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The effect of the depolarization field on the second-harmonic generation due to resonant intersubband

transitions in asymmetric quantum wells is discussed. Calculations are performed in the framework of
the perturbative density-matrix formulation with relaxation-time approximation. The results obtained

show that in the near-double-resonant system the depolarization effect not only shifts the peak, in the

second-harmonic-generation spectrum, but also changes its shape and enhances the maximum value.

I. INTRODUCTION

Recently there has been a strong interest in the
second-order nonlinear optical phenomena connected
with the intersubband transitions in asymmetric quantum
wells (AQW's}. ' ' This interest results both from a fun-
damental physics point of view as well from the possible
practical applications in the area of integrated optics and
optical communications.

The calculation of the electromagnetic response (of the
low-dimensional electron gas), with the standard mean-
field approaches, consists of two steps. ' ' First, deter-
mination of electron states of the system by self-
consistent solution of Schrodinger's equation and
Poisson's equation. (The exchange-correlation interac-
tion can be incorporated within the density-functional
scheme. ) Second, the response of the system to the elec-
tromagnetic radiation is obtained by employing the
random-phase approximation (RPA) or the time-
dependent local-density approximation (TDLDA), ' if
exchange-correlation effects are to be included. To ob-
tain an accurate representation of the response we have
to include both steps.

In most of the theoretical works devoted to the
second-order nonlinear responses, the second step is
omitted and the authors concentrate on the optical cou-
pling between the ground occupied subband and several
excited subbands. By manipulating the well shape
or/and by applying a static electric field, one can enhance
matrix elements and make the energy dominator very
small, leading to very strong nonlinear responses. Omit-
ting the second step is equivalent (when we work in the
RPA} to neglecting the depolarization effect (DE). Some
authors "" have made an attempt to take into account
the DE. In Ref. 11, the DE was included by simply re-
placing (in the one-electron expression for the second-
order susceptibility) the intersubband energy by the
depolarization-shifted intersubband energy. The self-
consistent treatment (based on the TDLDA) of the
second-harmonic generation (SHG) in the two-level
AQW system was reported by Heyman et al. '2 The
three-level system was considered by Fejer, Yoo, and
Byer. The authors of Ref. 3 calculated the SHG
coefficient using the self-consistent approach similar to
that developed by Allen, Tsui, and Vinter. ' Unfortunate-

ly, (i) the calculations have been performed only numeri-

cally, and (ii) the coupling between the different
intersubband-subband transitions was neglected. A more
sophisticated approach to the SHG in quantum wells sub-

ject to an applied electric field was reported in Ref. 13.
This approach is based on the electromagnetic scattering
theory presented in Ref. 16, including the retardation
effects. Unfortunately, the authors of Ref. 13 concen-
trated only on the two subband model. Results obtained
in Refs. 3, 12, and 13 indicate that the DE leads mainly
to the blue shift of the resonance in the SHG spectrum.

In this paper, our aim is to discuss the modification the
SHG spectrum (in the three-level system) induced by the
DE, making allowance for the coupling between different
intersubband transitions. We show that in the case of the
near-double-resonant structures the effects induced by the
DE are much more complicated than was suggested in
Refs. 3 and 11.

II. THEORY

Our analysis is based on the density-matrix formula-
tion with relaxation-time approximation. Like in the pre-
vious papers, we consider the three subband system as-
suming that only the ground subband is occupied in the
absence of the radiation.

For a parabolic conduction band, the energies of the
subbands can be expressed as

E;(k, )=E;+Pi k, /Zm*, i =1,2, 3,
where k, is the wave vector in the x -y plane,
E; =E,(k, =0), and m is the effective mass of electrons
in the conduction band. (We neglect for simplicity the
difference between the effective masses inside the well and
in the barrier. )

The corresponding wave functions (normalized to the
unit area of the system) can be written as

4, (k„r, ) exp=(ik, .r, )y;(z),

where r, is the position vector in the x-y plane and y;(z)
is the solution of the one-dimensional Schrodinger equa-
tion &py; =E;qr; with &p=p /2m *+Vscp(z). [VscF(z)
is the self-consistent quantum-well potential. ' ' ]

Since in our system the intersubband energy
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E;=E (k, ) —E;(k, ) is independent on k„ the electron
gas can be treated as a sum of noniteracting N, three-
level systems, where N, is the surface density of the car-
rier in the QW.

