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Electronic structure of (Zn, Cd)(S,Se)-based polytype superlattices
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The local empirical pseudopotential theory in the S-matrix implementation was used to study the
structure of (Zn, Cd)(S,Se) polytypes considered as natural heterocrystalline superlattices. Hexagonal po-
lytype superlattices of (Zn, Cd)(S,Se) are predicted to be characterized by direct band gaps and have mini-

bands derived from evanescent bulk states, which collapse into the heterocrystalline interface bound
states or resonances above the valence-band edge. There is a linear relationship between various band

gaps and hexagonality h. The superlattice wave function is strongly localized in the cubic portions of su-

perlattice unit cell.

I. INTRODUCTION

Polytype (heterocrystalline) superlattices, along with
recently proposed twinning superlattices, ' present a type
of superlattices in which the coherent scattering of elec-
trons at interfaces and the formation of superlattice states
happens in a diff'erent way than with conventional super-
lattices, based on periodic changes of either composition
or doping patterns. Periodic variations in material corn-
position and the periodic electrostatic potential (in the
case of doping superlattices) are not the only way to in-
troduce electron scattering in semiconductors. There are
at least two different ways to make a single semiconduc-
tor material behave as an inhomogeneous structure; by
introducing periodic changes in the crystal orientation or
crystal structure. Periodically arranged twin stacking
faults or 180 twist boundaries are the scattering centers
for electrons in the case of twinning superlattices (they
may be viewed as purposely built-in periodic reversals of
atomic plane stacking sequences, for example in the [111]
direction of diamond-type and zinc-blende-type semicon-
ductors). On the other hand, heterocrystalline superlat-
tices consist of two different types of crystal structure, cu-
bic and hexagonal (or zinc blende and wurtzite) of the
same material, periodically repeated in the [111]direction
of the cubic and [0001] direction of the hexagonal lattice.
A common property of both heterocrystaHine and twin-
ning superlattices is the lack of stress and/or dangling
bonds, because the interface between two crystal struc-
tures or two crystal orientations is almost perfectly lattice
matched.

The polytypes of chalcogenides (Zn, Cd) (S, Se) can
spontaneously appear in nature, because the formation
energies of the two constituent crystal phases differ by a
very small amount. It is thus possible to consider them
as natural homomaterial heterocrystalline superlattices.
Although there has been no clear report on epitaxial
growth of heterocrystalline superlattices, more than 185
hexagonal and rhombohedral polytypes of ZnS have been
reported, mostly in synthetically grown crystals. Unfor-
tunately, laboratory-grown polytypes usually occur in the
form of needles or elongated plates, with the c axis, along

which the polytype periodicity varies, lying along the
length of the plate.

Polytype superlattices were studied some time ago in
the work of Dubrovskii and co-workers within the frame-
work of the relatively simple Kronig-Penney model. '

They have been considered as possible artificial superlat-
tice structures by Ren and Dow, where a tight-binding
supercell calculation of their electronic properties was
done, on the example of CdS. Interest in this field was re-
cently renewed, and more sophisticated methods were
used to calculate energy diff'erences between zinc-blende
and wurtzite crystal phases for all simple binary super-
conductors, structural and electronic properties of SiC
polytypes, ' electronic structure of Si and ZnS hetero-
crystalline superlattices, ' band offsets and their chemi-
cal trend for heterocrystalline junctions of various semi-
conductors, etc.

In addition to a purely theoretical motivation to study
polytipism and polytype (heterocrystalline) superlattices,
the reasons for the recently renewed interest in these
structures lie in the great potential of wide-band-gap
semiconductors to high-temperature and electro-optical
(ultraviolet and near-visible range) applications. Wide
band gaps are consequences of the covalent bonding
which guarantee good thermomechanical properties, with
SiC being the best example. On the other hand, the
bonds in chalcogenides are believed to be partially co-
valent and partially ionic. This implies that (Zn, Cd) (S,
Se) crystals are not as good in their thermomechanical
properties as SiC. However, there still exists a wide
range of standard electro-optical applications: CdS,
CdS Se, , and ZnSe are important materials for use in
light-emitting diodes (LED's) and lasers in green, red,
and blue ranges of the visible spectrum respectively
CdS is interesting for solar cells and n-doped CdSe is
found to be a promising material for heterojunction
wide-band-gap light emitters. '

