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In the presence of the high magnetic fields applied parallel to the interfaces of the Al Gal As-
GaAs-Al~Ga& ~As single quantum well, the electronic structure of the two-dimensional electron gas
(2DEG) is calculated self-consistently at nonzero temperature. A model is developed in which the
confinement potential energy, the energy and the wave function of the discrete levels, the Fermi energy,
the electron density in different energy levels, and the depletion lengths can be calculated as a function of
known material properties, growth parameters, and experimental conditions. The dependence of the en-

ergy and the electron density in different levels, the Fermi energy, and the depletion lengths in the selec-
tively doped Al„Ga& As layers on the magnetic field, electron wave vector, Al content, temperature,
total electron density, gate voltage, and asymmetric modulation doping is studied in detail. The experi-
ment to measure the total electron density in a 2DEG subjected to a parallel magnetic field is discussed.

I. INTRODUCTION

A lot of published work on magnetotransport in two-
dimensional electron systems (2DES's) is focused on the
configuration in which the magnetic field is applied per-
pendicular to the interface of the 2DES. In this
configuration, Landau quantization results in the impor-
tant and distinctive phenomena such a Shubnikov —de
Haas oscillation, quantum Hall effect, fractional quantum
Hall effect, etc. The rather extensive studies' have also
been made by applying the high magnetic field at an an-
gle 8 to the interface of the 2DES's. In this situation, the
confinement potential (taken along the z direction) of the
2D electron gas (2DEG) and the potential caused by the
tilted magnetic field lead to hybrid magnetoelectric
quantization of electron energies. The study of 2D mag-
netotransport in this configuration has the important ap-
plication to, e.g., the measurement of the enhanced spin-g
factor. '

In this paper, we deal with a particular configuration
where the magnetic field is applied parallel to the inter-
face of the 2DES, e.g., the case of 0=0. This study is
essential to the problem of a given arbitrary angle 0.
Further, 2DEG subjected to an in-plane magnetic field
shows some important and unusual behaviors such as a
long period oscillation of the magnetoresistance R „with
the magnetic field, the oscillation and jump of the mag-
netization with the chemical potential, ' ' vertical trans-
port, very recently the Aharonov-Bohm effect, ' etc.
The structure of the energy levels in this geometry plays
an essential role in determining all the above-mentioned
physical properties. In the above quoted references, the
theoretical studies of the electronic structure of 2DES in
parallel magnetic fields were based on taking simple
analytically solvable confinement potential energies or on
using the perturbative treatment. Recently, the self-
consistent calculations have been proposed"' in order
to have a more detailed understanding of the structure.

In the work of Refs. 11 and 12, the samples of
Al, Ga, „As/GaAs heterojunctions were taken into ac-
count. In Al„Gai As/GaAs heterojunctions, normally
only the lowest electronic subband is occupied' by elec-
trons at zero magnetic field when the total electron densi-
ty per unit area is less than 6X10' m . In this paper,
we are interested in the samples in which more than one
subbands are occupied at zero magnetic field through
looking into the Al Gai As-GaAs-Al Ga& As
single-quantum-well (SQW) systems. For a modulation-
doped SQW at B =0, the occupancy of electrons to the
electronic subbands can be easily varied by changing the
width of the well layer. ' The self-consistent calculation
on the SQW subjected to in-plane magnetic fields has
been made by Ref. 15, where the studies were concentrat-
ed on the quantity of capacitance. In the present paper,
the self-consistent calculations proposed by Refs. 16 for
the case of B =0 will be generated to calculate the elec-
tronic states of the SQW in parallel magnetic fields. The
method of our self-consistent calculation is described in
Sec. II. The experimental measurement to determine the
total electron density in the present configuration is also
discussed in Sec. II. In Sec. III, the numerical results are
presented and discussed. The conclusions are summa-
rized in Sec. IV.

II. OUTLINE OF THE MODEL
AND THE CALCULATION

A. 2DEG in parallel magnetic AeMs

In the presence of a magnetic field, the free-electron
Hamiltonian in a 2DES with a single-electron approxima-
tion is given by

H= —,'(p —A), (p —A)+ Uo(z),
1

m'(z)
where p=(p„,p~,p, ) is the momentum operator, A is the
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vector potential, the effective electron mass is m'(z),
which is assumed to be various along the z axis, and
Uo(z) is the confinement potential energy along the z
direction at zero magnetic field. In the presence of an
in-plane magnetic field applied along the x direction
B=(8„,0,0), the vector potential in the Landau gauge is
given by A = (0,e8 z, 0), and the free-electron Hamil-
tonian becomes

II= p„+(p» —e8 z) +m*(z)p, p,
Zm *(z) m *(z)
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In Eq. (2), the momentum components p and p are con-
stants of motion, which results in the factorized wave

i(k x+k y)function of the kind %(x,y, z) =e " ' P, (z) and in the
corresponding energy spectrum of the electron
E;(k,k»)=E(k )+s;(k»). When the parabolic band
structure is considered, E(k„)=iii k /2m* is the kinetic
energy for free-electron motion in the x direction with
m * the representative density-of-states effective electron
mass. The electron wave function f, (z) and the energy of
the discrete level E,.(k ) are determined by the one-
dimensional Schrodinger equation

d 1 d + Ue(z, k»)+ Uo(z) —E;(k») ijj;(z)
dz m '(z) dz

where Uz(z, k ) =i' (k —z jl ) /2m *(z) is the potential
energy induced by the in-plane magnetic field and
I =(AjeB )'» is the radius of the ground cyclotron orbit.