The equation for the matrix elements of the density
matrix [in the representation of qr;(z)] is given by5'

= (1/i%') [&0+V,p];1 —hp;J /r;J, (3)

where hp =p —p' ', p is the unperturbed density matrix
having only diagonal term p'; '=5;)5ji. V= V(z, t) is the
effective perturbing Hamiltonian, z, , is the relaxation
rate from the ith subband, and ~,"' is the off-diagonal
elastic dephasing rate. (We assume for simplicity that
T =0.)

Since the operator V(z, t) is Hermitian, we have the
following relations: V; =V'; and p,"=p', .

Under usual experimental conditions, the wavelength
of the light is much larger than the effective thickness of
the system. Thus, we can work in the dipole approxima-
tion taking the electric field of the incident radiation (ap-
plied in the z direction) in the form

D(t) =D exp( itot )+D—exp(i cot ) . (4)

(At this point, we should note that in the case of a weakly
asymmetric system the correct description of the SHG
must take into account the z dependence of the external
radiation. ' ' )

The field D (t) modifies the density distribution of elec-
trons. The change of the distribution [b,n(z, t)] can be
expressed through the density matrix as

An(z', t)=N, Tr[hp5(z —z')] .

Modification in the carrier distribution leads to the
modification of the Hartree potential. Thus, the effective
perturbing potential, appearing in Eqs. (3), can be written
in the form' '
V(z, t ) =V'"'(z, t)+ b, v(z, t)

=eD(t)z (e /so—s„)f dz' f dz "An(z", t),
(6)

The surface electronic polarization [P,(t)] can also be
written in the similar form. We shall limit ourselves to
the first two orders, i.e.,

where y("(co), y( )(2co), and y( '(0) are the linear, SHG,
and optical rectification coefficients, respectively.

If we neglect, for simplicity, the effects connected with
rectification then, in the approximation used here, Eq. (7)
reduces to

b p( t) =p("(co)exp( i cot—)
+p' '(2')exp( i2cot)—+c.c. ,

b n ( z, t ) = n " ()z, co)ex p( i cot )—
+n' )(z, 2')exp( i2co—t)+c.c. ,

b V(z, t ) =V(')(z, co)exp( i cot )—
+V' )(z, 2')exp( i2cot)+c—.c.

(9a)

(9b}

(9c)

It is well known that, in the case of the finite systems,
the polarizability [P(r, t)] is related to the induced
charge density [b,n (r, t )] by

V P(r, t)=eon(r, t) . (10)

Using the above relation and Eqs. (8) and (9b), we find
that the SHG coefficient can be written as

(2')= f dz f dz'n( )(z', 2') .
D —oo —oo

Thus, the knowledge of the induced charge density at fre-
quency 2' is sufficient to determine the SHG coefficient.
(In the absence of the electron-electron interaction, it is
more convenient to use the relation y' '(2' }
=N, Tr[p' '(2')( —e)z]/EOD for the calculation of the
SHG coefficient. ' )

Successive orders of the density matrix can be obtain
from Eqs. (3) and (7a) using the usual iterative method:

P, (t) =a~"'(co)D exp( ic—ot )+E~( )(2')D exp( 2—icot )

+c.c.+8~( '(0)D

where c. is the background dielectric constant and —e is
the electron charge.

