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Structure of fractional edge states: A composite-fermion approach
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I study the structure of the two-dimensional electron gas edge in the quantum Hall regime
using the composite-fermion approach. The electron density distribution and the composite-fermion
energy spectrum are obtained numerically in the Hartree approximation for bulk filling factors
v = 1, 1/3, 2/3, 1/5. For a very sharp edge of the v = 1 state the one-electron picture is valid. As
the edge width a is increased the density distribution shows features related to the fractional states
and new fractional channels appear in pairs. For a very smooth edge I find, within a quasiclassical
approximation, that the number of channels p ga/lH, where lH is the magnetic length.

I. INTRODUCTION

The concept of edge states was introduced originally
in the framework of the integer quantum Hall efFect
(I@HE). It is based on the fact that the two-dimensional
electron gas (2DEG) at an integer Landau level filling
factor v can support gapless excitations only at the edge.
Hence the transport properties can be understood with-
out explicitly considering the bulk of the sample. The
edge of the 2DEG is created by the confinement poten-
tial which bends the Landau levels up in energy. The
intersection of each Landau level with the Fermi energy
gives origin to a chiral one-dimensional edge channel.
Naturally, the total number of channels within the one-
electron theory is given by the bulk filling factor. Exper-
iments with nonideal contacts have confirmed the ex-
istence of separate edge channels corresponding to difFer-
ent Landau levels. The quantized multiprobe resistance
was found to be in agreement with the predictions of the
Landauer-Buttiker formalism based on the one-electron
picture. However, a number of more sophisticated ex-
periments were impossible to explain on the one-electron
footing. '

Chklovskii et al. , developing earlier works, have
shown that in a realistic confinement potential edge chan-
nels (compressible strips) have finite width as a result of
electron-electron interactions. The edge channels being
not strictly one dimensional brings up the problem of
their internal structure. In the two limits of very sharp
and very smooth confinement this problem can be tack-
led. When the confinement potential is very sharp it
dominates over the electron-electron interactions and the
single-electron theory must be valid. However, it is un-
clear how to implement this situation experimentally. In
a very smooth confinement potential a compressible strip
breaks up into a number of fractional states with frac-
tional edge channels between them. ' This explains
the observation of the &actionally quantized Hall con-
ductance for integer bulk filling factor in devices with
nonideal contacts.

The purpose of this paper is to study the evolution
of the edge channel structure as the smoothness of the
confinement is changed continuously. The complexity of
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FIG. 1. Schematic density distribution and energy spectra
for the sharp and smooth edge of the v = 1 state. Energy
is plotted as a function of the guiding center position of mo-
mentum eigenstates. (a) Density distribution for the sharp
edge. (b) Electron energy spectrum for the sharp edge. (c)
Composite-fermion energy spectrum for the sharp edge. (d)
Density distribution for the smooth edge. (e) Electron energy
spectrum for the smooth edge. (f) Composite-fermion energy
spectrum for the smooth edge.

the problem arises from the strongly correlated nature of
the electron state. Any theory that resolves this prob-
lem should be able to describe the one-electron limit of
very sharp confinement as well as the formation of the
incompressible fractional states in a very smooth confine-
ment. In this paper I present such a theory, which also
predicts the number of fractional edge channels as a func-
tion of the confinement sharpness. The theory is based on
the composite-fermion approach. The advantage of
this approach is that the important electron-electron cor-
relations are automatically built into the single-particle
(Hartree) approximation for composite fermions.

The main idea can be demonstrated by considering the
evolution of the v = 1 edge as the confinement potential
varies from the very sharp to the very smooth limit (see
Fig. 1). The confinement potential can be characterized
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by a single parameter a which represents the width of the
compressible liquid strip where the filling factor drops
from 1 to zero.

When the confinement potential is very sharp (a tH)
the one-electron theory must be valid, implying that
there is just a single one-dimensional channel, Fig. 1(b).
This result can also be understood in terms of compos-
ite fermions. Attachment of two Aux quanta maps the
v = 1 electron state on a single flied Landau level for
composite fermions with the magnetic field direction re-
versed. At the edge this level bends up and intersects the
Fermi energy forming a single channel, Fig. 1(c). Higher
Landau levels for composite fermions remain empty.

