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An approach has been suggested to integrate the superior properties of the ZnS semiconductor with
the mature technology of Si. In a semiempirical tight-binding scheme, the detailed calculations of elec-
tronic structure and optical properties of the (ZnS), /(Si,),, (110) superlattices are performed with a wide
range of n,m <20. A strong quantum confinement effect is found that causes the states at the
conduction- and the valence-band edges confined in two dimensions in the Si wells. For a valence-band
discontinuity AE,=1.9 eV given by Harrison theory, the band gap between the confined band-edge
states increases (2.37 eV at the X point for n =m =2) by decreasing the superlattice period. An empty
interface band is identified in the upper region of the gap, which extends over a quite different region of
k space. The influence of valence-band discontinuity has been checked for all possible energy ranges. It
is found that the dispersion and relative position of the interface band depend on valence-band discon-
tinuity, but it does not disappear from the gap. Furthermore, the absorption spectra of the superlattices
are calculated, which are found to be quite different from those of bulk ZnS and Si, but fairly close to
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their average.

I. INTRODUCTION

During the last few decades the potential for hybridiza-
tion of compound semiconductors with silicon optoelect-
ronics has led to significant efforts in optimizing the epi-
taxial growth on Si substrates.! ~* For example, the suc-
cessful growth of high quality GaAs on Si substrates’?
has many potential applications involving low-cost high-
efficiency photovoltaics or large-scale integrated circuitry
on a monolithic chip. However, GaAs is not a promising
compound for epitaxial growth on Si, because of the large
mismatches in both the lattice constants (4%) and
thermal expansion coefficients (55%).° The residual
strain results in structural defects such as dislocations,
stacking faults, and microtwins, which have a detrimen-
tal effect on the optical and electronic properties of any
device fabricated on the GaAs/Si system. As one of the
most promising II-VI wide-band-gap compound semicon-
ductors, ZnS not only has potential in the visible-to-
ultraviolet range for optoelectronic device applications,
but also matched lattice constants with Si, as the lattice
mismatch between them is smaller than 0.4%.%7 A
better approach, therefore, will be to integrate the superi-
or properties of ZnS semiconductor with the mature
technology of Si.

Up to the present, to our knowledge there has been no
study which reports the band structures of (ZnS),, /(Si,),,
superlattices over a wide range of » and m. The effects of
the valence-band offsets AE, on the band-gap and inter-
face states in the ZnS/Si superlattice are not clear. It is
not understood how the electronic and optical properties
of (ZnS), /(Si,),, superlattices change by varying the
thickness of the epitaxial layers, which is interesting both
for the basic research and for practical applications.
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In this study, we will present our calculations for the
(110) growth direction. The (110) interface is nonpolar in
a lattice-matched system, while the (100) and (111) inter-
faces are polar interfaces. Some articles® have shown
that, in a lattice-mismatched case, the atoms may no
longer stay in planes perpendicular to the growth direc-
tion even for the (110) orientation. As a result this inter-
face becomes slightly polar, which influences the band
offset. The typical change of the (110) offsets are about
60-70 meV, induced by the out-of-plane motion in the
ZnS/ZnSe system.® For the lattice-matched ZnS/Si su-
perlattice, as shown in Fig. 1, the atoms at the interfaces
stay in the interface planes. Therefore, it is reasonable to
believe that the (110) interface is nonpolar. This is
different from the case of the GaAs/Ge (100) superlat-
tice,” which has two kinds of Ga-Ge and As-Ge abrupt
planar interfaces (see Fig. 1 of Ref. 9); both Zn-Si and S-
Si bonds here appear equally at the same interface of the
ZnS/Si (110) superlattice, which leads each layer perpen-

— (110)

ZnS

FIG. 1. Schematic interface bonding diagram of the
ZnS/Si(110) superlattice.
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dicular to the growth direction to be neutral. The inter-
face electric fields deduced from the differences in the nu-
clear charges of the two kinds of interface atoms in a
(100) or (111) growth direction will disappear in the
present (110) growth case. In other words, the zero-field
model’ !® is well established for the lattice-matched
ZnS/Si (110) superlattice.