In this paper we used the empirical pseudopotential
layer method in the S-matrix implementation' to study
the electronic properties of chalcogenides (Zn, Cd) (S,Se)-
based hexagonal polytypes, considered heterocrystalline
superlattices (the term hexagonal here refers to the type
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of the superlattice unit cell). These polytypes are the only
semiconductor materials, other than SiC-based ones, that
are at present known to exist under normal conditions.
The nature of the highest valence and the lowest conduc-
tion minibands, or more precisely, the superlattice state
wave function composition has also been determined.

II. METHOD AND THEORETICAL CONSIDERATIONS

Direct-band-gap chalcogenides semiconductors
(Zn, Cd) (S,Se) spontaneously show polytipism. The two
crystalline phases, the face-centered-cubic (or zinc-
blende) and hexagonal-close-packed (or wurtzite) may
coexist, because of the small difference of their internal
energies (of order 1 —3 meV/atom), and rather subtle
structural differences, which manifest as different layer
stackings of the cubic (111) or hexagonal (0001) planes.
The stacking sequences of cubic (fcc) and hexagonal (hcp)
materials are ABCABC. . . and AB AB. . . , while
ABCB. . . , ABCACB. . ., ABCAB ACB. . . , and
ABCABCBACB. . . are the sequences for 4H, 6H, 8H,
and 10H hexagonal polytypes, respectively. In this nota-
tion A, B, and C denote the two basis atoms of the primi-
tive unit cell. The system (polytype) is considered a
periodic repetition of a heterocrystalline superlattice unit
cell along the growth direction. One hexagonal polytype
superlattice unit cell consists of three layers, two cubic
(one of which is rotated by 180') and one wurtzite layer.
For example, the 6H polytype superlattice unit cell, as
shown in Fig. 1, contains one wurtzite monolayer and
two zinc-blende layers, both of which have two atomic
monolayers.

The method used in our calculations is the local empir-
ical pseudopotential theory, implemented via the S-
matrix method, ' ' adapted for heterocrystalline super-
lattices. The complex band structure and eigenfunctions
of both the propagating and evanescent states of constitu-
tive fcc and hcp portions in the superlattice unit cell are

calculated in the growth direction using the local empiri-
cal pseudopotential theory. The superlattice wave func-
tion in each crystal phase is expressed as a linear corn-
bination of the corresponding bulk states. These wave
functions and their derivatives at a given energy E and
parallel wave vector k~~ are matched at the interfaces be-
tween the two phases using the S-matrix approach, which
guarantees high stability against the evanescent states. '

After propagation along the full superlattice period, the
T matrix is reconstructed from the final S matrix, ' the
Bloch-like theorem is applied, the eigenequation is
solved, and the polytype superlattice miniband structure
is calculated. The coordinate origins in the zinc-blende
and wurtzite real-space unit cells are chosen so that the
position of each basis atom of one type (for example Zn)
goes into the position on an atom of the second type (for
example S) upon spatial inversion. With this choice,
structure form factors S and S are real. In order to
match correct values of wave functions and their deriva-
tives, interface planes are placed exactly in between two
atoms, as shown in Fig. 1. This choice is infIuenced by
the fact that the pseudopotential wave function contains
no characteristic atomic oscillations in the vicinity of the
ion, but outside the core region it is almost the same as
the real plane-wave-like wave function.