As the confinement gets smoother (larger a) a finite
width region with partially G.lied Landau level emerges',
Fig. 1(d). One-electron theory is useless in this case since
it predicts a huge degeneracy, Fig. 1(e). The composite-
fermion approach, on the other hand, yields an inter-
esting picture, Fig. 1(f). The effective magnetic field
experienced by composite fermions is proportional to the
deviation of the filling factor from I/2. Hence the com-
pressible strip with the filing factor dropping from 1 to
zero results in the effective magnetic Beld varying be-
tween minus and plus the external magnetic Beld value.
The problem is reduced then to a particle in a varying
effective magnetic Beld. ' ' Composite- fermion energy
bands descend in the regions of weak efFective magnetic
field because of the reduction in the effective cyclotron
energy. As parameter a is increased the gradient of the
eIII'ective magnetic Beld gets smaller and higher energy
bands intersect the Fermi energy, Fig. 1(f). When each
consecutive band touches the Fermi energy a pair of frac-
tional channels is formed. They are composed of states
moving in the opposite directions. When the channels
are just created it is impossible to identify them with
any particular fraction, but for su%ciently large a, the
channels become separated by the fractional filing fac-
tor regions.

In this paper I show that the above picture is self-
consistent within the Hartree approximation for compos-
ite fermions. The electron density distribution and the
composite-fermion energy spectrum are found for several
bulk filling factors. The model used in the numerical so-
lution and the formalism of the Hartree approximation
are explained in Sec. II. In Sec. III results of the Hartree
approximation for simple fractions are compared against
the existing Laughlin wave function calculations to check
the reliability of the method. Encouraged by the abil-
ity of the Hartree calculation to reproduce the essential
features of the density distribution I apply the method
to study the evolution of the v = 1 edge in Sec. IV. In
Sec. V the composite-fermion approach is used to address
the long-standing problem of the v = 2/3 edge. In short,
I find that the MacDonald and Chang-Beenakker
models describe sharp and smooth confinement, respec-
tively, in agreement with the conclusions of Meir and
Brey.

In the limit of very smooth confinement the number
of occupied composite-fermion bands is large, calling for
the quasiclassical approximation. This approach is used
in Sec. VI to find the number of fractional channels in

the large-a limit. It also gives the highest fractional Hall
state in the principal sequence p/(2p + I) (Ref. 15) that
survives a density gradient determined by the length scale
a. The dependence of the highest p on the Landau level
number is found.

II. MODEL AND METHOD

In GaAs heterostructures the 2DEG edge is most com-
monly defined either by a negatively biased gate on top of
the device or by the chemical etching process. In both
confinement schemes the electron density distribution at
the edge has to be determined self-consistently. ' For
the purpose of studying the structure of the edge chan-
nels I consider a simplified model instead of the actual
confinement scheme. The 2DEG is placed on a positive
background, the density of which mimics the electron
density in the absence of a magnetic field. This model is
supported by the smallness of the magnetic-Geld-caused
electron density redistribution. For computational rea-
sons I consider a quantum wire with two edges. Yet an-
other simplification has to be made in order to keep the
bulk filling factor constant while the conG.nement poten-
tial is varied. Instead of a realistic density profile. I
consider the positive background of trapezoidal form in
the x-z plane and translationally invariant in the y di-
rection (Fig. 2). The density in the center corresponds
to various bulk filling factors. The separation between
the two edges in the x direction is chosen large enough
to keep the interference between them negligible. In or-
der to apply results of the calculation to a particular
experimental situation one has to estimate the typical
distance a at which the electron density drops from its
bulk value to zero. The trapezoidal background model
with the width a of the gradient regions is a good ap-
proximation for most purposes.

The above model has been used to study integer edge
channels in the Hartree approximation, and the edge
reconstruction of the v = 1 state. Neither work treated
electron-electron correlations which are explicitly present
in this calculation. The model used by Brey is essen-
tially the same except that he places an infinite potential
wall at the edge of the trapezoid. I believe that such
a boundary condition imposes an unrealistically strong
confinement. In my model the infinite potential wall is

~~ background

FIG. 2. Neutralizing background charge density used to
model the realistic confinement. The sharpness of the edge is
determined by parameter a which is defined by the zero mag-
netic field electron density distribution. The distance between
the two edges is chosen large enough to eliminate interference
between them.
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positioned far enough from the edge of the trapezoid to
make the solution insensitive to its exact location.