(In this paper, we shall restrict ourselves to the electro-
static limit where the velocity of light can be taken to be
infinite, and the electric field can be expressed as gradient
of a potential. }

As in most of the previous papers, we assume that the
external perturbation [V'"'(z, t)] is small. Then the self-
consistent solution of Eqs. (4}—(6) can be obtained per-
turbatively by expanding hp, An, and hV in powers of D
as

(n)
= (1/i))'i) [&o,p'"'], —p', "'/r, ,at

+ y (1/ g)[V(k) (n —k)]
k&0

Using Eqs. (5)—(7) and (9), we find that

v(~~)(~)(p( ) p( ))

x —z„+.r,,

(12)

(13)

n&0

~n= yn(")
n&0

av= y v'"'.
n&0

(7b)

with

p';, )(2') = . [V"'(z,co),p"'(co)];,1

24cg —E;-+)I;
V(2)(2~)(p(0) p(o) )

2%co —E;.+iI; (14)
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V'"'(z, co„)=V'"'(z, co)5„,
I—(ez/Eoe ) f ' dz' f ' dz"n "(z",co„),

(15)

and

V,",'(2co)
n'2 '(z, 2co) = —N, qr, (z)y3(z)

E31 —2%co —i I 31
(19b)

and

(16)

2V'k'i'(co )Ek in'"(z, co) = N, g—qr, (z)yk(z)
k=2, 3 E„',—(~~+ir„,)'

(17)

n'"'(z, co„)=N,Q gq, (z)p, (z)p',,"'( co„ ),
l j

where 1;.=A'r;J ', V'"'(z, co)=eDz, co(=co, and co2=2co.
Using Eqs. (16) and (13) we get

For comparison, in the two subband model and single
resonance condition (2A'co =E2i ) the expressions for
n (( )(z, 2 co) and n z '(z, 2co) can be approximated by

n(( )(z, 2co) =N, qr, (z)y2(z)

V( )( )[V( )( ) V())( )]
(Ei) —2A'co —i I i) )(E2) irico—i I —

2( )

n' '(z, 2co)=nP'(z, 2co)+nz '(z, 2co), (18)

Unfortunately, the second-order correction [n' '(z, 2co)]
resulting from inserting Eq. (14) to Eq. (16) is much more
complicated. However, in the case of the near-double-
resonant structures (E2, =E32 =fico), we can neglect the
off-resonant terms (assuming that the relative line
broadening is small I; «E;&. ). Then

and

V2, '(2co)
n z '(z, 2co) = —N, tp, (z)t(t)2(z) E,—2& —I

(20)

(21)

where

n(i )(z, 2co) =N, p, (z)(p, (z)

V",'(co)V" '(co)
X

(E» —2irico —i I » )(E2, —A'co —i I i, )

(19a)
I

From Eqs. (18)—(21), we find that in the double reso-
nant (single-resonant) structure, calculation of the
infIuence of the DE on the SHG spectrum reduces to the
calculation of V2", (co), V3'i'(co), and V'(3'(2co) [V'(')'(co),
V22 (co) Vp) (~ ) and VI2 (2~ ) 1'

The use of Eqs. (13), (15), and (17) gives the following
relation, which determines V" ':

(,),„, 2e N, ,
' „„„Ek)Vkt(co)V" '(z, co )=V'"'(z, co )— f dz' f dz "gy„(z")q&, (z" )Epe„—~ —~ k Ek, (%co+—i 1 k, )

(22)

Taking a matrix element (between the states yk and y&),
we get the set of the equations for Vk", (co) identical with
that discussed in Refs. 14 and 15. When A'co is close to
Ek1, then in summation over k only the resonant term
(k =k') can be retained. In this diagonal approximation,
V2", (co) is given by

Ez, (fico+i I z, )—
Vz('i)(co) =Vzi'(co)

Ezi (%co+i—I 2, )

I

from Ek, to Eki. (It is easy to check that diagonal ap-
proximation works well only when a«« 1.)

