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Static thermodynamic quantities of quantum Heisenberg spin glasses with anisotropic interaction
in applied magnetic fields
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In the static replica symmetric approximation, the quantum Heisenberg spin-glass model with the
infinite-ranged random Dzyaloshinskii-Moriya interaction in external magnetic fields is investigated in
detail. The local susceptibility and the corresponding order parameters are calculated, which are in good
agreement with those of thermofield calculations. The dependencies of entropy and specific heat on tem-

perature are studied numerically at various magnetic fields and for different spin numbers. It is shown
that the entropy is always positive and the quantum fluctuation has very strong effect on specific heat.
Our results show that the typical specific heat of a spin glass for different magnetic fields exhibits cross-
over behavior, which has been obtained experimentally but not explained theoretically before.

I. INTRODUCTION

It has been found that a number of hexagonal metallic
spin-glass properties are strongly influenced by various
types of anisotropies. ' These systems may be described
by a model in which, in addition to the random isotropic
Heisenberg exchange interaction, a single spin uniaxial
anisotropy energy —D(S, ) is added, ' where S, is the z
component of the spin operator. Theoretically, uniaxial
anisotropy brings about several new features. The quan-
turn Heisenberg spin-glass model with exchange random-
ness and uniaxial anisotropy has been investigated by
many authors, ' and a multiplicity of phases has been
found.

Experiments on the canonical spin glass such as CuMn
and AgMn in the presence of nonmagnetic impurities (for
example, Au or Pt) with strong spin-orbit coupling to the
conduction electrons reveal the existence of an anisotropy
which can be explained by the Dzyaloshinskii-Moriya
(DM) interaction. ' ' This interaction describes the
scattering of the conduction electrons of the host (Cu) by
Mn spins via the spin-orbit exchange of the nonmagnetic
impurity. Theoretically, the influence of the DM interac-
tion has been investigated in Monte Carlo simulations for
classical spin-glass systems' ' as well as in analytica1
studies with random DM exchange. ' ' Especially, it
has been demonstrated that the specific-heat—
temperature curve of CuMn alloys at various magnetic

fields exhibits crossover behavior, which caused a puz-
zling problem for theorists. In addition, the thermo-
dynamic properties of classical spin-glass models have
been studied by some authors. Unfortunately, these in-
vestigations neglected completely the influence of quan-
turn features of spin operators on the thermodynamic
properties of spin-glass systems. As emphasized earlier,
the quantum spin glass in comparison with its classical
counterpart is far from being a trivial problem due to the
noncommutativity of the spin operators involved, which
requires treatment by special methods. "' Typical-
ly, quantum mechanics manifest itself via time-dependent
self-interaction and order parameters, in contrast to the
classical spin-glass systems, and the dynamics becomes an
inherent feature of the problem, which significantly
influences the calculation of critical lines and transition
points, etc. The technique employed here to deal with
both randomness and quantum features was introduced
by some of us and has been successfully implemented in
other quantum spin-glass problems. This theory allows
one to treat both magnetic and thermodynamic problems
in a unified scheme.

The purpose of this work is to continue the analysis of
the Heisenberg model with exchange randomness and
random DM anisotropy interaction in Refs. 24 and 25.
Thermodynamic quantities are studied at various mag-
netic fields and for spin numbers S=—,', 1, —,', and 2. Spe-
cial attention will be paid to the analysis of the crossing
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behavior of specific-heat —temperature curves for different
magnetic fields. For comparison with results by other
methods, the temperature dependencies of local suscepti-
bilities and corresponding order parameters are also in-
vestigated numerically.

II. STATIC REPLICA SYMMETRIC FORMULATION

and

P(J,")=

W(D; )=
2nD

3/2 ND;
exp

2D

NJ;.
exp2' 2J

The model Hamiltonian of the system is given by

H = $J—
J S;.S~

—$D ~ (S; X SJ )+h QS;,

where S=(S„,S„,S, ) is the quantum spin operator associ-
ated with the local moment S. The first two sums are over
all possible distinct pairs (i,j) of sites. The strengths of
exchange interactions J,- and D;., the latter correspond-
ing to the DM interaction, are quenched and indepen-
dently distributed with symmetric Gaussian probability
distributions

respectively. As usual the scaling of the variances J/N
and D /iV ensures a sensible thermodynamic limit
N —++ ao. The external magnetic field h is supposed to
be in the direction of the z axis.