The advantage of using the composite- fermion ap-
proach is in transforming a system of strongly correlated
electrons to a system of weakly interacting quasiparticles.
Formally this can be realized in the Hartree approxima-
tion for composite fermions Th. e starting point is the
electron Hamiltonian,

where m* is the efFective mass. Although in the Hartree
approximation m* = mB, I use a difFerent value of m'
that yields correct energy gaps for the fractional quan-
tized Hall states (see below). This simple substitution
should capture correctly short-range features in the elec-
tron density related to the fractional channels. A de6-
ciency at large length scales can be fixed by an insignifi-
cant monotonic redistribution of the background charge.

The expectation value of the Chem-Simons vector po-
tential is given by

where A is the external vector potential, mB is the elec-
tron band mass, V is the electron-electron interaction,
and U is the external potential. After a singular gauge
transformation the Hamiltonian has the form

( (')) = 2&j~",, (p( ')),

with the particle density operator

p(r) = ) h(r —r, ).
N 2).(p, +e/cA; —a;) ).

2mBi=1 igj
N

+ ) U(r, ), (2)

The Chem-Simons contributior: to the scalar potential is

where

z x ri —r~a;=2h i-jgi

where the Hartree approximation to the expectation
value of the current density is

j~(r) = (j„(r)) — (p(r)) [(a(r)) —A(r)],
is the Chem-Simons vector potential. This Hamiltonian
acts on the composite-fermion wave function 4 which
is related to the electron wave function @, through the
phase factor:

while

j ( ) = .(p* ~( — ')f. (io)

"-"'e
2z' —zi(g 2

(4) Finally the Coulomb interaction is included in

where z = x + iy is a complex coordinate. The
self-consistent Hamiltonian for the gauge Beld prob-
lem has been derived in the context of anyon
superconductivity. ' Following the derivation of
Halperin the Hartree Hamiltonian can be written as

[p+ / A(r) —(a(r))]'
2m*

U.
( ) d2 (P(r') ) —P+ ( ')

r —r'

where p+(r) is the positive background density.
In the chosen geometry the Hamiltonian can be simpli-

fied further by taking advantage of the translational in-
variance in the y direction and using dimensionless units
it can be written as

id' 1(H= —— + —ik +x-
2dx 2

dx'sgn(x —x') v(x')
~

+ dx'sgn(x —x') ) ~~, & (*')
ml

&&
~

I + x' — dx"sgn(x' —x")~(x")
~
+ ~ dx'inlx —x'I [~(x') —&+(x')] (i2)

where II' is the momentum of the mth state, / is the
Landau level index, and v is the electron filling factor.
The distances are in units of the magnetic length /~. The
energy is measured in units of the cyclotron frequency
for composite fermions at v = 1. The strength of the

Coulomb interaction compared to the kinetic energy is
determined by

1m* /H

XmB GB
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Large o. makes deviations of the electron density from
the positive background. very costly. This means that
despite the high kinetic energy the electron density mim-
ics the positive background. For small values of a. the
kinetic energy of composite fermions becomes impor-
tant, leading to the formation of the fractional plateaus.
For the experimentally relevant parameters m* = 4m, ~,
lH = aii ——100 A. , the value of ct. —1 is found. I use
o. = 1 throughout this paper except for Sec. III. Intro-
duction of a short-distance cutoK in the logarithm in Eq.
(12) re8ecting a finite z extent of the wave functions was
found to have a similar eBect as the reduction of o..

This self-consistent Hamiltonian (12) was solved nu-

merically in this work and independently by Brey. Al-
ternatively, one may view the solution as a variational
electron wave function of the form (4) where i' is a prod-
uct of one-particle wave functions and all the correlations
are taken care of by the phase factor.

III. R,ESULTS FC)B. SIMPLE FRACTIONS
v = 1/(2K + 1)

The special role of the filling fractions v = 1/(2k + 1)
in the fractional quantum Hall efFect (FICHE) has been
recognized ever since Laughlin proposed his wave func-
tions. The knowledge of the explicit wave functions
made possible the calculation of the density pro6. le for
a v = 1/(2k + 1) state. s ' In this section I compare re-

l.0

suits of the Hartree calculation with the calculations for
the Laughlin wave function.