The presentation is organized as follows. An outline of
the tight-binding theory for the (110) growth superlattice
is given in Sec. II, which also includes the band-structure
fitting procedure for bulk ZnS and Si, as well as a discus-
sion of the valence-band discontinuity between ZnS and
Si, AE,[=E,(Si)-E,(ZnS)]. Section III gives the elec-
tronic properties of the superlattice, where we describe
the calculated band structures, interface states, and ener-
gy gap between the confined band-edge states, and how
they are affected by changes in AE,. The optical proper-
ty follows in Sec. IV. Section V contains a summary and
our conclusions.

II. TIGHT-BINDING SCHEME

In the present calculation, a standard semiempirical
sp3s* tight-binding method!* has been employed. For
each wave vector k in the Brillouin zone, the Bloch func-
tions can be constructed by the linear combination of
atomic orbitals |£,1,,R;):

ik-R,+ik»ra|§’rle) ‘ 2.1)

Here £ is a quantum number that runs over the basis or-
bitals s, s*, p,, p,, and p, on the different types of sites a
in a unit cell. The N wave vectors k lie in the first Bril-
louin zone with the origin of the /th unit cell at R;, and
1, represents the positions of the atoms in this unit cell.

The electronic eigenstates of the superlattice are ex-
panded as

k)= (&1,klk,A)|E1,,k)
& a

=3 Ceall, Mg Tk) . (2.2)
& a

A denotes the band index, and Cga(k,l) is the
eigenwavefunction, which can be obtained by solving the
Schrodinger equation

S (& o klHIE 1k ) —Ep(K)8geb o]
§a
X (& 1,klk,A)=0. (2.3)
In this paper, only the nearest-neighbor interactions

are included. Therefore, we obtain the Hamiltonian ma-
trix for (ZnS),, /(Si,),, (110) superlattices:

n—1
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where each element represents a 5X 5 matrix. The diago-
nal elements H; (j =a, b, and ¢) correspond to intrasite
energies, and the others contain the nearest atomic in-
teractions in the same layer (V;;) or between two neighbor
layers (U;;) perpendicular to the growth direction. The
superlattice consists of two different semiconductors la-

s Esa(c) 0 0 0 0
§* E4ie) 0 0 0
Ha(c)_ Dy E:(C) 0 0 ’
’, E;(c) 0
’, E:(c)
S S* DPx py D,
s(EY¥ 0 0 0 o
s* ESS 0 0 o0
H _ s
b ps ES 0 0 |’
Py E} 0
P, E;'
s s* Px
s VissPi Visa,perPa
*
, _S 0 (5*a,pc)P2
o px V(sc,pa)PZ - (s*C,pa)PZ [ V(x,x) + V(x,y) ]Pl
py V(Sc,pa)Pl (S*C,pa)Pl - V(X,Y)PZ
P: 0 0 0
s S* Px
s VissPs 0
s* 0 0
U =
a"p. 0 0 Vs = Viey 1Ps
Py | = VisepaPs — V(s"‘c,pa )Py 0
p: L — V(sc,pa)P4 (s*c,pa)P4 0
s s* Px
s lV(s,s)PS 0 0
s* 0 0
U =
= p. 0 0 [Vix = Vixy 1Ps
Py V(:a,pc)PS V(s *a,pc)Ps
bl — V(sa,pc)PG - V(s*a,pc)P6
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beled (a,c) for ZnS and (A,C) for Si, with a (110) inter-
face. The terms a and c are regarded as the anion and
cation atoms of the II-VI group compound semiconduc-
tor, while for convenience 4 and C are used to distin-
guish two kinds of atoms in silicon. Therefore, all ele-
ments in the Hamiltonian matrix are expressed as

