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Theory of photoluminescence of magnetopolarons in quantum wells
containing high densities of electrons
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We present a theory of photoluminescence in the presence of a quantizing magnetic field for a
quasi-two-dimensional electron gas interacting with the lattice assuming a weak Frohlich interaction
with bulk longitudinal optical (LO) phonons. Unlike in the conventional cyclotron resonance, the
calculated photoluminescence spectrum for high electron concentrations exhibits strong renormal-
ization due to the resonant electron-phonon coupling between two quasiholes in conduction Landau
levels whenever the LO-phonon energy is close to the energy di8'erence between any two occupied
Landau levels. The high electron concentration is necessary to push the Fermi energy well above
that of LO phonons. The screening of the electron-phonon interaction was included within the
static random-phase approximation and the finite extent of the electron wave function in the quan-
tum well was accounted for. The calculated spectra are in excellent agreement with experimental
photoluminescence data for GaAs/In Gai As/Al„Gai „As quantum wells.

I. INTR, ODUCTION

The motion of electrons and holes in polar semicon-
ductors is affected by their coupling to the polarization
field of longitudinal-optical (LO) phonons. The effects
of this electron-phonon interaction has the most pro-
nounced efI'ect in the presence of a quantizing magnetic
Geld when the multiple of the cyclotron frequency ~, ap-
proaches the optical phonon frequency ~Lo. During the
last decade, this resonant polaron effect has been the sub-
ject of considerable interest in two-dimensional systems
both experimentally and theoretically. Most eKort has
been devoted to the observation and theoretical descrip-
tion of the two-dimensional (2D) resonant polaron effect
in the cyclotron resonance in moderately populated con-
duction bands, despite the fact that cyclotron resonance
does not readily allow direct observation of the line split-
ting. In contrast, in samples with high electron concen-
tration (E~ ) RuLo), the resonant polaron effect can be
directly observed as the splitting of the magnetolumines-
cence lines. We calculate the magnetoluminescence spec-
trum for Al Gai As/In„Gai „As/GaAs quantum wells
and compare the results with the latest experiments.

Theoretical calculations of the cyclotron absorption
based on a one-polaron approximation predict en-
hancement of the resonant polaronic efFect in two-
dimensional systems when the magnetic field is perpen-
dicular to the semiconductor interface. This is due to
the lack of momentum conservation in the direction per-

pendicular to the interface. Experimentally, it has been
found that depending of the particular sample the pola-
ronic efI'ects in cyclotron resonance are enhanced in some
situations and reduced in others ' as compared
to equivalent experimental studies of bulk 3D semicon-
ductor systems. In real quasi-two-dimensional systems,
the finite extension of the wave function perpendicular
to the interface tends to reduce the efI'ective coupling
strength up to its three-dimensional limit. A fur-
ther reduction is caused by the presence of electrons in
the conduction band ( 10 cm ), which leads to both
Pauli blocking of scattering states necessary for the po-
laron interaction to be effective (occupational effect) and
screening of the electron-phonon interaction.

Cyclotron resonance experiments have important lim-
itation as far as investigation of the resonant polaron is
concerned. The lattice absorption (reststrahlen band)
limits the possibility of direct observation of resonant
splitting and as a result in the majority of experiments,
only the relatively small changes of the cyclotron efFec-
tive mass below and above the resonance have been ob-
served. Occasionally, while the splitting cannot be ob-
served directly, the theoretical Gt to the data can give
the effective mass within the reststrahlen band. An im-
portant exception here is InSe system where the electron-
phonon interaction is sufficiently large to push the cy-
clotron resonance lines outside the reststrahlen band.
The resonant splitting of absorption line can also be ob-
served for impurity states.
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The lattice absorption problem can be entirely avoided
by performing interband optical experiments in which
photon energy is much larger then the cyclotron energy.
However, the occupational effect in interband absorption
experiments (if carried out in the presence of significant
free carrier densities) influences measurements in a man-
ner similar to that found in cyclotron resonance exper-
iments. It quenches the resonant polaron coupling by
blocking emission of LO phonons when the filling fac-
tor of the lower Landau level approaches one. This phe-
nomenon restricts usefulness of absorption methods to
the study of polaron coupling between nearly empty lev-
els if the resonant coupling is to be observed at close to
its full strength.

On the other hand, as demonstrated in Ref. 1, in-
terband magnetoluminescence experiments reveal strong
polaron coupling between quasiholes in filled conduction
Landau levels and the presence of electrons at high den-
sities is essential so that E~ ) Acuz, ~. The resonant split-
ting can be directly observed: experiments in modulation
doped Al Gai As/In&Gai „As/GaAs quantum wellsi
which are the motivation of our calculation, produce a
rich spectrum of anomalies due to the resonant polaron
coupling in magnetic fields satisfying ~i,o --JV~„where
A is a positive integer.