A 2DES subjected to an in-plane magnetic field results
in the quantization of electron motion along the y and z
axis and provides a quasi-one-dimensional energy struc-
ture. The free-electron Green function is given by
6, I, (E,k ) = [E E, (k„,k» )+—i 5 ] ', whose imaginary

part is obtained by ImG; k (E,k„)= m5[E —E (k—„,k» ) ].
Thus, the density of states (DOS) for electrons in the en-
ergy level i becomes

D, k (E)= ——QlmG; k (E,k„)
gs 1

7T

g, +2m* B[E—c,;(k )]
4m Al

where B(x)=0(x &0), 1(x ~0) is the unit-step function,
g, is the factor for spin degeneracy, and the degeneracy
of each energy level is 1/2l per unit length. We note that
in the absence of the z-direction confinement potential en-
ergy Uo(z), the degeneracy of each Landau level in the yz
plane is given by 1/2mI per unit area. The presence of
Up(z) lifts the z direction degeneracy.

B. Modulation-doped Al„Ga& „As-GaAs-Al& Ga& & As
single quantum wells

In general, the selectively doped Al, Ga&, As-GaAs-
Al, Gai, As (with c being the aluminum content) SQW

FIG. 1. Schematic diagram of a modulation-doped
Al Ga

&
As-GaAs-A1, GaI,As single quantum well. c is the

aluminum content. I. is the width of the quantum well. d, , N, ,
and sj (j=1, 2) are the depletion length, modulation-doped
donor concentration, and spacer distance in the jth
Al„Ga& As layer, respectively.

me m o /m, +0.088c otherwise,

with m, the electron rest mass and m 0 the effective elec-

systems can be depicted in Fig. 1.
(1) A SQW consists of a GaAs well layer (with a width

1.) adjacent to two Al, Ga, ,As barrier layers. The
Al Ga& As layers are uniformly doped with Si with the
concentrations N, and N2 except for the (spacer) layers
of widths s& and sz, respectively, measured from the in-
terfaces between GaAs and Al Ga& As. The GaAs lay-
er along with the Si-undoped Al Ga& As spacer layers
are slightly and uniformly doped with acceptors with the
concentration N, .

(2) The modulation-doped Si in Al„Ga& „As layers
will play a role of donors, which are not completely ion-
ized because of the depletion effect. We assume that the
doped Si are only ionized within the (shaded) regimes—d, —s, L/2&z & ——s, L /2 and L/2+—s2 &z &I./2
+s2+d2, respectively. The depletion lengths d& and d2
can be determined by the self-consistent calculations.

(3) For a sample without heavy acceptor doping and
with a relatively thin GaAs layer, we may assume that all
the acceptors are ionized. For a high-quality sample, the
acceptor concentration is very small compared with
doped donor concentration; we may neglect the inAuence
of acceptors in Si-doped Al Ga& As regimes.

(4) In equilibrium state, the Fermi energy (or chemical
potential) E~ is a constant across the sample system due
to thermodynamic equilibrium.

Our present calculation on the SQW systems goes
beyond the previous work' through considering the
effect of asymmetric modulation doping, i.e., possibly
s, &s2 and/or N, AN&. The asymmetric-doped SQW
structure exhibited some unusual transport phenomena
observed expenmentally. '

For selectively doped Al, Ga, ,As-GaAs-A1, Ga, ,As
SQW systems, the effective electron-mass ratio can be ob-
tained by'

mo /m„
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tron mass for GaAs, i.e., for c =0; the confinement po-
tential energy at zero magnetic field in Eq. (3) is given by

Uo(z) = U, (z)+ U„,(z)+6E,(z), (6)

where bE, (z) is the conduction-band-edge discontinuity,
in the well (i.e., in GaAs) b,E, (z) =0 and in the barrier
(i.e., in Al, Ga, ,As)b, E,(z)= Uo, which can be deter-
mined by'

Uo=0. 6(1.155c+0.37c ) (eV) . (7)

~(z) U, (z) =ep(z),d d
dz dz

(8)

where p(z) and s(z) are the charge distribution and the
dielectric constant along the z direction, respectively. In
this paper, we ignore the difference of the dielectric con-
stant in GaAs and Al Ga& As because of the relatively
weak effect. ' We assume an isotropic ~ in the sample
system, i.e., ~(z) =s.