Substituting Eq. (23) in Eq. (22) and taking the matrix
element [between the states ()t)3(z) and (Io2(z)], we obtain
the following equation, which determines V32 (co):

(i) t
2e N ~(3 2 k 1)E/&)Vki(co)

V",2'(co) =V;",'(co)—
EpE k Ek, —(%co+i rk, )

(26)

where

E,—fico —i I
Vext(

E21 —&
(23) where

L (i,j;k, l) = f dz f dz' p, (z(')y (z')

Ek, =Ek, (1+akk )'

with

(24)
(27)X f '

dz'~„(z')ci, (z'

is the Coulomb matrix element. ' ' ' Retaining in Eq.
(26) only the near resonant term ( k =2), we find

akk = f dz f dz'q&, (z')yk(z')
k1~0~oo

(25)

It is the well-known result, indicating that (in the linear
approximation) the DE only shifts the resonant energy

E2, (fico+i I z, )—
V3'i'(co) =V3~z(co)

Ei, —(irico+ir2, )

=V~32'(co)c(co), (28)
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with

E21 E21( 1+a22 a32}
1/2

where

2e N, Z21
a32= L(3,2;2, 1)

E21 COG oo Z32

(29)

(30)

with

V,",'( )V,",'( )
3 (co)= (E„—2f~ —i r„)(E„—e~ —i r„)

and

E21 'AM l I 21
c(co)= E,—%co —iI

(31)

Vext( }Vext(
c(co),

(E, 2fico—i I,—)(E, fico—i I—, )
(33)

(32)

[We assume that (a22 —a32}«1.] It is interesting to
note that function c(co) appears as a result of the cou-
pling between

~

1 )~
~
2 ) and

~
2 )~ ~

3 ) transitions [more
exactly due to the inhuence of the depolarization field
connected with ~1)~ ~2} on the matrix element V23'(co)].

Using Eqs. (14)—(19), (23), (25), and (28), we find easily

V' '(z2co, ) (=N, e /EOE )„
X J' dz' f '

dz "qrt(z")y3(z")

X [ —A(co)+8(co)VP, '(2co)],

where B(co)= 1/(E3i 2fico—I 3i )—.
Taking the matrix element of Eq. (32), we get

V3, '(2co) =a332 (co)(E» /2)/(1+a338(co)E» /2) .

(34)

Having the necessary matrix elements [Eqs. (23), (26), and
(34)], we can calculate n' '(z, 2co) defined by Eqs. (18) and
(19). After some manipulations, we get

a338(co)(E3& /2)
n' '(z, 2co)=N, p, (z)y3(z)A(co) 1—

=N, q)t(z)y3(z)A(co)(E —2%co —i I, )/(E'—2iiico —iI 3, ) . (35)

Deriving the above equation, we have used the relation
E3, =E3&(1+a33)' =E3i(1+a33/2) assuming that
O;33 « 1.

Substituting Eq. (35) in Eq. (11) and performing the in-
tegration, we find

(2) — e lvz CP Z23Z21Z31

(E,—2A'co iI, )(E—, —tiico —i I,)'
(36)

X C(co),1

(E2, —fico) + I 2,
(37}

where C(co) = ~c(co)~ = [(E2, fico) +I 2, ]/[(E—2, iiico)—
+I 2, ] and P=(z2, z33z32)

The application of Eq. (22) for the two-level system
shows that when 2A'co=E2„ the inhuence of the DE on
the V'" can be neglected in the first approximation, i.e.,
V';~"=V'J"'. In the similar way, like in the case of three-
level system, we can show [using Eqs. (14)—(19)] that

It can be easily checked that when we neglect the DE,
i.e., when we replace E; and E;J by E;J, then Eq. (36)
reduces to the one-electron expression used in the earlier
papers.

The second-harmonic-generation spectrum is propor-
tional to

~y'"(2~)~2=e6N2Pe ' 1

(E3 t 2fico )'+ r~»

and

V2t'(co)[V22'(co) —Vt",t(co) ]
co

(E2t —2fico —i I 2t )(E2t fico i I—2t )—

1
8(co)=

E21 2A' I 21

(39)

From Eqs. (38)—(40), (21), and (11), we find the following
expression for the SHG spectrum in the two subband sys-
tern:

~(2)(2co)~2e6N2e2z4(zz)2
1 1

(E2t —2A )'+r2, (E„—fi )'+ r»
(41)

The above equation shows that in the single-resonant
structure, the DE only shifts the peak position in the
SHG spectrum from E2, to E2, . This conclusion is con-
sistent with that reported in Refs. 12 and 13.