The derivation of the free energy is a straightforward
generalization of work of Bray and Moore. In order to
average over the random couplings [JJ] and ID;J), we

apply the replica method and Matsubara imaginary-time
functional-integral technique, which allows us to treat the
noncommuting spin operators as C numbers. The
present calculation follows Ref. 24 closely; we therefore
quote here only the saddle-point free energy per spin.
One has

nPF[R, Q] = J
2

2

dr f dr' $ $ R„„( ,r~)R (r,r')P„+ $ $ Q„,(r,r'rQ r(r, r')P„„
0 0 a pvcrp any pvcrp

—ln TrT, exp( —PH, fr[R, Q]), (3)

—pH, &[R,Q]= —,'(Jp) f dr f dr' g g R „(r,r')p„S (r)S (r')
a JMvcrp

+ g g Q„r(r,r')P„S (r)Sr(r') +Pf drgh S (r),
any pvcrp

0 a

with

P„, =d 5„5 +(1—d )5„5„
d =D/J, and P= 1/T,

where T denotes the "time"-ordering operator which
rearranges the operators in the expansion of the exponent
in the order of decreasing "time" arguments w. Function-
al diff'erentiation with respect to R

& (r, r') and Q&~(r, r')
yields

R „„(r,r') = ( T,S„(r)S„(r')),
Q„r(r, r') = ( T,S„(r)Sr(r') ),

where S„ is a Cartesian component of S .

a, y=1,2, . . . , n are replica indices. The angular brack-
ets denote an average with respect to the effective Hamil-
tonian in (4). Nonzero values for these functions imply
the dynamic spin self-interaction and spin-glass order pa-
rameter, respectively. Furthermore, within the static re-
plica symmetric theory, the order parameters and self-
interactions are separated into longitudinal (L) and trans-
verse ( T) components by the decomposition

Q„.=5„.[Q1.5„.+Qr(1 —5„.) ]

R =5 [R 5„,+R (1 —5, )] .

After substituting these equations into the free energy
[Eqs. (3) and (4)] and applying the Hubbard-Stratonovich
transformation to linearize the quadratic forms in the
effective Hamiltonian, the free-energy density becomes
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—[Qi +2(1+4 )QT+4d Ql QT ] I

DzlnL z (7)

L(z)= fDz, C&[Q(z, z, )],
sinh[(2S+ 1)Q(z, z, ) ]

@[A(z,z, )]=
(8)

The function Q(z, zi ) is given by

J
Q(z, z, )= (a,x+a2x, ) +(a,y+a2y, )

2
' 2 1/2

h+ az+az+—3 4 1

a, =[d QL+(1+d )QT]'/,

a2=[d (Rl —Ql )+(1+d )(Rr —QT)]'/z,

a~ = [QI. +2d'Qr 1'",
a 4

= [RI. —Ql +2d ( R T QT ) ]'—
with the abbreviation

pF[R, Q]= [Rl +2(1+d )RT+4d Rl RT
J
2

1 BL(z)m„(z)=-
pL(z) Bh„h 0

'

where ho (0=p, v) denotes an infinitesimal applied mag-
netic field. Furthermore, since the rotational symmetry
with respect to the z axis (the direction of the fixed mag-
netic field) remains after the DM interaction has been
averaged over, the matrix element of the local susceptibil-
ity tensor can be obtained readily as

2 fDz fDzi@(Q)(rivi —5„)1 1

a„a,PJ

1

L'(*) Dzi@ 0 Pi

X Dz(4 Q v)

(16)

where a„=a„=a2 and a, =a4.
One of the advantages in the present approximation is

to calculate directly the thermodynamic quantities.
From the free energy in (7), therefore, we will focus here
on the entropy and the specific heat. Using the thermo-
dynamic formula, the entropy of the system with fixed
volume Vis given by

2DZAz= Az
d3z= f exp( —z /2)A(z) .

)
3/2

sv= IRI +2(1+dz)RT+4d R~RT

—[Q.'+2(1+d')Q,'+4d'Q. QT]]

The stationarity of the functional F[R,Q] in Eq. (7) with
respect to the spin self-interactions and spin-glass order
parameters gives the following self-consistency equa-
tions:

+ DzlnL z — Dz)Q

and the corresponding specific heat is

(17)

R = D,N Q, —1
(a4JP)2 L z

RT= Dz)@ Q ~)+y) —2
2(a~JP) L z

(10)
J 2

Ci, = — [RJ+2(l +d )RT+4d RLRT

—[Ql +2(1+d )QT+4d Ql QT]I

QL
=

2 fDz fDz, @(A)z,
1 1

(a~JP)2 L z

Qz =
2 fDz fDz&@(Q)x,

1 1

(a~JP)2 L z

The unaveraged susceptibility is given by

2

(12)

(13)

Dz fD ~28 4(Q)
a'n

Dz f ~2 B@(Q)
L2(z) BQ

'2

(18)

am„(z)
y„„(z)=—

while

0
(14)

Since both the entropy and the specific heat are functions
of order parameters R and Q (which depend on tempera-
ture), they must be determined self-consistently by Eqs.
(10)—(13). The corresponding numerical calculations will
be carried out in the next section.
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III. NUMERICAL SOLUTIONS AND DISCUSSION 1.00

In order to avoid complications caused by mixing of
various longitudinal and transverse modes in self-
consistency equations, we restrict our considerations to
weak anisotropy d=0. 2. However, it turns out that in
this restricted case a great richness of thermodynamic
features already occurs.