(2.5)
(2.6)
by P
- V(sa,pc)Pl 0
V(s"‘a,pc)P1 0
V(x,y)PZ 0 ’ @.7)
V(x,x)Pl 0
0 [ V(x,x) - V(x,y) ]Pl
py P
V(sa,pc)PS V(sa,pc)P4
(s*a,pc)P3 (s*a,pc)P4
0 0 , (2.8)
V(x,x)P3 V(x,y)P4
V(x,y)P4 [V(x,x) + V(x,y) ]PS
by P,
- V(sc,pa)PS V(sc,pa)PG
- V(s"'c,pzz)P5 V(s"‘c,pa)P6
0 0 , 2.9)
VixxPs Ve Pe
- V(x,y)PG [V(x,x) + V(x,y) ]PS
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*
5 s Px by P
S VS,SPI 0 VS,pP2 _Vs,pPI 0
S* 0 0 Vs*,pPZ —Vs*,pPI O
Vic= .
ac Px | — Vs,pPZ - VS*,pPZ [ Vx,x + Vx,y ]Pl - Vx,yPZ 0 ’ (2 10)
Py | VipPi Vs*’pPl —VeyPa 9 0
P, 0 0 0 0 (Vix — Vi, 1Py
s s* Px by p.
s [ VisPs 0 VipPs3 VipPa
s* 0 0 Vs*,pP3 Vs*’pP4
YacZp, | 0 0 [Vex=ViylPs 0 0 ’ @10
Py VipP3s — Vs*,pP3 0 VixP3 ViyPa
P | = VipPs —V, *’PP4 0 ViyPa [VixtVy,1Ps
s s* Px Py p;
s | VisPs 0 0 —V,,Ps V., Ps
S* O 0 _VS*,pPS VS*,pPG
Uea=p, | 0 0 [Vee—Ve,JPs O 0 ’ 2.12)
py VSyPPS VS*,pPS O VX,XP5 _Vx,yP6
D, Vs,pPG - VS*,pP6 0 - Vx,yPG [ Vx,x + Vx,y ]P5
[
where we have formed uniquely by using the corresponding bulk param-
. bkt eters. For the two intermaterial elements U, ¢ and U ,, at
Pi=ile ®+e 7], (2.13) the interface, a simple average of the bulk parameters has
V3 k- - been used in the present calculations. These bulk param-
p,= —[el VY —e — ], (2.14) eters are determined by fitting the first-principles calcula-
4 tion. Yamaguchi’s formula!® has been adopted to yield
p.—=1 ibk ¥ (2.15) self-consistent results at X-point energies. For example,
3 ’ ’ the values of the energy of ZnS at high-symmetry points
V2 ibk in the Brillouin zone are listed in Table I, which are in
Py=- ) (2.16)  go0d agreement with the theoretical'®!” and experimen-
k- tal'® 2! results. The calculated direct gap of ZnS is 3.79
Ps=1le ™, (2.17) eV. For Si our parameters given an indirect gap of 1.19
V3 ke eV and a correct order of the conduction-band minima
po="L2"w (2.18)  X-L-T.
4 Spin-orbit coupling is not included. Since the valence-
band discontinuity of the ZnS/Si superlattice has not
with been established experimentally, we first assume the
N — valence-band offset between ZnS and Si,
ko =V 2k, tk, (2.19)  AE,[=E,(Si)-E,(ZnS)], to be 1.90 eV, which is the
. . . 22
t 3k + theoretical value given by Harrison,”* and then study the
Kay 2k tky (2.20) effects of choice of AE, in Sec. IIID.
nd
a III. ELECTRONIC PROPERTY
b=a; /4. (2.21)

a; is the average of the cubic lattice constants of the bulk
ZnS and Si.
The intramaterial elements in the Hamiltonian can be

A. Band structures

The band structure of the (ZnS),4/(8Si,),¢ (110) super-
lattice is displayed in Fig. 2, where the zero of energy
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TABLE I. Comparison of various calculated and experimen-
tal data for ZnS (in eV). The top of the valence band (I'};) is
chosen as the zero of energy.

ry i is
—12.89* 3.79* 8.00*
—12.89° 2.26° 7.04°
—11.7° 3.8° 8.0°
—12.6¢ 3.7¢ 9.0¢
—13.5¢ 3.7f
3.858
5 i 5
—2.10° 5.20? 5.70%
—2.19° 3.61° 4.58°
—1.6° 5.0 6.0°
—1.4¢ 5.7¢ 6.0¢
—2.5°
1 Lj L 5
—4.,08* —0.97° 4.45° 8.312
—5.20° —0.84° 3.65° 8.87°
—4.2° —0.6° 5.0° 8.6°
—3.34 —0.6¢ 5.34 9.3d
—5.5¢ —1.4°

#Present work.

"Self-consistent linear combination of Gaussian orbitals method
(Ref. 16).