There is another interesting point concerning the plane
of wave-function matching, first noted by Ren and Dow,
stemming from the fact that the position of the zinc-
blende —wurtzite interface plane is not unambiguous, un-
like the case for conventional superlattices. This does not
lead to any ambiguity in calculating the miniband struc-
ture, provided some care is taken when writing the super-
cell tight-binding Hamiltonian, as shown in Ref. 5. We
shall demonstrate here that no ambiguity arises in our
bulk-based (not supercell) empirical pseudopotential cal-
culation. Take the 4H polytype, for example (or 2X 1 in
the notation of Ref. 5), having the stacking sequence
. . . ABCBABCBA. . . of atomic bilayers. One may now
choose the superlattice period as enclosed in square
brackets, starting at the position A:

. . . ABCB [( AB), ~(CB)„]ABCB. . . ,

4 ~

~ I

ZB

WZ

where the subscripts denote the crystalline structure of
atomic bilayers, the contents of the parentheses are as-
signed in accordance to their nearest neighbors, and the
bar denotes the position of the interface plane. Alterna-
tively, shifting the origin of the superlattice period by one
to the right, i.e., starting from the position B, the super-
lattice period would be

. . .BCBA [(BC) ~(BA), ]BCBA. . . ,

ZB

FIG. 1. The 6H polytype superlattice unit cell ( ABCACB)
contains one wurtzite (WZ) and two zinc-blende (ZB) layers. In-
terface planes are placed exactly in between two atoms.

and the interface plane is clearly displaced from the form-
er case. However, the structure of the superlattice period
in the latter case, if read in the reverse (i.e., —z) direc-
tion, coincides with the one in the former case. Since the
miniband structure does not depend on which direction
along the [111] axis is denoted as positive or negative,
there is no ambiguity in the calculation: once the super-
lattice period is chosen, its portions having zinc-blende or
wurtzite crystalline structure are uniquely determined.
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M(M, X,L) K (K) and crystal orientation, while we are interested in reveal-
ing those properties of polytype superlattices arising from
interface scattering and/or band mixing at
wurtzite —zinc-blende boundaries. Furthermore, the per-
centage of the total ~+sL~ accumulated in cubic and hex-
agonal portions of the unit cell can also be calculated to
qualitatively indicate the degree of charge transfer across
the heterocrystalline interfaces.

III. RESULTS AND DISCUSSION

FIG. 2. The zinc-blende —wurtzite interface Brillouin zone,
with mapping of some important bulk Brillouin-zone points.

The first Brillouin zone of the zinc-blende crystal phase
is the well-known truncated octahedron, while in the case
of wurtzite it is the simple hexagonal Brillouin zone. The
interface Brillouin zone, with mapping of some important
bulk Brillouin zone points, is shown in Fig. 2. The points
I, M, and K of the hexagonal Brillouin zone for wurtzite
are mapped onto the I, M, and K points of the interface
Brillouin zone, respectively. In the case of the zinc-
blende crystal phase, all six equivalent X points of the
first Brillouin zone are projected onto six distinct M
points. On the other hand, two of the eight equivalent L
points along with I are projected onto I, while other six
are projected onto M. Various states in the superlattice
Brillouin zone are accessed by presetting an appropriate
value of parallel wave vector k~~ (the in-plane projection
of the electron wave vector) within the interface Brillouin
zone, and the superlattice wave vector (ksL) comes out of
the calculation, thus giving the miniband structure.

It is important to point out that this method does not
belong to the class of ab initio supercells method, such as
first-principles pseudopotentials within the local-density
approximation. ' " As the superlattice period grows
large, they become computationally very demanding, and
generally produce unreliable band gaps. On the other
hand, the S-matrix layer method guarantee that both
short as well as long superlattice periods may be treated
in essentially the same way, without encountering any
computational problems, while empirical pseudopoten-
tials provide a realistic band structure. Other methods
have also been used to study polytype superlattices, espe-
cially for SiC. Energy-band structure and optical proper-
ties of both hexagonal and rhombohedral SiC polytype
superlattices were successfully studied within the simple
Kronig-Penney model in the work of Dubrovskii and co-
workers. It seems that the effective-mass-type calcula-
tion alone is not sufticient to explain all electronic proper-
ties of (Zn, Cd) (S,Se) polytype superlattices, since the two
crystal phases have very similar values of band gaps and
small band offsets. SiC polytypes were also studied by the
empirical pseudopotential method in the work of Backes,
Bobbert, and Haeringen in a way similar to that applied
to twinning superlattices. " Our model is obviously
different, since they consider a superlattice unit cell con-
sisting of pure cubic segments which differ only in size

TABLE I. Atomic form factors for hexagonal (wurtzite)
ZnSe in Ry.

