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Ballistic propagation of interface optical phonons
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We discuss a spatial propagation of interface optical phonons in semiconductor heterostructures.
Starting from a quantum kinetic equation for the nondiagonal phonon density operator, we derive
the wave-packet presentation for the phonon amplitude for the pure initial phonon state. For small
wave vectors, the group velocity determining the speed of the packet can exceed substantially the
speed of sound and the wave front can propagate a distance of several micrometers before decay of
the optical phonons. The possibility of experimental observation of the e8'ect is discussed.

The propagation of acoustic waves and phonons has
been studied extensively and has found numerous practi-
cal applications. Recently a number of experiments have
been performed on the generation and propagation of co-
herent acoustic phonons with energies in the meV range.
On the other hand, the optical phonons practically do not
propagate because of their weak dispersion. In fact, op-
tical phonon frequencies &uk are changed substantially for
the wave vectors k 7r/d, where d is a lattice constant,
and the optical phonons could propagate only at few lat-
tice constants before their decay.

The situation is different for heterostructures where
the optical phonons can be quantized. While confined
and semibound phonon modes have practically the same
constant frequencies as the materials to which they are
confined, there also exist interface optical phonon modes
with frequencies intermediate between those of the mate-
rials forming the interface. In heterosystems with a char-
acteristic distance a, such as multiple heterostrurture (a
is the separation between the interfaces) or a quantum
wire (a is the diameter), the phonon frequency changes
substantially as the wave vector k changes from zero to
1/a. Therefore, the interface optical phonons can possess
comparatively high group velocities of order of A~a.

In this paper, we consider theoretically the eKect of a
free spatial propagation of the interface optical phonons
in semiconductor double heterostructures. Our results
call attention to the possibility of the high-speed propaga-
tion of the interface phonons in spatially inhomogeneous
structures. Furthermore, this treatment suggests that in-
terface phonon propagation velocities are large enough to
cause a substantial modification in the temporal evolu-
tion of the electronic and optical processes in heterostruc-
tures.

We consider the evolution of a spatially localized dis-
tribution of phonons with the dispersion wk. In order to

obtain an adequate description of phonon propagation we
derive the kinetic equation for the phonon density matrix
in the plane wave basis. It is important to note that the
inhomogeneous distribution of phonons is governed by
nondiagonal components of the density operator.

The Hamiltonian of noninteracting phonons is equal to

'8 = ) Rui, bkbk,
k

where bk and bk are phonon creation and annihilation
operators. The equation of motion for the phonon mi-
croscopic density operator

nkk' —6k, bk

is given by

t9nkkt
th = [nag~, '8]

Bt

Substituting Eqs. (1) and (2) into (3) and performing the
necessary commutations, we find the kinetic equation for
the density operator nkk .

Note that Eq. (4) describes the kinetics of any noninter-
acting boson or fermion system described by the Hamil-
tonian in Eq. (1).

Introducing the ensemble-averaged macroscopic den-
sity matrix ni, kl = (n~i, l), where the average is taken
over the phonon ensemble, we write the solution of Eq.
(4) in the form

Subsequently, the observable phonon density (per unit
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volume or area) is given by the diagonal part of the den-
sity matrix in the coordinate representation

nkk (0) = n~(0) n& (0) . (7)

Substitution of Eq. (7) into Eqs. (5) and (6) produces the
following result for the phonon density:

N(r t) = lu(r t)I' (s)

N(r, t) = n(r, r', t) = l: ) e" l nag (t) . (6)
k,k'

Here v = 1, 2, 3 is the dimensionality of the system and
8 is a normalization length.

Equations (5) and (6) give the complete description of
phonon evolution from any initial state ng g~(0). In this
study, we limit ourselves by the consideration of a pure
initial state and choose the initial density matrix in the
form

limiting transition t, r m oo, while r/t is a constant. A.
a large time t the dominant contribution to the double
integral in Eq. (13) occurs in the vicinity of the stationary
phase points, where

(15)

These conditions given in Eq. (15) imply k = kg, where

kg is a solution of equation

(16)

and y = 0 (p = vr) for an increasing (decreasing) disper-
sion w(k).