As shown by Wen, ss a v = 1/(2k + 1) state in very
sharp confinement supports a single branch of edge exci-
tations. In terms of composite fermions this implies that
there is a single energy band, giving rise to a single edge
channel. Since the composite-fermion energy spectrum
does not have an intuitive meaning in the electron repre-
sentation I can only compare the density distribution.

In Fig. 3 I present the electron density distribution for
three simple fractions in the case of the sharp edge. In the
case of v = 1 the density is almost featureless and is very
close to the profile expected for the lowest Landau level
filled up to the Fermi momentum. The density distribu-
tion at fractional filling factors shows damped oscillations
near the edge. These oscillations have been erst found.
numerically. ' Their period corresponds to the inter-
particle spacing. The oscillations were argued to be the
precursor of Wigner solid formation and are reproduced
in the single-mode approximation to the density-density
response function.

It is clear that the composite-fermion Hartree calcu-
lation is able to reproduce the essential features in the
density distribution such as the period and the damping
of the oscillations. In the following sections the method
is used to study the edge structure when the exact wave
function is not available.

The composite-fermion approach allows oscillations in
density to be related to a pole in the Fourier transform
of the density-density response function (static suscep-
tibility) Kpp(q). To demonstrate this I consider linear
response to a potential of the form
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The induced change in the electron density is then inde-
pendent of y and expressed as
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The large-x behavior of 8p(x) is dominated by a pole in
the complex q plane closest to the real axis. For a pole at
q = q' + iq" the asymptotic form of the induced change
in the electron density is
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FIG. 3. Electron density distribution obtained from the
composite-fermion Hartree calculation for simple 61ling frac-
tions in very sharp confinement. (a) Filling factor v = 1 state.
(b) Filling factor v = 1/3 state. Dashed line: Rezayi-Haldane
calculation for Laughlin mave function; full line: compos-
ite-fermion Hartree calculation. (c) Filling factor v = 1/5
state.

bp(x) e ~ "cos(q'x).

The electromagnetic response function for the frac-
tional states has been calculated by Simon and
Halperin by using the random-phase approximation
(RPA) for composite fermions. I use their results, ne-
glecting the eKect of Coulomb interaction and the renor-
malization of the composite-fermion mass. When there
is only one ulled band for composite fermions the static
density-density response function is

2g
Igloo(q) = (i7)

27rM, tu, KQZi + 1) —$2Zp(Z2 + 1)j

where the number of attached flux quanta P = —2k
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for the f'ractions 1/(2k + 1), Au, = ur, /(2A: + 1) is
the cyclotron &equency for composite fermions, and Z~
are functions of q as defined in Ref. 39. By perform-
ing an analytic continuation of Eq. (17) to the com-
plex plane one can see that this function has a pole at
q (1.3 + 0.6i) l~ for P = —2 corresponding to v = 1/3
and q (1.1 + 0.5i)l~ for P = —4 corresponding to
v = 1/5. This pole leads to damped oscillations in the
induced change in the electron density of the form (16).
The inclusion of Coulomb interaction and the renormal-
ization of the composite-fermion mass shift the position
of the pole in the complex plane but the qualitative pic-
ture remains the same.

IV. RESULTS FOR THE v = 1 EDGE
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FIG. 4. Results of the Hartree calculation for the v = 1
edge for different sharpness of the confinement potential
parametrized by a. Composite-fermion energy spectrum is in
the left column (dashed line denotes the Fermi level), aud the
electron density distribution is in the right column (dashed
line shows the neutralizing background). Energy is given in
the units of efFective cyclotron frequency. (a) a = 0. (b)
a = 6l~. (c) a = 12l~.

The properties of the electron state at the Landau level
filling factor v = 1 in the bulk can be understood mostly
&om the standpoint of noninteracting electrons. This
may not be the case at the edge of the system where
the filling factor falls slowly to zero as demonstrated in
experiments with nonideal contacts. The detailed struc-
ture of the edge is determined by the strength of the
con6nement potential, since it dictates the filling factor
gradient at the edge. The approach outlined in Sec. II
enables me to study the structure of the v = 1 edge in
terms of noninteracting composite fermions. Here I give
a physical interpretation to the results of the Hartree cal-
culation shown in Fig. 4. (Plots are restricted to the right
edge only because of the symmetry of the problein. )