In general the exchange-correlation potential energy is
an unknown functional U„,(z)= U„,[n (z)] of the elec-
tron density n (z). For a 2DEG in strong perpendicular
magnetic fields, the magnetic exchange energy in the low
temperature limit T—+0 has been calculated by several
authors. " ' The study of Ref. 21 shows that the
difFerence between the B =0 and BAO exchange energies

Further, the potential energy U„,(z) results from the
exchange-correlation effects in the density-functional
theory (DFT); the potential energy U, (z) is the Coulomb
interaction term arising from charge interaction and can
be determined by the Poisson equation

is through the coefficients regarding the first- and
second-order exchange contributions, the second-order
direct contribution, and through the parameter r„' for the
systems with completely filled Landau levels, at high elec-
tron densities and strong magnetic fields, the total energy
is lowered by the magnetic field. However, the numerical
results presented in Fig. 2 of Ref. 21 show only a slight
difference in the total energies obtained with and without
magnetic field. As a result, the kinetic energy will not be
changed by the magnetic field. Furthermore, we notice
that the coefficients regarding the exchange-energy parts,
shown in Table I of Ref. 21, depend weakly on the mag-
netic field. For example, the first-order exchange contri-
bution is essential for the lowering of the exchange ener-

gy by magnetic field. The corresponding coefficient c
varies very little, from 1.70 at 8 =0—1.77 at a magnetic
field strong enough that only the lowest Landau level is
occupied. For a 2DEG subjected to a parallel magnetic
field, the magnetic effect is included in the confinement
potential energy in the z direction [see Eq. (3)], which
affects r, only through n (z). In this case, we expect an
even weaker dependence of the exchange-correlation
effect on the magnetic field in comparison with the case
in the presence of perpendicular magnetic fields.

The brief discussion given above indicates that the re-
sults obtained from the zero-magnetic-field calculation of
the exchange-correlation energy may be applied to the
situation in the presence of a parallel magnetic field. In
this paper, we employ an analytic form (obtained at
zero-magnetic-field limit) to evaluate the exchange-
correlation potential energy over a wide range of temper-
atures and electron densities through

1, y &0. 15
U„,(z) = U„, n (z) 1+(air, +bir, +ci)y'/(a &r, +bi +y ), 0. 15 &y & 12, (9a)

where y =kii T/E~, a
&

= —0.003 88, b, =0.045 44,
c& = —0.443, a i =1.5460, b& =0.7023, e =2.04258,
d = 1.805 18, and r, = r, [n (z) ]= [4rra ' n (z)/3] ' with
the effective Bohr radius a'=4vrsA /[e m*(z)]. We use
the result for exchange-correlation potential energy at
T~0 through

U„, [n (z) ]= —[1+0.7734y ln(1+y ')],(9b)
mar,

where a=(4/9m)'~, y=y(z)=r, /21, and the effective
Rydberg constant is given by R *=e /(8m. sa*). In
Al Ga, „As-GaAs-Al Ga, As SQW structures, the
potential energy U„,(z) may be discontinuous at the in-
terfaces between GaAs and Al Ga, „As (i.e., at
z =+L /2) because of difFerent effective electron masses.

For an Al Gai „As-GaAs-Al Gai As SQW depict-
ed by Fig. 1, the functional form of the charge density
p(z) can be modeled by

n(z), z &d, —si L/2—
n(z) N„—d,——s, L /2&z & —s,—L/2—

p(z) = —e .n(z)+N„—s, L/2 &z &L/2—+s2
n(z) N2, L/2+s2 &—z L&/2+& sd+2
n (z), z )L/2+s2+d2,

(10)

where the electron density along the z direction is given
by

n (z) = g ~g, (z) ~'I"
dE f(E)D, „(E)

i, k

+2m,*
y~y, (z)~'1" —f[E+E,(k )], (11)

2vrh/, .„' o
7 y

(E —EF)/k~ T
with f(E)= [e + 1] ' the Fermi-Dirac func-
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tion. The Fermi energy can be determined by the condi-
tion of the electron number conservation nT=+, n, with

nT the total electron density per unit area and the elec-
tron density in the energy level i

n;=Q f dE f(E)D;k (E)
k

g f —f[E+e;(k )] . (12)

In Eqs. (11) and (12), we have used (i) the DOS shown in
Eq. (4), and (ii) the effective electron mass in the well lay-
er as the representative density-of-states effective mass,

i.e., m *=m o, and we have taken g, =2.
To solve Eq. (8) with the charge distribution given by

Eq. (10), we need to define the boundary conditions. The
nature of f;(+ oo) =0 results in n(+ oo) =0,
U„,(+ao)=0, p(+Qo)=0, and consequently in
dUO(z)/dz~, +„=0. Thus, we can integrate both
Schrodinger and Poisson equations from —~ to + ~
along the z axis. In this paper, we choose the zero of en-
ergy as Uo( —~)=0, and in the presence of a gate volt-
age Vg applied along the z axis, we have Uo(+~)=Vs.
After (i) assuming ~(z) =~, (ii) using the above boundary
conditions, (iii) using the continuities of U, (z) and
dU, (z)/dz in the z direction, and (iv) integrating Eq. (8)
twice, we obtain

U, (z}= '

UL(z), z& —d, —s, L/2—
UI(z) DN, (z+—d, +s, +L/2), —d, —

s& L/2&—z & L/2 ——
s&

U&(z) DN&d,—(d&+L+2s&+2z)+DN, (L/2+s&+z)2, L/2 —
s&

&—z &0

U~(z) —DN2d~(d2+L+2s2 —2z)+DN, (L/2+s2 —z), 0&z &L/2+s2

Uz(z) —DNz(z —dz —s2 L/2), —L/2+ zs&z&L /2 +s2+dz

Uz(z), z) L/2+s2+d2,

(13)

where D = —e /2a, Uz(z) =2Dg(z) —Uo, and
U~(z)=2Dh(z) —Uo+ Vg are the potential energies in-
duced by electron distribution, i.e., d UI(z)/dz
=d Uz(z)/dz =2Dn(z), and g(z) and h(z) are given,
respectively, by

g(z)= f dz& f dz2n(zz)

h(z)= f dz, f dz n(z ) .