0
3/4

2-2/3
3

3-5/12
5-2/3
6-3/4

8
8-3/4

9-5/12
10-2/3

11
11-5/12

12
13-2/3
14-2/3
14-3/4

—0.25
0.23

—0.20
—0.05

0.01

0.05
0.06
0.06
0.06

0.03

0.18
0.15
0.09

0.03

0.03
0.03
0.03
0.01
0.01

Numerical calculations for ZnS and Cd(S,Se) polytype
superlattices were performed using the Bergstresser-
Cohen set of empirical pseudopotential form factors,
since they give reasonably good values of various band
gaps in both crystalline phases of the materials. In the
case of hexagonal ZnSe, our proposal for the atomic form
factors for the corresponding values of squares of the
wurtzite reciprocal-lattice vectors is listed in Table I.
The symmetric form factors are initially obtained as the
average of the symmetric form factors for hexagonal ZnS
and CdS, since the lattice constant of ZnSe is found al-
most exactly between the lattice constants of ZnS and
CdS. The antisymmetric form factors are calculated in a
way similar to Bloom, using the zinc form factors from
Animalu and Heine and Harrison. After this calcula-
tion both symmetric and antisymmetric form factors
were slightly readjusted to fit the values of the form fac-
tors for cubic ZnSe from Ref. 21.

A complex band-structure calculation and interface
matching have been done with 19 two-dimensional plane
waves, which correspond to a set of 59 and 135 three-
dimensional vectors for cubic and hexagonal reciprocal
lattices, respectively. Because of the neglect of charge
transfer in our model, band offsets generally do not quite
agree with experimentally established values. That is
why it was sometimes necessary to introduce an external
parameter —a downward or upward shift of the band
structure of one constituent of the superlattice —as in
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Ref. 17. Since we are not presently aware of any experi-
mental data for band offsets at the wurtzite —zinc-blende
heterocrystalline interfaces, Murayama and Nakayama's
local-density approximation (LDA) calculations of the
band offsets at various heterocrystalline semiconductor
interfaces, including (Zn, Cd) (S,Se), have been consult-
ed. " It is interesting that our empirical pseudopoten-
tial calculation, except in the case of CdSe, gives values
for band discontinuities at the I point, hE and hE„
which are in very good quantitative agreement with the
values of Murayama and Nakayama obtained from first-
principles pseudopotential calculations. This result
confirms their thesis that charge transfer through hetero-
crystalline interfaces is very small, and that no dipole po-
tential appears at the interface, so that the band offsets
would be very small and determined only by the
difference between original energy levels in wurtzite and
zinc-blende crystal phases. In the case of CdSe, an exter-
nal downward shift of the hexagonal CdSe band structure
by V,&=0.08 eV can adjust only the valence-band offset,
leaving an incorrect value for the conduction-band offset,
or vice versa. This disagreement is probably the conse-
quence of an inadequate choice of atomic form factors,
but we expect that all major physical effects and their
trends should be revealed. The spin-orbit interaction is
not taken into account. However, the atomic form fac-
tors used in this paper ' ' are obtained to give band
structures in good agreement with the experimental data,
from which the spin-orbit coupling is artificially re-
moved. Actually, the energy of a level, degenerate
without the spin-orbit interaction, is taken as the average
of its component levels, weighted over their degeneracies.
Calculated energies at the points I, M, and X for both
crystal phases of (Zn, Cd) (S,Se), along with band gaps and
offsets, are listed in Table II. We should note that the
layer method employed in this work tends to give slightly