The comparison of theory and experiments in the case
of cyclotron resonance experiments was restricted to the
comparison of polaron efFective masses. In the case of the
interband magnetoluminescence experiments, the spec-
trum is qualitatively changed and it is possible to di-
rectly compare the splitting of observed lines. In Sec.
II, we employed memory function formalism to calculate
the photoluminescence spectrum; memory formalism was
used before to calculate polaronic effect in cyclotron res-
onance absorption. The calculation of the screening is
outlined in Sec. III. Our numerical results are discussed
and compared with experiment in Sec. IV.

and the valence state v, Nk are the conduction electron
quantum numbers (Landau gauge), hz = R—a+Eg —e„+
ir, e ( 0 is the valence electron energy measured from
the top of the valence band, and cNk is the annihilation
operator of conduction electrons. (()) is the canonical
average over the system of electrons and phonons.

The evolution of c~g (t) is governed by the electron-
phonon Hamiltonian:

where
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(i ) is the electron wave function in the efFective
mass approximation, bq is the phonon annihilation op-
erator, 0 is the volume of the system, e'o (s ) is the
static (high frequency) dielectric constant of the host.

Equation (1) for the photoluminescence function can
be simplified due to the fact that ((c~,„, (t)c~k (0))) is by

symmetry diagonal in k k' and is also diagonal in NN'
in the lowest order in the phonon-electron interaction [cf.
Eq. (17)]. In this case,

H —) Rt)+ c~y c~g + All)j o ) 6 6q

Nk q

+ ) &+K'K(kz, q) c~ i, +q cNk. (bq ~ q)~ (2)
NN'k q

II. CALCULATION OF PHOTOLUMINESCENCE
P(~) = —,Im). IB~i., (Q e)I Giv(z) (7)

The system we consider consists of a single quantum
well con6ning the motion of electron in the z direction, in
a strong magnetic field perpendicular to the layer. The
concentration of conduction electrons in the well is as-
sumed to be such that only the lowest subband is occu-
pied, so that the motion of electrons in the z direction
is described by a single envelope function p(z) in the
efFective mass approximation.

In the presence of a single hole in the valence band, the
probability of emission of a photon with the wave vector
Q, energy Ru and polarization e can be obtained from
the Fermi Golden rule and recast in the following form:

G~(z) = i—((c .(t)c .(O)))

CNk CNk

We have introduced the Liouville operator L,

where G~(z) is the Laplace transform of the propagator
of a quasihole in the conduction band,

2
P(~) = ——Im )

Nk, 1V'k'

x(—i)

B~ ~. ,-(Q e) Bk~...(Q e) LA = —[H, A],
1

where [ ] is the commutator.
In the spirit of the memory function approach, we de-

fine the scalar product of two operators, A and B,
where B*& „(Q,e) is the matrix element of the electron-
photon interaction between the conduction state Nk (A

I
B) = ((A.tB)). (1O)
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The scalar product of two annihilation operators is pro-
portional to the Fermi distribution function fN

(cNIc
I

cN'k' ) —fN ~NN'()k k' ~

P = ) . I cN~. ) (cN~. I,
N

(12)

and write

1
+N(z) = (cNz P P c«z. )z —L

1'"'
z —S'lI' —Z(z) '"') ' (i3)

where

Z(z) = PLQ QLP
1

(14)

We can introduce a projection operator onto the conduc-
tion electrons states,

The magnetic length l = ghc/eB, L (x) are general-
ized Laguerre polynomials, qll is the component of the
momentum q parallel to the layer and

g(a) = j ~clio(z)l'c" * (21)

is due to the finite width of the electron layer.
The position of the photoluminescence lines can be

obtained directly from singularities of GN (z) given
by Eq. (18) without the knowledge of the coefficients
BN& „(q,e). These coefficients are only necessary if we
want to find selection rules and the relative strength of
the lines. In the samples we describe, however, some
selection rules (e.g. , AN = 0) are broken by disorder~
and since we do not include disorder in our approach, we
concentrate here on calculating the energies of the optical
transitions. It is worth noting that only occupied Landau
levels contribute to the self-energy Eq. (19) and, conse-
quently, the resonant magnetopolaron effect can occur
only if E~ ) fuupo.

and Q = 1 —P.
We calculate both PLP and Z(z) in the lowest order

in the electron-phonon interaction and obtain

(cN),. I
L

I
cN I.) = vN fN b—NN

and

(
1

ccc z ~Q W czzz).z — L (16)