III. NUMERICAL RESULTS AND DISCUSSIGN

In this section, we calculate numerically the SHG spec-
trum [defined by Eq. (37)] for the near-double-resonant

V2, '(2co) =a22A (co)(E2t /2)/(1+a228(co)E2, /2),
(38)

where
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GaAs asymmetric-step-quantum-well (ASQW) structure
shown in inset of Fig. 1(a). (We neglect for simplicity the
band-bending efFects. They will be briefly discussed at
the end of this section. ) This asymmetrical structure is
experimentally realized by varying the Al composition in
Al Ga, As layers during growth. The parameters are
as follows: m*=0.066mo, c =11.1, and N, =10' crn
We also use the usually quoted value for I,"=I of 5
meV. The total thickness (L) of the ASQW and the
thickness of the narrow well (Lz) are assumed to be 125
and 50 A, respectively. The barrier height (Vb) is 350
meV.

As an illustration, the values of E2„E2I,E2&, E», and
E» are calculated as a function of the height of the step
( V). For comparison, we also calculated the above ener-
gies in the presence of the external electrostatic potential
eFz (neglecting the carrier screening effect ') for the arbi-
trary value of the potential step, e.g., 110 meV. The re-
sults are shown in Fig. 1. From Fig. 1 (see also Refs. 21,
22 and 23), we find that the level separations in ASQW's

can be tuned in wide range by changing the height of the
step or/and by an external bias field. (The similar depen-
dence of the level separation on the external bias field was
reported for asymmetric double-quantum-well systems. ")
We have also calculated the dependence of the product of
the dipolar matrix elements P on V. Within the potential
range 90—130 meV, this dependence is negligible small
[P( V= 90 meV) =P( V= 130 meV) =2.7 X 10 A ]. (It is
interesting to note that the above value of P is very close
to the value resulting from the optimization procedure
for the photon energy I)leo = 100 meV. )

First, we discuss the case of noninteracting electrons.
When the electron concentrating is small (N, ~ 10"
cm ), the DE can be neglected and the double-
resonance condition has the form E2, =Esi /2 =fico [see
Eq. (36) or (37)]. Figure 1 shows that in our structure
this condition is fulfilled at V= V„,=115.6 meV. The
peak in the SHG spectrum appears then for
A'co=kco„, =102 meV. From Fig. 2, we find that the full
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FIG. 1. The energies E», Ez& /2, E», E», and E&I /2 for a
CraAs step QW (shown in inset) with L = 125 A, L~ =50 A, and
V& =350 meV as a function of (a) the height of the step V and
(b) the strength of the electrostatic 6eld Fat V= 110meV.

FIG. 2. The dependence of ~y' '(2co)
~

on the photon energy
fico for GaAs step QW with L =125 A, LN=50 A, Vs =350
meV, N, =10' cm, and various height of the potential step:
(a) the results obtained neglecting the DE and (b) the results ob-
tained taking into account the DE. The unit of ~y' '(2co)~ is
normalized to the maximum of ~y' '(2co)~ calculated in the
one-electron approximation at V= V„,. The inset shows the
dependence of C(co) on the photon energy.
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width at half maximum (FWHM) is 4.2 meV, i.e., nearly
two and half times smaller than the intersubband absorp-
tion linewidth ( =2I ). The deviation of the height of the
step from V„, leads to the increase (decrease) of the
FWHM (the peak value). The peak is shifted from A'co„,

to A'co*, which (for I z, ——I'3i) is very close to E3i /2.
The situation is more complicated in the systems with

high carrier concentration where the DE must be taken
into account. When we neglect the coupling between
~1)~~2) and ~2) ~ ~3) transitions (the diagonal approx-
imation), the DE can be included by replacing, in the
one-electron expression for the SHG coefficient, Ez&