In the case of a very sharp edge (a l~) the confine-
ment energy dominates over the electron-electron interac-

tions. Consequently, the one-electron picture gives an ad-
equate description of the edge: a single one-dimensional
edge channel is formed at the intersection of the Landau
level and the Fermi level. In the composite-fermion de-
scription the v = 1 state corresponds to a single filled
Landau level in the reversed e8'ective magnetic field. At
the edge this level intersects the Fermi level, forming a
single channel as illustrated in Fig. 4(a). The higher
composite-fermion Landau levels remain un6lled. The
self-consistent energy spectrum obtained in the Hartree
calculation can be understood by solving a one-particle
problem. ' Since the effective magnetic Geld follows the
electron density profile, composite fermions Gnd them-
selves in a steplike magnetic field. In the Landau gauge
the vector potential is A = Bo~x~, where z is the dis-
tance from the edge. The problem is reduced to a one-
dimensional Schrodinger equation similar to the uniform
magnetic field case. However, the efFective potential in
this equation has two potential wells at large momenta.
This leads to the existence of a degenerate pair of states
centered at positive and negative x. The degeneracy is
lifted by the confinement potential. But it is important
to remember that the momentum of a given state only
determines its distance from the zero magnetic Geld line.
States with the same momentum may be on difFerent
sides of this line. To get an idea of the energy spectrum
in real space it is useful to reQect every other energy band
around the intersection of the lowest one with the Fermi
level.

For larger a there must be a Gnite width region with the
filling factor between 1 and zero. In the one-electron ap-
proximation this implies a huge degeneracy of the states
at the edge. The composite-fermion approach allows me
to resolve this problem. The self-consistent Hartree en-
ergy spectrum for a = 6l~ is presented in Fig. 4(b). The
main difference from the sharp confinement case is the
descent of the second Landau level below the Fermi en-
ergy. Again, this result follows &om the solution of the
one-particle problem for composite fermions. The effec-
tive magnetic Geld variation may be approximated by
a constant gradient. The spectrum obtained by solv-
ing this problem ' ' with the confinement potential is
very close to the one in Fig. 4(b). The descent of the
Landau level is because of the reduction of the cyclotron
energy in the vicinity of v = 1/2. As the composite-
fermion band touches the Fermi level a pair of &actional
channels is formed. It is not clear how to identify these
channels with any particular 6lling &action since there is
no incompressible state in between.

For larger a higher composite fermion bands become
occupied, giving rise to additional pairs of channels. In-
compressible states are formed between the channels as
shown in Fig. 4(c) . When the incompressible regions are
wide the energy spectrum in momentum space can be
mapped to real space. Since the efFective magnetic Geld
for composite fermions changes sign at v = 1/2 the de-
pendence of coordinate on momentum is double valued.
The position of the states belonging to the odd-numbered
bands is given by their momentum up to a factor of the
magnetic length. The position of the states in the even-
numbered bands can be obtained roughly by reflecting



DMITRI B. CHKLOVSKII 51

these bands around the v = 1/2 line (see Fig. 1). This
allows me to identify the channels by the filling fractions
between them. The second band gives rise to the 1/3
channel (between v = 0 and v = 1/3) while the third
band produces the 2/3 channel (between v = 2/3 and
v = 1). According to the composite-fermion picture there
are also three channels between v = 2/3 and v = 1/3.

As shown in Fig. 4 the composite-fermion approach
&actional channels are formed in pairs as the confinement
is relaxed, in agreement with the prediction by Wen.
The formation of the Grst pair of &actional edge chan-
nels is reminiscent of the edge reconstruction proposed by
Chamon and Wen. However, the physics is very differ-
ent here. Electron-electron correlations are responsible
for the formation of the fractional channels as opposed
to the exchange interaction producing a pair of integer
channels in the edge reconstruction model. In order to
determine the relationship between the two effects a so-
lution that takes into account both exchange and corre-
lations is needed.

As the edge becomes very smooth the one-particle
composite-fermion approach must break down because
the filling factor is expected to vary smoothly between
any two principal sequence filling factors. This calls for
the transformation to the next generation of composite
fermions. A simple calculation shows that a range of con-
finement strength exists where the one-electron descrip-
tion fails while the one-particle approach for composite
fermions of the principal sequence is still valid. The main
reason is that composite fermions of the higher genera-
tions experience a stronger gradient of the effective mag-
netic Geld at the same density gradient. The calculation
is similar to the one given for higher Landau levels in
Sec. VI.