1 Aq) VNcNcz (k~ ~ q) fN«
h2 (Z+ CcNz + WLON" q

+ VN N(k*, q),z + 4)Nil —~go

where

GN(z) =
z + u)N —EN(z)

where nq is the phonon occupation number. The inte-
gration over the angles of q produces hNN in Eq. (17),
justifying Eq. (7). Using Eq. (3) and neglecting the terms- n, (k&T «hcuLo) in Eq. (17), we obtain the final
expression for GN (z):

III. SCREENING

27t C
2

s(qll) = + (o)
q&oo

(22)

yl )
(q~~) is the response function for the ideal two-

dimensional noninteracting electron gas in a magnetic
field perpendicular to the layer

f t2q2
yl i(q ) = ' — Ct tsin sint e

h2 sr~ ( 2 )
x(LN [t qi((1+ cost)]

—(1 —fN)LN [I,'q~~ (1+cos t)]) (23)

and the form factor

Since it has been demonstrated that dynamic screen-
ing of the electron-phonon interaction gives results essen-
tially identical to those obtained with static screening,
we limit ourselves to the numerically simpler calculations
within the static screening approximation. The static
screening of the electron-phonon interaction is introduced
by replacing Vz with Vz/s(q~~) in Eq. (3). We have calcu-
lated the static dielectric function s(q~~) in the random-
phase approximation and obtained

N"
f.(q(() = dz Cz'e '"~ 'Iv (z)l'Iv (z')I'

and ¹! qll
q*

N" —N
(& q((l ~() (Nzz N) (l q((l') " E2)

(2o)

I&(q. ) I'
~qz 2 )= --" qll+q-

(24)

where g(q ) is given by Eq. (21). In Eq. (23), N is the
principal quantum number of the highest Landau level
containing electrons. It is given by N = Int(v/2), where
Int(x) means the integer part of x and v = 27rl2n is the
filling factor corresponding to electron concentration n.
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IV. NUMERICAL RESULTS

The resonant magnetopolaron effects in the photolu-
minescence process can be understood in the following
way. The initial state of the system consists of a number
of occupied Landau levels below the Fermi level in the
conduction band and a single hole in the valence band.
Under the resonance condition err, ~ —A'u, at least two
final states are possible if E~ ) Luj.o. Each one con-
tains a photon of energy Ru and (i) a quasihole in the
N, th conduction Landau level or (ii) a quasihole in the

= JV + N, Landau level and an optical phonon of
energy Lupo provided both N and N,' Landau levels
lie below the Fermi level. These two nearly degenerate
states are strongly mixed by the electron-phonon interac-
tion, which lifts degeneracy leading to the resonant mag-
netopolaron splitting.

The important difference between these magnetopho-
toluminescence experiments and the cyclotron resonance
experiments is that here two quasihole8 from different
filled conduction Landau levels are coupled by the LO
phonon, while in the cyclotron resonance two electrons
from nearly empty conduction Landau levels are coupled.

In the numerical work we included the efFects of the va-
lence band nonparabolicity by writing the unperturbed
transition energy in the form

n, = 1.6x 10 cm1460—

~~1440—
E

00
Q
t."1420—

1400—

10 12

V. DISCUSSION

FIG. 1. Predicted positions (solid lines) of the photolumi-
nescence lines and the experimental results for electron con-
centration n, = 1.60 x 10 cm (Ref. 1) (solid circles).
Dotted lines —unperturbed Landau level fan and its optical
phonon replica. (Note that only one hole level takes part in
the photoluminescence transitions. )

Ru=E +sou,
~

N + —
~

1

2)
heB ( ll heB ( 11
mhc ( 2) m&c ( 2j (25)

where Es is the band gap, m,* (m&) is electron (hole)
effective mass, and P describes the valence band non-
parabolicity. [The upper Landau fan in Figs. 1 and 2
is obtained by considering only the highest valence Lan-
dau level, i.e., by setting Nh = 0 in Eq. (25); the lower
Landau fan is the phonon replica of the upper one. ]

In Fig. 1, we present the comparison between the-
oretical positions of photoluminescence lines and ex-
perimental points for an asymmetric modulation-doped
Al„Gai „As/In Gai As/GaAs (y 0.23, z 0.1)
strained-layer quantum well (150 A. wide) with electron
concentration n, = 1.6 x 10 cm corresponding to
E~ 56 meV. In the calculation we used the following
values for the parameters: m* = 0.069mo, m& ——0.09mo,
P = 0.031 meV, RuLo = 36.7 meV, and the dimen-
sionless strength of the Frohlich interaction, o. = 0.068
[cf. Eq. (5)]. Only the absolute energy scale was adjusted
by varying Zs in Eq. (25): the best fit was obtained for
Eg = 1.40 eV. It is worth noting that relative energies,
in particular resonant polaron splittings, do not depend
on the value of Eg.