The continuities of dU, (z)/dz and U, (z) at z=0 lead to,
respectively,

nT= f dzn(z)=N, d, +N2d2 N, (L+s, +s2),—

(14a)

which can also be obtained from the charge-neutrality
condition, and

N, d&(d&+L+2 )s—N2dz(d2+L+2s2)

Vg=N, (s, —sz)(L+s, +s2)+2 g(0) —h(0)—

(14b)

At Vg =0 and for symmetric modulation doping, i.e., for
s, =s2 and N, =Nz, Eq. (14b) leads to d, =d2. General-
ly, d&Ad& for asymmetric doping and/or in the presence
of the gate voltage. By solving Eqs. (14), we can deter-
mine the depletion lengths d

&
and d 2, which make

dU, (z)/dz and U, (z) continuous along the z direction.
When the solutions satisfy d. )0 (j= 1,2), some donors
are ionized in the jth Al Ga& As layer. When dj (0,

some electrons are accumulated in the jth Al„Ga& As
layer; in this situation, parallel conduction may occur.

C. Self-consistent calculation on the electronic structure

In this paper, we use an iteration technique to solve
Schrodinger equation for the eigenfunction and eigenval-
ue, and Poisson equation for the confinement potential
self-consistently. First, applying the turning-point tech-
nique to the Numerov algorithm, the Schrodinger equa-
tion can be solved by using the boundary conditions
P;(6")=0. Second, the wave function and the energy
of the electronic levels are used to determine the Fermi
energy E. [Eq. (12)], the electron distribution n(z) [Eq.
(1 1}],the exchange-correlation potential energy [Eq. (9)],
g(z), and h(z). Then, the depletion lengths d, and d2
can be calculated by using Eq. (14). Introducing the re-
sults of the depletion lengths as well as g(z) and h(z) into
Eq. (13), we can calculate the Hartree potential energy
U, (z). Thus, we obtain for the total confinement poten-
tial energy U(z)=U&(z, k~)+Uo(z). In the self-
consistent calculations, the iteration is interrupted when
max~ U'+&(z) —UJ(z) ~, i.e., the maximum difference of the
total confinement potential energy between two succes-
sive iteration steps j and j + 1, is smaller than 0.1 meV.

The inputs of the self-consistent calculation are (1)
known material properties, such as effective electron
mass for GaAs (mo ) and dielectric constant of the ma-
terial of GaAs (x); (2) sample growth parameters, such as
concentrations of acceptors (N, ) and modulation-doped
donors (N, and N2), spacer distances (s, and s2), thick-
ness of the GaAs well layer, and Al content (c); (3) exper-
imental conditions, such as magnetic field (8 ), tempera-
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ture ( T), and gate voltage ( Vs ); and (4) results of the elec-
tron wave vector (k~ ) and the total electron density per
unit area (nT). As outputs, our self-consistent calcula-
tions will give (1) the total confinement potential energy;
(2) the energy and the wave function for the electronic
states; (3) the electron distribution function along the
direction perpendicular to the interfaces of the quantum
well; (4) the depletion lengths; (5) the Fermi energy; and
(6) the electron density in different energy levels.

In general, kv is a good quantum number resulting
from the gauge choice. The determination of the range
over which k is defined is very complicated and CPU
time consuming in the self-consistent calculation. A pro-
posed way" to determine k is by using the Fermi con-
tours E, (k„,k .) ~EF. However, this technique can only
be applied to the situation of zero temperature and
noninteracting (i.e., no scattering) electrons, otherwise,
the new contours have to be introduced. Fortunately, the
numerical results obtained from the present calculation
show that (see Fig. 3) in the single-quantum-well struc-
tures, although the actual value of k does affect the
shape of the total confinement potential, the difference
between the energy levels below the Fermi energy and the
Fermi energy is constant over a wide range of k . The re-
sults are that the total electron density and the electron
density in the occupied subbands are constant with vary-
ing k, which implies that the quantum number k can be
taken as a quasifree parameter for the SQW systems.
Hence, the numerical calculation can be simplified great-
ly. The detailed discussion on this point is presented in
Sec. III. In this paper, we are interested in the solution
of the Schrodinger equation and Poisson equation along
the z direction and take k as an input parameter. Since
the potential energy is constant in the y direction, k is
not affected by this self-consistent procedure. The total
electron density nz- can be obtained from the experimen-
tal measurements, which will be discussed in the next
subsection.