Figure 1 shows that spin self-interactions and spin-
glass order parameters change with temperature for
different magnetic fields for fixed reduced anistropy
d =0.2 and spin number S=

—,'. Obviously, the spin-glass
order parameters and corresponding self-interactions
tend to coincide as temperature decreases. The longitudi-
nal components of spin self-interaction and spin-glass or-
der parameter RL, QL increase with magnetic field. Lon-
gitudinal spin-glass order parameters Qr are always
nonzero in external magnetic fields. There exists cross-
over behavior for transverse spin-glass order parameters
QT in different magnetic fields, while the transverse spin
self-interaction RT decreases as the magnetic field in-
creases. Figure 2 gives the longitudinal and transverse
susceptibility-temperature curves for the same conditions
as in Fig. 1. It is found that the longitudinal and trans-
verse susceptibilities are mixed up strongly due to the
DM anisotropy. The result is in qualitative agreement
with that of the thermofield dynamics calculations by
Kopec and Biittner. '
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FIG. 2. Local susceptibility variation with temperature
(t =4T/J) for the same conditions as in Fig. 1. The longitudi-
nal (solid lines) and the transverse (dashed lines) components
correspond to the reduced magnetic fields h =0.0, 0.1, 0.2, and
0.3 from top to bottom, respectively.
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FIG. 1. Temperature dependence of the longitudinal (RL and

QL, solids lines) and transverse (Rr and Qr, dashed lines) spin-
glass order parameters and spin self-interactions for different re-
duced magnetic field h =h /J, where the upper lines refer to Re
and the lower lines refer to Qe. h =0.0, 0.1, 0.2, and 0.3 corre-
spond to longitudinal components from top to bottom and
transverse components from bottom to top, S= 2, and d =0.2
(t =4T/J).

The entropy-temperature curves are plotted in Fig. 3.
It has been demonstrated that the entropy has weak
dependence on external magnetic fields. It is easy to see
in Fig. 3(c) that reducing the spin number S and thereby
increasing the effect of quantum fluctuations results in a
strong reduction of the entropy. In addition, it is obvious
that the entropy is positive at zero temperature. We ar-
gue that, since DM ansiotropy suppresses quantum fluc-
tuation at low temperature, the replica symmetric solu-
tions become stable.

Figure 4 shows the temperature dependence of specific
heat. It is found that the cusps of specific-heat curves are
smoothed down by the external magnetic field. Especial-
ly, the specific-heat curves for different magnetic fields
[see Figs. 4(a) and (b)] exhibit crossover behavior, which
has been observed by Brodale et al. in experiments on
pure CuMn samples. We found that this feature appears
even if there exists a weak random DM interaction. Ad-
ditionally, we can also see that the broad peak of specific
heat in Fig. 4(c) moves towards high temperature and the
specific heat becomes larger as the spin number increases.

In principle, for the quantum spin-glass problem an ex-
act calculation of the thermodynamic quantities, such as
specific heat and entropy, requires precise knowledge of
the time dependence of the spin self-interaction involved.
Therefore, this means that calculation of the exact ther-
modynamic quantities will depend on the detailed time
dependence of R (r) in the present Matsubara approach
with the replica method. It seems that the complexity of
the problem prevents an analytically tractable approach.
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However, as was pointed out earlier, the static approxi-
mations will give rather good results if the temperature is
not too low. On the other hand, compared with the re-
sults of the thermofield dynamics ' approximation, the
present calculations are in basic agreement. We argue
that the reason may be that both the static and instan-

taneous approximations neglect the dependence of spin
self-interaction on the time.

In summary, the quantum Heinsenberg spin-glass mod-
el with DM anisotrpy is studied. The local susceptibility
and the corresponding order parameters are calculated,
and are in good agreement with those of thermofield dy-
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FICx. 3. (a) Entropy-temperature curves at reduced external magnetic fields h =0.0, O. f, 0.2, and 0.3 (from bottom to top) for
S=

2 and d =0.2, where t =4T/J. (b) Entropy-temperature curves at reduced external magnetic fields h =0.0, 0.1, 0.2, and 0.3 (from
bottom to top) for S = 1 and d =0.2, where t =3T/(2J). (c) Entropy-temperature curves for different spin numbers S= 2, 1, 2, and 2
(from bottom to top) at d =0.3 and h =0.1, where t =3T/S(S + 1)J.
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FIG. 4. (a) Specific-heat —temperature curves for the same conditions as in Fig. 3(a). The curves from top to bottom are for
h =0.0, 0.1, 0.2, and 0.3, respectively, where t =4T/J. (b) Specific-heat —temperature curves for the same conditions as in Fig. 3(b).
The curves from top to bottom are for h =0.0, 0.1, 0.2, and 0.3, respectively. The inset shows the specific heat observed by Brodale
et al. in Ref. 22, where t =3T/(2J). (c) Specific-heat —temperature curves for the same conditions as in Fig. 3(c). The curves from
bottom to top are for S= 2, 1, 2, and 2, respectively, where t =3T/S(S + 1)J.

namics. Due to the DM interaction, which suppressed
the quantum fluctuation at low temperature, the entropy
is found to be positive definite. It is shown theoretically
that the specific heat of spin glasses at various magnetic
fields exhibits the typical crossover behavior found by
Brodale et al. in experiment.
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