Figure 2 gives a similar comparison for a different sam-
ple with n, = 1.43 x 10i2 cm (E~ 50 meV). In
this case we took Eg = 1.41 eV. The agreement of exper-
imental points and theoretical curves is excellent. The
deviation of the experimental points at the highest ener-
gies from the expected straight line behavior in Fig. 2 is
probably due to the effect of depopulation of the highest
Landau level and is not included in our calculation.

Resonant splitting. The resonant magnetopolaron
splitting can be clearly seen in Figs. 1 and 2 for the mag-
netic field satisfying the resonant conditions cur, o Aw,
with A' = 2 to 6. At the exact resonance, the splitting
L~ of the photoluminescence line can easily be evalu-
ated in an analytic form. From Eqs. (3), (18), and (19)
we get

2Rt)z QA C~ ~r /JV (26)

where N,' —N, = A. Thus, in agreement with exper-
iment, the resonant splitting is larger for small JV, i.e. ,
for high magnetic field than it is for lower fields. Note
that in Eq. (26) the dependence of the magnitude of the
splitting on magnetic field is contained in both the coef-
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FIG. 2. As in Fig. 1, but for looser electron concentration
n. = 1.43 x 10' cm (Ref. 23).
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ficients C~ ~ and, through the resonance condition, in

the factor A' '~'.
Screening and occupational sects M. agnetolumines-

cence provides a useful experimental tool to separate ef-
fects of screening from occupational effects on magne-
topolaron coupling, in contrast with cyclotron resonance
experiments where it is dificult. ' If both levels N~ and
N,' are occupied, only the screening plays a role. This
is the case for the (N, = 0, N,' = 3) resonance from
Fig. 1 which has been magnified in Fig. 3. The solid line
gives the result with the static screening calculated in the
random-phase approximation, while the dashed line was
obtained by ignoring the screening. In the latter case,
the resonance polaron splitting becomes 50% larger in
disagreement with the experiment.

The effect of Landau level occupation is clearly visible
by looking at the following sequence of (N„N,'): (0,3),
(1,4), and (2,5) in Fig. 1. The resonant splitting is large
for (0,3), becomes small for (1,4), and disappears alto-
gether for (2,5), since the Landau level N,' = 5 is above
the Fermi level. (Note that E~ = 56 meV. )

Confinement. For the ideal two-dimensional system
with infinitely narrow quantum wells, the polaron effect
can be shown to be much stronger than for the three-
dimensional case. In real systems, the confinement is not
ideal and the polaron effect is diminished approaching
its three-dimensional value for very wide quantum wells.
We have used self-consistent wave functions in order to
obtain correct dependence on the quantum well width
(solid lines in Fig. 3). Chain lines show the resonant
splitting calculated for the infinitely thin layer without
screening. This should be compared with the result for
the finite width and no screening (broken lines), showing
some sensitivity to the width of the well.

Interestingly, when the screening is included, the re-
sults become much less sensitive to the width of the well.
Long-broken lines give the result for the infinitely thin
layer with the screening included. This somewhat un-
expected result can be explained by the fact that the
increased strength of the electron-phonon interaction is
compensated by the increased strength of the screening.
This compensation could be, in principle, tested experi-
rnentally.

In summary, we have calculated the energies of two-
dimensionally confined polarons in the presence of a mag-
netic field. perpendicular to the electron layer assum-
ing a weak Frohlich interaction with bulk longitudinal-

~415
2

~1410

1405
6

FIG. 3. Magnified region of the (N, = 0, N,' = 3) reso-
nance from Fig. 1. Additional lines show the results of the
calculation without screening (dashed), with the screening for
an infinitely thin layer (long-dashed) and without screening
for an infinitely thin layer (chain).

optical (LO) phonons. We have considered the case of
layers with high electron concentration with the Fermi
energy greater than the LO-photon energy, ~Lo and in-
cluded the screening of electron-phonon interaction in the
static random-phase approximation. We have used self-
consistent wave functions in the direction perpendicular
to the layer and included the nonparabolicity of the hole
states. The calculated photolurninescence spectra ex-
hibit strong renormalization due to the resonant electron-
phonon coupling whenever the LO-phonon energy is close
to the energy difference between occupied Landau lev-
els, i.e. , Ru1,~ A'Ru, where w, is the cyclotron fre-
quency. This renormalization splits the photolurnines-
cence lines into two components. The calculated spectra
are in excellent agreement with experimental data for
GaAs/In Gai As/Al„Gai „As quantum wells.
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