D. The determination of the total electron density

In the presence of an in-plane magnetic field, the total
confinement potential energy of a 2DES along the z axis
will be varied. Additionally, the DOS in this
configuration differs from that at B =0. They may lead
to the different electron energy levels and the Fermi ener-
gy. Consequently, the total electron density at 8 %0
may differ from that in case of B =0. For a 2DEG sub-

jected to an in-plane magnetic field, the total electron
density per unit area can still be measured in the Hall
configuration, where an additional magnetic field B, ap-
plied along the z direction is present. However, due to
the cyclotron motion of electrons in the yz plane, caused
by Bx, the total electron density cannot be determined
simply by the conventional Hall measurement.

A simple Drude model can be employed to study the
electron transport in crossed electric and magnetic fields.
Under the relaxation-time approximation, the equation of
motion of an electron is given by m *(0+1/r)v= —eF= —e(E+vXB), where O=d/dt, r is the relaxa-
tion time induced by the electron scattering mechanisms,

and v= [u (t), u„(t), u, (t)] is the average electron velocity
at time t. For the case E=(E,O, O) and B=B&+Bzwith
B&=(8,0,0) and Bz=(0,0,8, ), we have

(0+ 1/r)v„(t ) = to—,[E/8, +u~(t)],

(0+1/r)v (t)= co—, [co u, (t)/co, —u„(t)],
(0+1/r)u, (t) =co„u (t),

(15)

with io =eB„/m" and co, =eB, /m * being the cyclotron
frequencies. The solution of Eq. (15) is obtained by

u„(t)= v +e ' '[c) —(c2sincovt c3—coscovt )co, /coo],

u~(t) =u +e ' '(c2coscoot+c3sincoot ), (16)

u, (t)=v, +e '~'[c4+(c2sincoot —c3costoot )co„/coo],

where coo="y co +~, ; c„c2,c3, and c4 are the integra-
J' 2 2.

tion constants, which can be determined by the initial
conditions; the steady-state solution of Eq. (15) is ob-
tained by, after taking t ~ oo in Eq. (16),

v„= (E/8, )—( ,co)r[1+( „co)r]/[1+(coor) ],
u = (E/B, )(—to, r) /[1+(coor) ],
u, = (E/B,—)(co co,r )/[1+(coos) ] .

(17)

Using the Onsager relationship for 2DEG in the linear
response regime, the magnetoresistivities for a 2DEG
subjected to electric (E) and magnetic (B„and 8, ) fields
is obtained by

[u„

nze ~2

CO2CO2~4

1+
1+2(co r) +(e,r) +(co,r)

(18a)

iv, i

Pxy
Vx VV

B, 1+(co„+co,)r
nTe 1+2(co„r) +(to, r) +(to, r)

(18b)

Pxx
nTe ~

z 1
and pxy-

nTe 1+(io„r)

Noting co„~=B p with p=e~/m* the electron mobility
for the corresponding sample structure and applied fields,
the total electron density for a high mobility sample, so
that (B„p) )) 1 is satisfied, can be obtained from measur-
ing both pxx and pxy

2
p B„

nT—-e (20)
p2

Here one finds that the total electron density can only be
simply measured by p„=8, /n Te (conventional Hall
efFect) in case of 8 =0, i.e., co„=O. For strong parallel
(8 ) and weak perpendicular (8, ) magnetic fields so that
co ))co„we have
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The experimental work to study the inhuence of parallel
magnetic field on the total electron density in 2DES has
not yet been reported.

III. NUMERICAL RESULTS AND DISCUSSIONS

I I /
o

Q o

P o
g) LA

oo
I

(a)
e0

E
i=14 nm

I& =0
Y

s)=5
s2=5

In this paper, our calculations are performed for
A1~Ga& ~As-GaAs-A1„Ga, ~As single quantum wells

by taking the material parameters: (i) the effective mass of
GaAs mo =0.0665m, and (ii) the dielectric constant of
GaAs ~=12.9. The growth parameters can be taken
from the experimental data.

The numerical results of the total confinement poten-
tial energy and the electron density as function of the dis-
tance along the z direction of a SQW are shown in Fig. 2
for fixed width of quantum well and the total electron
density in the presence (solid curves) and absence (dotted
curve for comparison) of the parallel magnetic field. The
results for B =0 are obtained by applying the DOS for
2DEG D;(E)=(mo /vrA )e(E —s;) to the above present-
ed formulas and by taking Uz(z, k»)=0. In Fig. 2, the

energy of the different electronic subband c.; are also
shown for the cases of B„AO and B„=O. The presence of
the parallel magnetic field will lead to an extra parabolic
type of confinement potential energy along the z direc-
tion. Since we have taken k =0, Vg =0, and symmetric
modulation doping (si =sz and N, =Ni), the total
confinement potential energies in Fig. 2 show the sym-
metric nature. In Fig. 2(b), difFerent electron distribu-
tions can be found in cases with and without magnetic
field B, which results from the different electron densi-
ties in the occupied levels (see caption of Fig. 2). The re-
sults obtained from the self-consistent calculation show
that the presence of the parallel magnetic field leads to
very little variation of the depletion lengths in the
Al Ga& „As layers.