“Self-consistent orthogonalized plane wave (Ref. 17).

YK orringa-Kohn-Rostoker (Ref. 18).

¢X-ray photoemission spectroscopy (Ref. 19).

fReflectivity at room temperature (Ref. 20).

EReflectivity at 19 K (Ref. 21).
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FIG. 2. Band structures of the (ZnS),s/(Si,);¢ (110) superlat-
tice calculated by the first-neighbor sp2s* tight-binding method.
The zero of energy corresponds to the top of the valence band
of the superlattice. The inset shows the Brillouin zone of the
(ZnS), /(Si,),, (110) superlattice.

corresponds to the top of the valence band E” (=EY) at
k=0. The inset shows the Brillouin zone of the
(Zn8),, /(Si,),, (110) superlattice. The irreducible part is
indicated with the labels of the eight symmetry points (R,
Z,T,X, M, X', R', and A). It should be noted that the
length of T" X is not equal to that of I' X’ in the Brillouin
zone of the (110) growth superlattice. The axis from the
T point to the X point is normal to the projection of the
Zn-Si and S-Si bonds on the (110) plane.

Because of the zone folding effect, the valence and con-
duction bands of the superlattice consist of many crowd-
ed subbands. The top of the valence band is shown by E”
in Fig. 2, which is located at the T point, and the bottom
of the conduction band is shown by E¢ located at X,
which is near to the X point. The other lowest conduc-
tion band states are E§, E¥, and Eg at the T', X, and M
points, respectively. The large-band-gap ZnS layers
cause quantum confinement in the small gap Si quantum
wells. This superlattice has an indirect band gap of
E,(EC-EY)=1.26 eV, which is 0.07 eV larger than the
band gap of the bulk Si (1.19 eV).

An empty interface band E' in Fig. 2 was found lying
below the conduction band. Different from the case of
the GaAs/Ge(100) superlattice,” we do not find an occu-
pied interface band above the valence band. We believe
that the disappearance of the occupied band is due to the
identical nonpolar interface in our (110) grown superlat-
tice.

B. Confined states and interface states

The planar average of the charge densities of the
band-edge states and the interface states for the
(ZnS),4/(8i,) ¢ (110) superlattice are shown in Figs. 3(a)
and 3(b), respectively. All the band-edge states in Fig. 3
are confined in two dimensions in the Si well layers.
Therefore, these states are believed to originate from
those of Si by the zone folding effects. Furthermore, the
occupancies on the confined states are distributed
symmetrically, which shows that the interfaces at both
sides of the Si layers are identical.

The interface states at I, X, and M have been analyzed
in Fig. 3(b). These states are clearly localized on the in-
terface. Because there is one kind of interface in the
(110)-grown ZnS/Si superlattice, only one interface band
is found in our study. We suggest that two interface
bands corresponding, respectively, to Zn-Si and S-Si in-
terfaces will be observed in a (100)-grown ZnS/Si super-
lattice. From Fig. 2 we see that the band of the interface
state extends over a quite different region of k space.

C. Energy gap

Our calculated energy gap of the (ZnS), /(Si,),, (110)
superlattices as a function of n =m, shown as curve join-
ing the discrete points at even integer values of n, are
given in Fig. 4. In the same figure, the interface band E’
(dashed line) at the X point are also plotted. The theory
shows that the lowest transition is the indirect T to X,
which is near to the X point for all cases.

To illustrate quantum confinement, we also calculate
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the energy gap for two different series of (ZnS), /(Si,),,
(110) superlattices, with » =2 as functions of m (Fig. 5),
and with m =2 as functions of n (Fig. 6). The fundamen-
tal band gap of the superlattice, corresponding to the gap
between the Si valence-band maximum and the Si folded
conduction-band minimum, decreases as the Si layer
thickness increases (Fig. 5). This effect becomes most
dramatic, as expected, byovarying m. When the Si layer
thickness is fixed at 7.67 A (four Si atoms thick), we find
that the energy gap of the superlattice increases slowly as
n changes from 2 to 20. It shows that the thickness of Si
plays an important role in the formation of the funda-
mental band gap of the superlattice.