ZnS Cds ZnSe CdSe

ZB
r.
r,
X,
Eg

6.40
10.03
11~ 37
3.63

4.15
6.65
8.64
2.5

6.31
8.38

10.11
2.07

4.01
5.87
7.95
1.86

WZ
r.
r,
M,
Eg

6.43
10.09
11.45
3.66

4.18
6.72
9.15
2.54

6.34
8.47

10.22
2.13

4.04
5.87
8.41
1.83

Offsets
AE,
hE,

0.03
0.06

0.03
0.07

0.03
0.09

0.03
0.00

TABLE II. Energies at the symmetric points I, M, and X of
the bulk Brillouin zones for both the hexagonal (wurtzite) and
cubic (zinc-blende) crystal phases of (Zn, Cd) (S,Se). Band gaps
and offsets are also displayed. All the energies are in eV, and
are given as they came out of calculation, i.e., not measured
from any significant reference point.

smaller band-gap values than the Hamiltonian matrix di-
agonalization method used by Cohen and
Bergstresser.

The results of present calculations for (Zn, Cd) (S,Se)
hexagonal polytypes are given in Table III, while Fig. 3
shows the energy miniband structure of ZnS polytypes.
Calculations were performed for the I and M points of
the interface Brillouin zone, since the low-energy part of
the electronic structure is to be expected only near them.
The first two allowed conductions minibands along with
the first valence miniband are calculated at the I point,
while the first conduction miniband is calculated at the M
point. Values of the direct band gap and the lowest in-
direct band gap are also given in Table III. Polytype su-
perlattices based on (Zn, Cd) (S,Se) are obviously direct-
band-gap materials. This was to be expected since the
lowest indirect band gap in both crystal phases is much
larger than the direct one, so the band mixing can hardly
inhuence the character of the band gap. We have also
calculated the composition of the superlattice wave func-
tion normalized to 100% in the superlattice period. The
notation we use in Table III and Fig. 3 is as follows.
M, :(c,/cz) means that c, percent of the total I ~%'sL~ dz

is accumulated in zinc-blende layers, and c2 in wurtzite
layers, while the superlattice state is formed by the X
bulk state of cubic and M bulk state of hexagonal crystal
phases (both are projected onto the M point of the inter-
face Brillouin zone). By inspecting the data in Table III
we see that even in the case of 4H polytypes, where the
percentage of the hexagonal close packing is h =50%, su-

perlattice states are dominantly localized in zinc-blende
layers. This tendency becomes more noticeable with
lowering of hexagonality h, and for 10H polytypes more
than 80% of the total superlattice wave function is
confined in cubic portions of the superlattice period for
both conduction- and valence-band states. This is not in
accordance with the quantum-well —barrier picture,
which predicts holes to be localized in higher-energy
wurtzite layers. Also, the quantum-well —barrier model,
which is essentially the effective-mass-type calculation,
cannot explain the fact that first valence minibands in all
the polytype superlattices considered in this work are
formed entirely from the evanescent bulk states. In addi-
tion, the bottom of the first conduction miniband at I
and M, for some polytypes (see Tables II and III), is part-
ly below the bulk conduction-band edge of the cubic crys-
tal phase. This feature has already been observed in the
case of Si stacking fault systems, where bound states are
found 0.1 eV above the top of the valence band, and also
in the case of twinning superlattices, where minibands
formed entirely from evanescent bulk states are found
below the bottom of the conduction band at the I point.
For 4H polytypes we have calculated the top of the
highest valence miniband at the I point to be at
E +0.28, E +0.16, E +0.09, and E +0.15 eV for
ZnS, CdS, ZnSe, and CdSe, respectively, while the corre-
sponding bandwidths are 0.28, 0.15, 0.09, and 0.15 eV
(E, is the top of the valence band in the hexagonal crys-
tal phase). As the superlattice period increases, these
minibands collapse into single wurtzite —zinc-blende in-
terface bound states (or resonance) from which they actu-
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TABLE III. Allowed miniband energies and band gaps in (Zn, Cd) (S, Se)-based hexagonal polytype
superlattices 4H, 6H, 8H, and 10H. Values of the first or first two miniband edges, separated by a dash,
are given at I in the valence band (I „)and conduction band (I, ), and at M in the conduction band (in
the case of the valence band only the top of the second miniband is displayed). Numbers in parentheses
denote the composition of the first miniband state (the notation is explained in the text). All the ener-
gies are in eV, and are given as they came out of the calculation, the reference point having no
significance except that it is the same as in Table II, wherefrom we can see whether the miniband is in
the allowed or forbidden band of the constituent bulk semiconductors.