(E3i ) by E2i (Eii ). The double-resonance condition then
takes the form Ez, =E3i/2=irido. From Fig. 2, we find
that (in the system with N, = 10' cm ) the above condi-
tion is fulfilled for V = V„,= 102.2 meV and
A'co=iiico„, =102.3 meV (if we neglect the band-bending
effect). The deviation of V from V„, modifies the spec-
trum in the similar way as in the one-electron case. The
coupling between the intersubband transitions (which is
controlled by a dimensionless parameter a&2) changes this
picture substantially. Calculations show that in the sys-
tem considered here, c732 is comparable with a2z. Conse-
quently, the function C(co), appearing in Eq. (37), rather
strongly depends on photon energy when the depolariza-
tion shift b, 2, ( =Eii —E2i ) is comparable with the
linewidth (see Fig. 2). In the presence of the coupling,
the SHG spectrum has the maximum peak value

y','„(2')
~

at V= V„,=97.2 meV for Aco=fiPo„, =102.2
meV. It is interesting to note that, in our system, the
maximum peak value calculated including the coupling is
larger than that obtained in the diagonal (or one-electron)
approximation by a factor of 2.5. The FWHM linewidth
is then slightly smaller (a few percent) compared to the
one-electron case (with V= V„,). Figure 2(b) shows that

a deviation of V from V„, leads, like in the one-electron
case, to the decrease (increase) of the peak value

(linewidth). Consequently, at V= V„, ( —= V„,—18.4
meV) the peak value (linewidth) is about two times small-
er (larger) than that obtained neglecting the DE. The
above presented results indicate that in the near-double
resonant system, the DE can lead to the substantial
enhancement of the maximum peak value.

As it was mentioned in Sec. I, the SHG spectrum is
affected not only by the dynamic screening, but also by
electrostatic screening effect. In real devices, based on
the intersubband transitions, modulation-doped QW's are
usually used (in order to lower the ionized impurity-
scattering induced line broadening). In such system, the
spatial separation between the charged dopand atoms and
the free carriers creates the additional potential V~,
which leads to the modification of the energy levels and

wave functions of the confined states. This effect was
neglected in our calculations. The electrostatic self-
consistent potential V&(z) is the solution of the Poisson
equation with the total equilibrium charge distribution
determined by the ionized donor doping profile ND (z)
and the electron-density distribution n(z). ' ' To es-
timate the inhuence of this potential on the SHG spec-
trum, we assume (following Fishman ) that n (z) can be
approximated by the electron distribution in the absence
of the Coulomb interaction. We have checked numerical-
ly that the above approximation works very well due to
very fast ' convergence of the self-consistent calcula-
tions. We have solved the Schrodinger and Poisson equa-
tion, assuming for simplicity that ionized donors are
placed adjacent (the spacer thickness Ls =0) to the well
in the external barriers in regions measuring LD with
constant density nD =Nz!2LD. Obtained in this way,
the results show that in the system considered here the
band bending affects the SHG spectrum mainly through
the modification of the subband separation energies.
Consequently, the value of V (and/or F) at which the
double-resonance condition is achieved is also modified
compared to the case VH =0. Taking, for example, F =0
and LD =100 A, we find that the electrostatic Coulomb
interaction shifts V„, ( V„,) from 115.6 meV (102.3 meV)
to 142.8 meV (132.5 meV) and fico„, (A'ro„, ) from 102
meV (102.3 meV) to 99.5 meV (96 meV). The parameters
P and a23 (affecting strongly the peak value of the SHG
spectrum) are rather moderately enhanced by the band-
bending effect. The results presented above suggest that
the main conclusion of the paper, also holds true when
the electrostatic Coulomb interaction is included. How-
ever, in some situations the inhuence of the band-bending
effect on the SHG spectrum can be more complex. For
example, in the case of the modulation-doped multiple-

0
quantum AQW systems with Lv ~ 50 A, we an expect the
strong infiuence of the deep potential minima in the bar-
riers generated by the ionized donors. Unfortunately,
the more detailed discussion of this problem is beyond
the scope of this paper.

At the end, we note that the approach developed here
can be easily extended on the case of the doubly resonant
difference frequency mixing or triply resonant third-
harmonic generation observed experimentally in Refs. 11
and 10, respectively. These problems will be discussed in
future articles.
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