We consider two most important cases corresponding
to the saddle points of the phase Q: (i) w'(k) & 0 and
u" (k) ( 0 and (ii) u'(k) ( 0 and w" (k) & 0. In the erst
case the Hessian of the phase is equal to g" = (kg w" (kg)
and the phonon amplitude at t ~ oo is equal to

where the phonon amplitude is given by a wave packet
of the plane wave components uo(k(, 0)

2'
k i[kgb —~{kg) t]

«l~" (4) I

(17)

u(r, t) = (2~) " d"k uo(k) e'~"'

with the spectral density equal to uo(k) = 2 ~ ng(0).
We normalize the density matrix with respect to the

total energy E injected into the system:

(io)

the amplitude for the second case can be obtained from
Eq. (17) by changing uo(kg, 0) to uo(kg, m'). For an
isotropic initial phonon distribution uo(k, p) = uo (k), the
phonon distribution function of Eq. (8) then reduces to

k( I«(k() I'

(2vr) « lu)"(kg)l

Introducing the mean phonon energy m by

(d = (dk'Akk

k

we can rewrite Eq. (10) in the form

) nag ——Np,
k

where No ——E/Ru is the actual number of phonons cre-
ated. In terms of the phonon density N(r, t), the nor-
malization condition given in Eq. (11) takes the form

d rN(r, t) =Np. (i2)

u(r, t) = (2~)

where the phase in the exponent is given by

@(k,y) = (k cos y —u(k) (14)

and the vector g = r/t is introduced to facilitate the

Let us analyze in more detail the asymptotic behavior
of the phonon amplitude u(r, t) at a large time t in the
case of two-dimensional propagation (v = 2). Rewriting
Eq. (9) in polar coordinates we obtain

To illustrate the applications of the obtained expres-
sions, we consider the propagation of interface phonons
in a double heterostructure with a distance a between
the interfaces. The inner material has dielectric func-
tion sq(u) and the outer ones are characterized by the
dielectric function cz(u), where

(d —(dL .2 2

Ei (d =6~i 2 2
Ca) Ti

i = 1, 2 is a material index, r; stand for the high-
frequency dielectric constants, and wL, i and ~Ti are the
longitudinal and tranverse bulk phonon frequencies in
the corresponding materials. In the dielectric continuum
model, the frequencies of the two symmetric interface
phonon modes ~g~ are found from the solutions of the
dispersion equation

ka
s~(cu) tanh —+ s2(ur) = 0

2
(20)

and the dispersion relation for two antisymmetric modes
u~~ is obtained from Eq. (20) upon interchanging sub-
scripts 1 and 2.

We choose the initial phonon spectral density in the
form of Gaussian with effective width 8:

«(k) = +4~NO h exp( —b k'/2) .

The corresponding initial spatial distribution is also a
Gaussian,
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N(r, 0) = (No/7rb ) exp( —r /h ) .

Note that uo(k) and N(r, 0) in Eqs. (21) and (22) are
normalized to the total number of created phonons Ng
according to conditions in Eqs. (11) and (12). Substi-
tuting the spectral density in Eq. (21) into Eq. (18), we
G.nd the Anal expression for the evolution of the Gaussian
distribution in the limit of large time t:

1.5-

Nog2 k~ exp( —b'k&)
N(r, t) =

vr rti a~(kg)i
(23)

Here ( = r/t and kt is defined by Eq. (16).
For numerical calculations we choose the parameters

of the AlAs/GaAs/A1As double heterostructure:2 a~I, i ——

36.2 meV, ~Tq ——33.3 meV, uL, 2 ——50.1 meV, uT 2
——44.8

meV, e q
——10.8, and c 2 ——8.16. In Fig. 1 we present

(a) the frequencies ar/(k) and (b) the group velocities
ai'(k) of the interface phonon modes. The subscript j
denotes four existing interface phonon modes in the dou-
ble heterostructure, j = S+,S—,A+, and A —. Note
that the group velocities ar'(k) are proportional to the
distance a between the interfaces. As a is increased, the
frequencies ax~ (k) will approach the values uy of the sin-
gle heterostructure everywhere except in the wave vector
region k & I/a. Therefore, an increase of the separation
distance a leads to the narrowing of the spectral region
of the propagating waves with a simultaneous increase
in the propagation velocities ai'. (k). For a heterostruc-
ture with a on the order of a few hundred angstroms, the
group velocities of the interface phonon modes can be
substantially larger than the sound velocity of the mate-
rial.

Figure 2 demonstrates the spatial phonon distribution
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function 1V~(r, t) for four interface modes j at time t =
10 ps. In accordance with Fig. 1(b) the fastest modes are
S+ and A+, while S—is the slowest one. Figure 3(a)
presents the spatial distribution for the fastest S+ mode
at initial moment 4=0 and t =5, 7, and 10 ps. The peak
values gradually become smaller with time due to the
propagation in a two-dimensional structure as indicated

FIG. 2. Dimensionless phonon densities N~(r, t) a /No for
the interface modes versus dimensionless distance r/a. Time
t = 10 ps; initial wave-packet width 8 = 3a.
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FIG. l. (a) Cyclic frequencies ~~./2vr and (h) normalized
group velocities (du~/dk)/a for interface phonons versus di-
mensionless wave vector ka. Solid and dashed lines corre-
spond to j = S+, S—and j = A+, A —,respectively.