ZnS Cds ZnSe CdSe

M,
Edir
Eind

. . . —6.41
6.43—6.71

(76/24)
(67/33)

10.0—10.77
10.85 —11.48

(65/35)
11.32 —11.86

3.29
4.61

. . . —4. 12
4.19—4.34

(70/30)
(67/33)

6.65 —7.34
7.41 —8.21

(72/28)
8.99—9. 14

2.31
4.65

. . .—6.31
6.34—6.43

(73/27)
(68/32)

8.36—9.17
9.35—9.90

(63/37)
10.11—10.49

1.93
3.68

. . . —4.02
4.04—4. 19

(70/30)
(67/33)

5.85 —6.54
6.64 —7.42

(76/24)
8.28 —8.40

1.66
4.09

M,
Edtr

E iIld

. . . —6.41
6.45 —6.63

(82/18)
(80/20)

10.01 —10.42
10.47 —11.10

(75/25)
11.35 —11.51

3.38
4.72

. . . —4. 12
4.20 —4.27

(77/23)
(80/20)

6.65 —7.00
7.07—7.70

(92/8)
8.85 —8.93

2.38
4.58

. . . —6.32
6.35 —6.40

(80/20)
(81/19)

8.37—8.83
8.93—9.57

(75/25)
10.12—10.34

1.97
3.72

. . . —4.02
4.05 —4. 12

(75/25)
(80/20)

5.86—6.20
6.30—6.92

(91/9)
8.15—8.22

1.74
4.03

M,
EdlI

E ind

. . . —6.42
6.49 —6.59

(83/17)
(85/15)

10.02 —10.26
10.30—10.81

(75/25)
11.36—11.44

3.43
4.77

. . . —4. 14
4.21 —4.25

(79/21)
(86/14)

6.66—6.85
6.91—7.40

(96/4)
8.78 —8.80

2.41
4.53

. . . —6.33
6.36—6.39

(82/18)
(86/14)

8.37—8.65
8.73 —9.25

(81/19)
10.12—10.26

1.98
3.73

. . . —4.03
4.06—4.09

(77/23)
(85/15)

5.86—6.06
6.14—6.58

(96/4)
8.08 —8. 11

1.77
3.99

10H

M,
Edir

g
Eind

. . . —6.42
6.51 —6.57

(85/15)
(88/12)

10.02 —10.17
10.21 —10.59

(86/14)
11.37—11.42

3.45
4.80

. . . —4. 14
4.22 —4.24

(81/19)
(89/11)

6.66—6.78
6.82 —7. 15

(98/2)
8.73 —8 ~ 73

2.42
4.49

. . . —6.33
6.36—6.38

(84/16)
(89/11)

8.37—8.56
8.62 —9.02

(85/15)
10.12—10.21

1.99
3.74

. . . —4.03
4.06—4.08

(78/22)
(88/12)

5.86—5.99
6.05 —6.36

(98/2)
8.04—8.05

1.78
3.96

ally originate. This feature can be easily seen from Fig. 3,
where the first valence miniband becomes more narrow
with decreasing hexagonality. Consulting the data from
Table III, we found interface bound states at approxi-
mately 0.24, 0.08, 0.06, and 0.06 eV above the valence-
band edge (of the cubic crystal phase) for ZnS, CdS,

ZnSe, and CdSe heterocrystalline interfaces. On the oth-
er hand, the bottom of the lowest conduction miniband at
the I point is almost aligned with the bottom of the con-
duction band of the cubic phase, sometimes being 0.01 or
0.02 eV lower, except for CdS polytype superlattices.
This indicates that folded zones interact weakly and
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12-
Zns

p~
lg+ZFZ87&t~'7a~~ -o~~ '

(75/25) (80/20) (86/14)

10-
(67/33) (80/20) (85/15) (88/12)

9-
7 -t

(76/24)
v

(82/18) (83/1 7) (85/15)