The importance of electron wave vector k to the elec-
tronic subband structure of 2DES's in in-plane magnetic
fields has been noticed by Refs. 2, 4, 11, and 12. To
check if the issue (or argument) used in the present self-
consistent calculation is right or not, i.e., whether or not
k can be taken as a quasifree parameter for SQW's, the
inhuence of k on energy level, Fermi energy, and elec-
tron density in different states in a SQW is shown in Fig.
3 for a fixed in-plane magnetic field. Our numerical re-
sults show that (1) the electron density in the occupied
energy levels depends very little on k» [see Fig. 3(b)]; (2)
the parabolic nature can be found for the occupied ener-
gy levels s; (E~ and for the Fermi level; (3) the difFerence
between the energy of the occupied levels and the Fermi
energy is constant with varying k; and (4) the oscillation
with k can be found for unoccupied levels. The oscilla-

Io
Lo

CVo

T=4.2 K

(b)

0
Vo~

LA

I

~ —(a)
Io

=0

I

—20 20 i=0

FIG. 2. (a) The confinement potential energy and (b) the elec-
tron distribution along the direction perpendicular to the inter-
faces of an AlQ, GaQ, As-GaAs-A1Q zGaQ, As SQW in the pres-
ence (solid curves, B=10 T) and absence (dotted curves) of the
parallel magnetic field for the fixed width of quantum well
I.= 14 nm, spacers s

&
=s2 = 5 nm, modulation-doped donor con-

centrations N
&

=N2 =2 X 10 m ', background acceptor densi-
ty N, =8X10 m ', total electron density nT=3X10 m16 —2

temperature T=4.2 K, electron wave vector k~=0, and gate
voltage Vg =0. EF is the Fermi energy. In (a), c; is the energy
for the ith level. The electron density in the occupied levels for
B=10 T (B =0) are no=1 73 X10' m (no=220X 10
m ); n, =1.27X10' m (n& =8.0X10' m ). The depletion
lengths ale d

&

=d2 =7.51 nm both for B= 10 T and B =0.

(b)
E

C:

o

IlT=2X 1 0 f7l

T=4.2 K

L=B nm

B=9 T

o I

—0.2 —0.1

k„(nm ')
0.1 0.2

FIG. 3. (a) c;, Ez, and (b) n; as a function of the electron
wave vector for an AlQ 3GaQ 7As-GaAs-A1Q 3GaQ 7As SQW at
V =0. The sample parameters such as Nj, sj (j=1,2) and N,8'

are the same as in Fig. 2.
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tion of the energy levels with the parallel magnetic field
was also observed by Refs. 2 and 4. The most significant
conclusion we draw from Fig. 3 is that the actually
measurable properties such as electron density and the
subband energy referred to the Fermi energy are almost
independent on the value of k over a wide range of
choosing k . We note that at magnetic field B =9 T, the
center of the cyclotron orbits Z = I k moves along the z
direction in the range —15&Z &15 nm when k varies
from —0.2 to 0.2 nm '. This is much larger than the re-
gime —4 &z &4 where the electrons are most probably
located in. The physical reason that results in a weak
inQuence of quantum number k on the electronic prop-
erties in a SQW sample is that (i) when ~Z~ (L/2 (small

k~ case) the infiuence of 8 on the total confinement po-
tential energy is small. At 8„=9T and ~Z~ ~L/2 with
L =8 nm, max[U&(z, k )](0.8 meV is much smaller
than the confinement potential energy Uo ( Uo =227 meV
for an Ale &Gao 7As-GaAs-AlI3 &Gao 7As SQW sample);
and (ii) when ~Z~ )L/2 (large k case), the center of the
parabolic magnetic-potential U~ (z, kY ) is outside the
quantum-well layer and the magnetic field tends to dis-
place the electrons away from the quantum well. Since
the confinement potential energy Uo is very large, the
effects of the magnetic field are suppressed. It is neces-
sary to point out that one cannot take k as a free param-
eter for Al„Ga, As/GaAs heterojunctions (see Figs. 1

and 2 in Ref. 11).
In the following, we discuss the dependence of the elec-

tron density and the energy of electronic subband on the
sample parameters and on the experimental conditions in

SQW samples. Since these electronic properties depend
very little on k, we take k =0 as an input in the calcula-
tions and the summation over k in Eqs. (11) and (12) can
be removed.

In Fig. 4, the energy of electronic subband, the Fermi
energy, and the electron density in different levels are
plotted as a function of an in-plane magnetic field. In-
creasing the magnetic field leads to the decrease in Fermi
energy and, consequently, to the fact that the higher in-
dex energy levels are depopulated in high magnetic fields.
It can be seen from Fig. 4 that the quantum-resonance
effect, which occurs each time when Fermi energy passes
through an energy level, can be observed by changing the
parallel magnetic field. When the quantum resonance
occurs, the scattering channel in an energy level opens up
(or closes down), and the resonant scattering will lead to
the enhancement (or suppression) of the magnetoresis-
tance R . This resonance effect differs from the
Shubnikov —de Haas (SdH) oscillation through (1) apply-
ing a parallel magnetic field; (2) a not strongly oscillated
Fermi energy with magnetic field; (3) different DOS for
electrons; and (4) the resonant scattering may occur be-
tween the energy levels created mainly by the
confinement at B„=O in contrast with the resonant
scattering between different Landau levels for SdH oscil-
lation. Our results can be used to interpret the experi-
mental observation of the long period oscillation of R „
with the in-plane magnetic Geld.