D. Effect of band offset
Since the value of the valence-band offset of ZnS/Si su-

perlattices has not been reported experimentally, in the
above calculations we adopt AE, =1.90 eV, the theoreti-

0.4 rryrrrrrrrrryryrrrrrrrrrrryrrrrrrrT T
a. Confined State
ES
02 Sier) .
Si(odd layers) ~;
0.0
0.4

02 4

(=Y =]
"o
I
I
+
+
1
¥

Charge density (arb. units)

0.2t J
0.0 /u\
0.2
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0_0 4.1 1 4 4 1. 3 2 2 2 3 3 8 3 11 4.4 1. 1.2 2 3 & 3 4.4 4
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cal value of Harrison based on the universal parameter
tight-binding method.?* In this section, we vary AE, asa
parameter to check how the result of the band-structure
calculation is affected by the choice of AE,,.

There are two models shown here: (i) When the
valence-band offset is less than 2.60 eV, the conduction-
band minima of Si will lie below those of ZnS (type-I
alignment). (i) For an offset greater than 2.60 eV, the:
conduction-band alignment will be type II, with the su-
perlattice conduction-band minimum being ZnS like. In
Fig. 7, we show band structures of the (ZnS),o/(Si,) g
(110) superlattice as AE,=1.5, 1.9, 2.5, and 3.0 eV, re-
spectively. For the type-I band alignment, the
conduction-band minimum E € is located at X near the X
point, which is formed by the zone folding effects from
the conduction-band minima states of Si. The
conduction-band minimum E € of the superlattice moves
to the I' point in a band alignment with type-II, which
originates from ZnS.

0.5 (rrrrrrrTTTTITTIYTTOY T T T T T T
b. Interface State”

’4
04} Ey ]

Charge density (arb. units)

FIG. 3. Charge densities in the (ZnS),4/(Si,);¢ (110) superlattice. (a) The confined states; the occupied state (E}) and the empty
states (E, Ef, and Eg). (b) The interface states; the empty states (EL, Ef, and E};). The dashed lines indicate charge densities on
the Zn and even-numbered Si layers, the solid lines those on the S and odd-numbered Si layers.
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2.4

22

ENERGY (eV)

1.2

1‘0 1 1 1 A1 1 1 1 1 1 1
2 46 8101214161820

n=m

FIG. 4. Band gap E, of (ZnS), /(Si,),, (110) superlattices as a
function of the number of layers n =m. The relative positions
of the interface band E! at the X point are also drawn in the
same figure. The zero of energy is the valence-band maximum
of the superlattice, and the assumed valence-band offset is 1.9
eV.

A detailed description of the energy gap of the
(Zn8),,/(8i;)o (110) superlattice as a functions of AE, is
shown in Fig. 8. The range of AE, in this figure, 0.0-3.6
eV, covers all possible results. It is found that the largest
indirect energy gap (1.43 eV) of the superlattice, with
n =m =10, can be achieved by choosing AE,=1.0 eV.
Continuously increasing AE,, the superlattice experi-
ences an indirect-direct-band-gap transition, with the en-
ergy decreasing from 1.43 to 0.88 eV. We do not believe
that a (ZnS),/(Si,),o (110) superlattice with a direct gap
of 0.88 eV (AE,=3.5 V) is a real structure fabricated by
molecular-beam epitaxy (MBE) or other growth technol-
ogy. As we see, the superlattice energy gap in this case is
even smaller than that of Si (1.19 eV). When AE, =3.0

J

P, »(k,k')=(k,Alp|k’,A")

1 o Ryt e ) k(R +1y)

2.4
22
20 r
3
— 18}
>
2
m 16
Z
m
14
1.2
1ol v v
2 4 6 8101214161820
m

FIG. 5. Band gap E, of (ZnS),/(Si,),, (110) superlattices
with n =2 as a function of the number of Si layers. The nota-
tions for the interface band and the valence-band offset are the
same as those in Fig. 4.

eV, the direct energy gap is 1.24 eV.

Furthermore, Fig. 8 shows that the relative position of
the interface state E' at the X point in the gap shifts
down after a maximum at AE,=1.0 eV with increasing
AE,. It does not disappear from the gap within the range
examined. It is concluded that the relative position of the
interface state in the gap depends on the choice of AE,,
but it is always present in the gap.