4H 6H 8H 10H

FIG. 3. The miniband energy structure of hexagonal ZnS-
based superlattices, close to the 1 and M points. The first two
allowed conduction minibands, along with the first valence
miniband and the top of the second, are calculated at the I
point (solid lines), while the first conduction miniband is calcu-
lated at the M point (dashed lines). The composition of the su-
perlattice states at the top of the valence miniband at I, and at
the bottoms of the conduction minibands at I and M are also
given. The notation is explained in the text. The first valence
miniband is fully above the valence-band top of both crystal
phases (thick horizontal line represent the top of the valence
band of the cubic ZnS). It will obviously collapse into the
wurtzite —zinc-blende heterocrystalline interface bound state as
the superlat tice period increases.

create interminiband separation in the 100-meV range,
similar to that observed in conventional superlattices. In
the case of Zn(S, Se) polytype superlattices, the bottom of
the conduction miniband at the M point is aligned with
the conduction band at the X point of the first Brillouin
zone of the cubic crystal phase. This does not hold for
Cd(S,Se) polytype superlattices, since there exists a larger
energy separation between band edges at the X and M
points of the bulk, thus making the crystal-type
mismatch scattering at the interface less important than
the common well-barrier scattering. That is why the
trend of indirect band gap versus hexagonality h for
Cd(S,Se) polytype superlattices is just the opposite to the
trend for Zn(S, Se) polytype superlattices.

Energy-band-structure calculations show that strong
linear relationships exist between both direct and lowest
indirect band gaps and the hexagonality h in all polytype
superlattices considered in this work. More precisely, the
direct band gaps of all polytypes and the lowest indirect

band gaps of Zn(S, Se) polytypes decrease with the hexa-
gonality h, while the lowest indirect band gaps of
Cd(S,Se) polytypes increase with hexagonality. The abso-
lute value of the correlation coefficient

~

r
~

is between 0.99
and 0.999 in all cases. Such linear relationships between
the band gap and hexagonality were experimentally ob-
served for SiC polytypes and ZNS polytypes, which are
also characterized by an analogous linear relationship be-
tween birefringence and hexagonality. These linear rela-
tii.onships for SiC polytypes were successfully reproduced
by Backes, Bobbert and van Haeringen within the
empirical pseudopotential scheme, but within a different
model, as explained above. They also offer a simple but
logical explanation within a Kronig-Penney-like model.
Clearly, the one-dimensional Kronig-Penney model
which was used in the work of Dubrovskii and co-
workers ' cannot explain these linear relationships for
(Zn, Cd) (S,Se) polytypes. This is a consequence of the
fact that the effective-mass-type calculation cannot ac-
count for superlattice states formed entirely from evanes-
cent bulk states, and that precisely these minibands deter-
mine the values of band gaps. Similarly, these linear rela-
tiionships were not revealed in Ren and 13ow's supercell
tlight-binding calculations, which is probably the conse-
quence of the nearest-neighbor approximation.

IV. CONCI. USIQN

The electronic structure of chalcogenide (Zn, Cd) (S,Se)
hexagonal polytypes considered as natural polytype
(heterocrystalline) superlattices was analyzed within the
local empirical pseudopotential framework. These ma-
terials are important since they have a wide range of
electro-optical applications. The (Zn, Cd) (S,Se)-based
hexagonal polytype superlattices are found to be direct-
band-gap materials, with the values of the direct and the
lowest indirect band gap linearly dependent on hexa-
gonality h. They are also characterized by topmost
valence minibands entirely formed from evanescent bulk
states which originate from heterocrystalline interface
bound states. The superlattice wave function is found to
be localized in zinc-blende layers, for both valence- and
conduction-band states, indicating low charge transfer
through the heterocrystalline interface. None of these
properties can be explained in terms of the effective-
mass-type calculation. Finally, we may note that proper-
ties of the chalcogenide alloys polytypes, based on ter-
nary and quaternary compounds within the (Zn, Cd) (S,Se)
system, though not explicitly calculated here, may be es-
timated by interpolating between the results for the
binary compound presented.
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