In Fig. 5, we plot the energy level, the Fermi energy,
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FICi. 4. (a) c.;, E+, and (b) n; as a function of an in-plane mag-
netic field for an A1Q3GaQ7As-GaAs-AlQ 3GaQ7As SQW. The
rest parameters are the same as in Fig. 2. In (b), the symbols are
connected by the dashed curves to guide the eye.

FIG. 5. The dependence of the electronic properties for an

Al, Ga, ,As-GaAs-A1, Ga, ,As SQW on Al content c for
Vg =O. The conduction-band-edge discontinuity and the
effective electron mass in Al„Ga& As layers are calculated by
using Eqs. (7) and (5), respectively. NJ, sj, and N, are the same
as in Fig. 2.
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FIG. 6. Temperature dependence of electronic properties in
an Ala 3Gao 7A1-GaAs-Ala 3Gao 7As SQW at Vg =0. N, , s, , and
X, are the same as in Fig. 2.

and the electron density in different levels as a function of
Al content for Al, Ga, ,As-GaAs-Al, Gat,As SQW's
in a fixed parallel magnetic field. The stronger effect of
the magnetic field can be observed for smaller values of c
because the potential energy induced by the magnetic
field now is comparable with the confinement potential
energy caused mainly by the band discontinuity Uo [see
Eq. (7)]. The temperature dependence of the electronic
properties of a SQW subjected to an in-plane magnetic
field is presented in Fig. 6. The results obtained from the
self-consistent calculation show that the electron density
in the occupied (unoccupied) levels depends weakly on
(increases rapidly with) temperature when the total elec-
tron density is fixed. Since the total electron density in
SQW systems is usually high, the nonzero temperature
correction of the exchange-correlation energy through
Eq. (9a) is found to be small.

Experimentally, the total electron density in an
Al„Ga, AsiGaAs structure can be varied by, e.g., il-
luminations. ' In Fig. 7, the electronic energy levels, the
Fermi energy, the electron density in different levels, and
the depletion lengths are plotted as function of total elec-
tron density for fixed well width and in-plane magnetic
field. The rapid increase in E~ with nT leads to the occu-
pation of electrons to the higher energy levels and to the
increase in the electron density in the occupied levels.
We note that the depletion lengths increase with increas-
ing nT, which implies more donors in Al Ga, As layers
are ionized. The results presented in Fig. 7 indicate that
the quantum-resonance effect for a SQW subjected to an
in-plane magnetic field can also be observed by varying
the total electron density through persistent photocon-
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1 015 1016

nT(m )

10

FIG. 7. (a) c; and EF', (b) n; (symbols connected by the
dashed curves) and d,. (solid curve, depletion length in the jth
Al„Ga& As layer) as a function of the total electron density for
an Alo 2,Gao 75As-GaAs-Alo 2,Gao 75As SQW. N, , s, , and N, are
the same as in Fig. 2. d

&
=d2 because of symmetric modulation

doping and Vg =0.

duction process. Another popular way used experimen-
tally to vary the electronic properties of the 2DES's is
through applying a gate voltage. The inhuence of a gate
voltage on the energy levels, Fermi energy, electron den-
sities, and depletion lengths for a SQW in the presence of
a parallel magnetic field is presented in Fig. 8. With
varying gate voltage V (1) the energy levels [see 8(a)] os-
cillate with V; (2) the occupation of electrons to the
higher level can be achieved by applying a higher

~ Vg~;

and (3) the depletion length in Al Ga& „As layer 1 (2) in-

creases (decreases) with increasing V . d& =dz for V =0
and for symmetric modulation doping. For a large
enough gate voltage, we found the depletion length d.
may become negative. d. (0 indicates that in the jth
Al Ga&, As layer (see Fig. 1), (i) the doped donors are
not ionized at all; (ii) the electrons are accumulated in the
As„Ga, „As layer; and (iii) the accumulation of elec-
trons in the Al„Ga& „As layer will result in conduction
in the layer under the action of the electric field applied
along the x direction. Our results for asymmetric
modulation-doped SQW are shown in Fig. 9 where E;,
Ez, n, , and d (j= 1,2) are plotted as function of spacer
distance s2 for fixed spacer sI =5 nm and concentrations
of modulation-doped donors N

&

=3 X 10 m and
F2=10 m in different Al Ga& As layers shown in

Fig. 1. The asymmetric modulation doping in a SQW has
a weak effect on the electron density in the occupied ener-

gy levels but affects markedly the depletion length in
different Al„Ga& „As layers.
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The variation of the depletion length results in different
distributions of the ionized impurities in the
Al Ga& As layers. The result of d. obtained from the
self-consistent calculation would be helpful to the further
calculation of the magnetoresistivity (or mobility) caused
by impurity scattering, the limiting factor to determine
electron transport properties in low temperatures. For
a modulation-doped Al Ga& As-GaAs-Al Ga& As
SQW depicted in Fig. 1, we can model the impurity dis-
tribution as

1Vi, —d, —si L/2&—z & —s, L/2—

(b)

J=2

i=O
n; (z) = .N„—s, L /2 &—z & L /2+ s2

Nz, L/2+ zs&z &L/2+ zs+dz .
(21)

C

0
B=9 T
T=4.2 K
L=10 nm

I=2
I 1

—0.1 —0.05 0

o
t

0.05 0.1 0.1 5

Thus, we can calculate the low-temperature magne-
toresistivity (or mobility) by taking the known material
properties, the sample growth parameters, and the exper-
imental conditions.