At this point I would like to address the effect of dis-
order on the edge structure. In the case of short-range
disorder fermions may scatter between different channels,
making it a complicated problem. However, when disor-
der is long ranged a simple model emerges. A superpo-
sition of the slowly varying disorder potential and the
confinement potential can be modeled by a background
charge with width a varying slowly along the edge. By
treating the problem adiabatically one gets the number of
channels varying along the edge. It is clear that the chan-
nels corresponding to the higher effective Landau levels
become localized in the regions of smooth edge (large a).
The number of delocalized channels is determined by the
steepest confinement region (sxnallest a).

VI. QUASICLASSICAL APPROXIMATION

For a very smooth edge, a )& AH, the number of flied
composite-fermion bands is large, allowing me to use the
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1/3 state and from the 1/3 state to 0 with compressible
regions in between.

I use the composite-fermion approach to address this
controversy. Results of the calculation are shown in Fig. 5
for different sharpness of the confinement potential. In
the case of the sharp edge, a = 0, there are clearly two
edge channels, in agreement with MacDonald's model.
However, I do not find any region with the filling factor
close to 1. Therefore it is not clear how to identify these
channels.

As the confinement is relaxed, Fig. 5(b), the third
composite-fermion energy band descends and crosses the
Fermi level. This signals the formation of a pair of edge
channels. Further smoothing of the confinement leads
to the formation of the incompressible v = 1/3 state,
Fig. 5(c). The electron density distribution is in agree-
ment with the Chang-Beenakker picture. One can see
incompressible regions corresponding to v = 1/3 and
v = 2/3 and compressible regions between them. How-
ever, according to the composite-fermion approach there
are four channels in this case: one of them is located
between v = 1/3 and v = 0, and the other three are
between v = 1/3 and v = 2/3. As the edge becomes
smoother higher bands must become occupied, reflecting
the formation of new &actions at the edge in analogy
with the v = 1 edge discussed in Secs. IV and VI.

V. RESULTS FOR THE v = 2/3 EDGE
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Wen has shownss that the v = 2/3 quantum Hall state
must support more than one branch of edge excitations.
Two, seemingly incompatible, theoretical models have
been proposed to explain the detailed structure of the
composite edge. The first model, due to MacDonald,
claims the existence of two excitation branches and the
absence of the v = 1/3 state at the edge. The second
model was proposed by Beenakker and Chang. In
their picture there is a transition &om the 2/3 state to the

FIG. 5. Results of the Hartree calculations for the v = 2/3
edge for different sharpness of the confinement potential
parametrized by a. Note the transition from the MacDonald
to the Chang-Beenakker picture as the confinement is relaxed.
Composite-fermion single-particle spectrum is in the left col-
umn (dashed line denotes the Fermi level), and the electron
density distribution is in the right column (dashed line shows
the neutralizing background). Energy is given in the units of
efFective cyclotron frequency. (a) a = 0. (b) a = 31~. (c)
a = 8lH.
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Hall state. The theory is based on the composite-fermion
approach and describes the evolution of the edge as the
steepness of the confinement potential is varied. When
the width of the compressible strip is of the order of sev-
eral magnetic lengths, the composite-fermion Hartree ap-
proximation is used to find numerically the density distri-
bution and the energy spectrum for composite fermions.
This allows me to predict the number of fractional chan-
nels for a given confinement potential. The direction of
propagation and the detailed structure of the excitations
in these channels require further study.

In the asymptotic limit of a wide compressible strip
the number of channels can be found quasiclassically. It
is given by Eq. (22), assuming that the density gradient
is roughly constant. The result gives an upper bound on
the highest fraction that can be observed in the FICHE
for a given strength of long-range disorder. Damped den-
sity oscillations at the edge are found for Ailing factors
v = 1/(2k+1) in the case of sharp confinement. They are
related to the pole in the linear response static suscep-
tibility derived in the RPA for composite fermions. The
v = 2/3 edge structure is found to depend strongly on the

steepness of the confinement potential. The transition
from the MacDonald to the Chang-Beenakker picture is
observed when the width of the edge is 3l~.
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