the equilibrium probability of finding
the hole in the state j, = p and the electron in the state
s = m. Equation (21) follows from the well-known rela-
tive intensities of the 0™ and 0~ components of electric
dipole transition, which have been shown to remain valid
in a QD,'” even though the absolute values are substan-
tially reduced leading to a longer radiative recombination
time. The rapid saturation of the low-temperature curves
is a characteristic of the magnetic polaron.!® Figure 4
presents the magnetization curve of a QD containing
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FIG. 4. Average magnetic moment (in Bohr magnetons)
of a Cdo.e5sMno.osTe quantum dot of radius 15 A vs mag-
netic field at T = 4.2 K. The solid curve corresponds to the
equilibrium magnetic polaron. The dashed curve corresponds
to ordinary paramagnetism. The difference represents the
light-induced enhancement of magnetization.
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FIG. 5. Light-induced magnetization enhancement factor
for a sample containing Cdo.os Mno.o5Te quantum dots of ra-
dius 15 A vs magnetic field. Curves A, B, and C correspond
to T = 1.8, 4.2, and 10 K, respectively.

N = 10 Mn ions at T = 4.2 K. The solid curve shows Mp
corresponding to the magnetic polaron in equilibrium.
The dashed curve shows M obtained from the Brillouin
function for spin S = £ and represents the magnetization
in the absence of an electron-hole pair. It is interesting
to note that the solid curve is very close to the Bril-
louin function for the giant spin ¥ = NS, corresponding
to the polaron ground state. The low-temperature mag-
netization is thus superparamagnetic. The difference be-
tween the solid and the dashed curves in Fig. 4 represents
the light-induced enhancement of magnetization, which
might be measured following the method of Wojtowicz
et al.?? Figure 5 shows the light-induced magnetization
enhancement factor (Mp/M) as a function of magnetic
field at different temperatures. Although the ratio of
the polaron magnetic moment to the paramagnetic one
increases with increasing temperature, in terms of abso-
lute values the light-induced magnetization enhancement
should be most important at low T and low B.

In summary, we have developed a simple model for the
magnetic polaron associated with an electron-hole pair
in a semimagnetic semiconductor nanocrystal. The Zee-
man splitting of the exciton is also calculated; it is shown
to be reduced with respect to the bulk DMS. We have
calculated the equilibrium properties of the magnetic
polaron by assuming that the polaron formation time
is much shorter than the radiative recombination time.
Cd;_.Mn_Te appears to be a good candidate for exper-
imental realization. The polaronic redshift of the band-
edge luminescence is predicted to decrease with increas-
ing temperature or magnetic field. The luminescence
polarization, as well as the magnetization, shows rapid
saturation at low temperatures. The low-temperature
magnetization curves correspond to the superparamag-
netism of ferromagnetic cluster associated with the mag-
netic polaron. A strong light-induced enhancement of
magnetization is thus predicted.

The Laboratoire de Physique des Solides is “Unité de
Recherche Associée au Centre National de la Recherche
Scientifique No. 002.”
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