IV. OPTICAL TRANSITION

In the empirical tight-binding approach, a momentum
matrix element can be written as

=F S ChkA)Ceu(k,A)3 e (§ r,R;Ipl&, R, ) . 4.1)
§8aa Lr
[
Because of the strongly localized atomic orbitals in the . iK' —K)(Ry+1,)+k 7]
tight-binding model, the momentum matrix elements be-  Pee(kk3a)= N ;

tween atoms separated by more than first-neighbor dis-
tances can be neglected.?> Therefore, Eq. (4.1) may be re-
duced to

PA)\_(k k' )= 2 C§a k )\')Cga(‘r )(k A )pg’gl(k,kl;a) ’
58 a

(4.2)

where

X (§,ra,R11P|§',ra+‘ra»Rl ).
4.3)

Here 7, is the position of the neighbor atoms.
The absorption coefficient of a superlattice is given
by 22725 (apart from a constant factor)
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2.4
2.3

(ZnS)n/(Siz)2(110)
2.2 1

2.1

2.0

ENERGY (eV)

1.9
EI

1.8

1.7

2 46 8101214161820
n
FIG. 6. Band gap E, of (ZnS),/(Si,), (110) superlattices
with m =2 as a function of the number of ZnS layers. The no-

tations for the interface band and the valence-band offset are the
same as those in Fig. 4.

altio)=—73 Tle-P, (kK|
k AN

X8[E, (k) —E, (k) —#o] .

1
©
(4.4)
The parameters (&,1,,R,|pl€,r,+7,R;) can be deter-

mined by comparing the theoretical computed values of

4.0

E. G. WANG AND C. S. TING

51

bulks with their experimental results. The summations in
Eq. (4.4) are over special points in the Brillouin zone. In
our calculations, we took 28 special points in the L two-
dimensional Brillouin zone (k,,k,), and two special
points in the 1 one-dimensional Brillouin zone (k, ).

2 z
The calculated joint densities of states (JDOS) corre-
sponding to the optical transitions?”?® are given in Fig. 9
for (ZnS), /(8i,),, (110) superlattices.

With increasing n (=m), the absorption edge of ZnS/Si
superlattices extends to lower energy (see Fig. 9). The
curves rise rather slowly with some visible structures that
may be related to critical-point transitions. Two main
peaks are identified around 4.4 and 6.2 eV in all features.
Compared with the absorption spectra of bulks, we note
that the first peak originates from Si [4.2 eV (Ref. 28)],

and the second from ZnS [6.0 eV (Ref. 29)].

V. CONCLUSION

In this paper, an approach has been suggested to in-
tegrate the superior properties of the ZnS semiconductor
with the mature technology of Si. Detailed calculations
of electronic structures and optical transitions for the
(ZnS),, /(Si,),, (110) superlattices with a wide range of
n,m <20 are performed in a semiempirical tight-binding
scheme. A quantum confinement effect is found that
causes the states at the conduction- and valence-band
edges to be confined to two dimensions in the Si wells.
For a valence-band discontinuity AE,=1.9 eV given by
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FIG. 8. Band gap (E,) and related X-point interface state (E)
of the (ZnS),y/(Siy),o (110) superlattices as functions of the
valence-band discontinuity between ZnS and Si, AE,.

Harrison theory, the band gap between the confined
band-edge states increases (2.37 eV at the X point for
n=m =2) by decreasing the superlattice period. An
empty interface band is identified in the upper region of
the gap, which extends over a quite different region of k
space. Since the value of the valence-band offset of the
ZnS/Si superlattice has not been reported experimentally,
two types of conduction-band alignments are examined
by reasonable choices of AE, for all possible energy
values. We also show that the energy of the interface
band depends on the valence-band discontinuity between
ZnS and Si, but it does not disappear from the gap. Fur-
thermore, joint densities of states of the superlattices are
obtained which correspond to the optical transitions in
these systems. The calculated absorption spectra are
found to be quite different from those of bulk ZnS and Si,
but fairly close to their average. Our results indicate that
the optimal ZnS epilayers on the silicon substrate have a
great deal of potential for optoelectronic device applica-
tions.
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FIG. 9. Joint densities of states (JDOS) corresponding to the
optical transitions for various (ZnS), /(Si,),, (110) superlattices.
The normalization is the same in all cases.
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