FIG. 3. Dimensionless phonon density N(r, t) a /No for
the S+ mode versus dimensionless distance r/a. (a) Time
t = 0, 5, 7, and 10 ps; initial wave-packet width 8 = 3a. (b)
Time t = 10 ps and h = a/2, a, 3a, and 10a.
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in Eq. (12). Figure 3(b) illustrates the inHuence of the
initial width b on the form of the wave packet for the
S+ interface mode. An interesting point to note is the
fact that the spatial spread of wave packet at t =10 ps
is smaller with a larger b (see 8 = 10a). This is because
the wave packet with a larger initial width in real space
has a smaller spread in momentum space. As b increases,
the partial contribution of wave components with small q
having velocities close to the maxiinal one w'(0) increases
and the wave packet becomes more concentrated near the
wave front at r = ur'(0) t

Let us discuss now the possibility of the experimental
observation of the proposed effect. The spatially localized
phonon wave packet can be generated due to emission
by hot electrons, directly by a laser beam in a pump-
and-probe Raman-type experiment, or by the impulse
method. Since these methods involve sample illumina-
tion by a spatially localized light beam, the width of the
packet cannot be substantially smaller than one-half of
the light wavelength A/2. For an experimental obser-
vation, the propagation distance of the phonons should
exceed the initial spread of the packet, therefore, the dis-
tance a between the interfaces should be comparable to
A/2. Note that only the long-wavelength phonons with
k ( 1/a propagate substantially.

In reality the propagation of the optical phonons is
limited by their decay and scattering. Since we consider
long-wavelength phonons, the scattering by short-scale
structural imperfections is negligible and the propaga-
tion length is limited by the decay of the interface optical
phonon into two acoustic phonons with a characteristic
decay time w of the order of that for the bulk optical
phonons: ~b„ii, 10 ps. Taking the A1As/GaAs/A1As
double heterostructure with the distance between the in-
terfaces a = 1000 A, we find that the group velocity
for the S+ interface mode is dw/dk 400 km/s for the
phonon wave vectors k + 10 /cm. Therefore the wave
front of the packet will propagate a distance of a few
micrometers before its decay.

Another possibility for an experimental verification of
the effect is a time-resolved observation of emitted sec-
ondary acoustic phonons. Because the acoustic phonons
are generated by the decaying interface phonons which
propagate at large speed, the secondary acoustic phonons
will reach an observation point at times smaller than

that for an acoustic wave propagating from the excita-
tion source. Other approaches may include a strongly lo-
calized one-dimensional wave packet of interface phonons
that can be generated by a one-dimensional electron gas
confined vertically between the interfaces and horizon-
tally by electrostatic modulation of the potential by a
corrugated gate. An exchange of the interface optical
phonons between two one-dimensional electron gases can
provide an efEcient mechanism of the momentum and
energy transfer between two spatially separated electron
subsystems. The effect of the mutual drag between elec-
tron gases in parallel quantum wells due to the Coulomb
interaction and acoustic phonons exchange has been ex-
perimentally observed in Ref. 9.

Finally, we discuss the limiting transition to large dis-
tances between the interfaces, a ~ oo. With an in-
crease of a the phonon frequencies tend to their limits
for the single interfaces u~ and the group velocities tend
to zero for all wave vectors k except the vanishing re-
gion k ( 1/a. The group velocity of phonons from this
region increases proportional to a. Since the dispersion
relations for the interface phonons were derived on the
assumption of a static electric field, our consideration is
limited by phonon speed much less than the speed of the
electromagnetic wave in the material. Since the scatter-
ing of the long-wavelength phonons by the uncontrollable
short-scale lattice imperfections is small, the broadening
of the phonon dispersion curve is of the order of the in-
verse decay time w 10 ps and the group velocity dw/dk
remains well defined in the limit of small k. We note,
however, that with an increase of the separation distance
a, the fraction of the propagating interface phonons will
decrease as 1/a in comparison with the nonpropagating
confined and half space optical phonons.

In conclusion, we have theoretically considered the ef-
fect of the propagation of dispersive interface optical
phonons in inhomogeneous structures. Our estimations
show that the long-wavelength interface phonons can
propagate a distance of several micrometers before the
decay and the eIIect can lead to a modification of the
temporal behavior of an electron system.
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