IV. SUMMARY AND CONCLUSIONS

FIG. 8. (a) e; and EF', (b) n; (solid curves) and dj (J' 1,
dashed curve and 2, dashed-dotted curve are referred to
in Fig. 1) as a function of gate voltage for an Alp 25Gap75As-
GaAs-A102, Ga075As SQW. N, , s, , and N, are the same as in

Fig. 2.

I
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C 00
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FIG. 9. Inhuence of asymmetric modulation doping on elec-
tronic ProPerties of an Alp»Gap 75As-GaAs-Alp»Gap 75As
SQW at Vg=O. In the calculation, we take L =12 nm, s, =5

—3 X 1p24 m
—3 ~ 1024 m

—3 ~ —8)( 1p20 m
—3

T=4.2 K, and the parallel magnetic field 8=9 T. The curves
are marked the same as in Fig. 8. s2 is the spacer distance in the
lower Al„Ga& „As layer in Fig. 1.

In this paper, we studied the electronic structure of
two-dimensional electron gas subjected to in-plane mag-
netic fields. A self-consistent calculation for selectively
doped Al Ga& As-GaAs-Al Ga& As single quantum
wells was developed in which the electronic properties of
interest can be calculated as a function of known material
properties, sample growth parameters, and experimental
conditions. The dependence of the energy level and the
electron density in different electronic states, the Fermi
energy, and the depletion lengths on the in-plane magnet-
ic field, electron wave vector, Al content, temperature,
total electron density, gate voltage, and asymmetric
modulation doping was studied in detail. We also dis-
cussed the experiment to determine the total electron
density in a 2DES in the presence of the parallel magnet-
ic field. Our conclusions are summarized as follows.

A two-dimensional electron system subjected to an in-
plane magnetic field provides a quasi-one-dimensional en-
ergy structure and an extra parabolic type of confinement
potential energy along the z direction.

In the presence of the parallel magnetic field B„, the
Hall configuration in which an additional perpendicular
magnetic field B, is applied can still be used to measure
the total electron density of the 2DES. For the case of
B ))B, and for a high mobility sample so that
(B p) ))1, the total electron density per unit area of a
2DES subjected to an in-plane magnetic field can be ob-
tained from measuring the magnetoresistivities p„„and
p„ tsee Eq. (20)].

For a selectively doped Al„Ga& As-GaAs-
Al Ga, As SQW, the electronic properties, such as (1)
the total confinement potential energy, (2) the energy and
wave function of electronic energy levels, (3) the Fermi
energy, (4) the electron distribution along the direction
perpendicular to the interfaces of SQW, (5) the electron
density in different energy levels, and (6) the depletion
length in different Al Gai „As layers, can be calculated
self-consistently as a function of (1) known material prop-
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erties such as effective electron mass and dielectric con-
stant for GaAs, (2) sample growth parameters such as
concentrations of doped acceptors and donors, spacer
distances, width of the well layer, and Al content, and (3)
experimental conditions such as in-plane magnetic field,
temperature, and gate voltage. In the calculation, the re-
sults for the total electron density and electron wave vec-
tor are taken as input parameters.

For a SQW structure, our numerical results show that
the experimentally measurable properties such as the
electron density and the electronic subband energy mea-
sured from the Fermi level depend very little on the
quantum number k . This implies that k may be taken
as a quasifree parameter to simplify the self-consistent
calculations.

With increasing parallel magnetic field, Fermi energy
decreases and leads to the depopulation of electrons in
the higher index energy levels. The quantum resonance
occurs each time when Ez passes through an energy lev-
el. Experimentally, this quantum resonance can be ob-
served from measuring p versus 8 in low tempera-
tures.

For Al„Ga& As-GaAs-Al Ga, As SQW systems,
the stronger effect of the parallel magnetic field can be
observed for the samples with smaller Al content, which

results in the comparable confinement potential energies
caused by the magnetic field and by the conduction-band
discontinuity. The electron density in the occupied levels
depends very little on the temperature up to 300 K.

Increasing total electron density will lead to the occu-
pation of electrons to the higher levels and to the rapid
increase in depletion lengths. Varying the gate voltage
gives rise to (l) the oscillation of the energy levels; (2) the
various depletion lengths in the Al Ga& As layers; and
(3) the occupation of electrons to the higher levels for a
large enough

~ Vs~. The asymmetric modulation doping
in a SQW does not affect the electron density in the occu-
pied levels but affects markedly the depletion lengths,
which connect to the distribution of the ionized impuri-
ties.
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