
PHYSICAL REVIEW B VOLUME 51, NUMBER 15 15 APRIL 1995-I

First-principles pseudopotential study of the structural phases of silicon
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A first-principles pseudopotential study of 11 phases of silicon is reported: diamond (cd), body-
centered cubic (bcc), face-centered cubic (fcc), body-centered tetragonal (bct), simple hexagonal (sh),
hexagonal-close-packed (hcp), double-hexagonal-close-packed (dhcp), simple cubic (sc), f3-tin, a body-
centered cubic structure with eight atoms per unit cell (bc8), and a simple tetragonal structure with 12
atoms per unit cell (st12). For each structure and for each volume considered we have minimized the en-

ergy with respect to all structural degrees of freedom. We have used large basis sets and very careful in-

tegrations over the Brillouin zone to resolve the small energy di6'erences between structures, and our
pseudopotentials incorporate nonlinear core exchange-correlation corrections, leading to more accurate
results than those of previous calculations. We find good agreement with experiments and with some
previous calculations but a few discrepancies remain and we gain some insights into the high-pressure
phase diagram of silicon.

I. INTRODUCTION

While the diamond structure of silicon is the most
widely studied of all semiconductors, there have also been
a number of experimental and theoretical studies of the
high-pressure phases of silicon. ' A detailed picture of
the phase diagram of silicon has emerged, although a
number of unanswered questions remain. Experimental
studies have used the diamond-anvil technique, which
can achieve pressures of at least 2500 kbar, together with
energy dispersive x-ray-di6'raction techniques which give
information about the structures formed. A large num-
ber of theoretical studies have been performed using
the first-principles pseudopotential total-energy meth-
od, ' ' ' although other studies have also been report-
ed using a self-consistent linear combination of atomic
orbitals (LCAO) technique the linearized-muffin-tin-
orbital (LMTO) method, with' ' and without shape
approximations to the potential; and a generalized-
pseudopotential-theory (GPT) method. '

Experimentally it is well established that silicon in the
diamond structure (known as Si-I) transforms to the me-
tallic P-tin structure (Si-II) at pressures of about 100—125
kbar. ' " The stability range of the P-tin phase is now
known to be quite small. Until recently it was thought
that P-tin Si transformed into the simple hexagonal phase
(Si-V) at about 130—165 kbar, although it has been re-
cently found that an intermediate phase, denoted Imma
after its space group, is formed in this pressure range.
The simple hexagonal phase is stable up to pressures of
around 380 kbar, whereupon a transformation to a
presently unidentified phase known as Si-VI has been ob-
served. ' This phase was originally assigned to the
double-hexagonal-close-packed structure, which consists
of a stacking of hexagonal-close-packed layers intermedi-
ate between that of hexagonal-close-packed and face-

centered-cubic, but this assignment is now known to be
incorrect. Si-VI transforms to the hexagonal-close-
packed structure (Si-VII) at about 420 kbar, ' ' which in
turn transforms to the face-centered-cubic phase ' at
about 790 kbar. ' The phase is stable up to the highest
pressures so far attained of about 2480 kbar.

In addition to the stable high-pressure phases of sil-
icon, a number of metastable phases have been produced
by releasing pressure under different conditions. ' '

A fourfold coordinated structure with a body-centered-
cubic unit cell containing eight atoms, known as the bc8
or Si-III phase, has been recovered as a metastable phase
after releasing pressure from the P-tin phase. ' ' The
bc8 structure has also been obtained by a similar pro-
cedure for germanium, where it is known as Ge-IV.
Very recently it has been reported that the P-tin phase
of Si does not transform directly into the bc8 phase, but
instead transforms via an intermediate rhombohedral
phase called r8. ' The rhombohedral phase undergoes a
reversible transition to bc8 Si at a pressure of 20 kbar.
Another structure known as st12, which has a simple
tetragonal unit cell containing 12 atoms, has also been
formed under pressure release from P-tin Ge, al-
though this phase has not been reported in silicon. The
st12 structure is also fourfold coordinated, but the bond
angles are highly distorted from the perfect tetrahedral
angles, and it has the rather unusual topological feature
of odd-membered rings. Whether one obtains bc8 Ge or
st12 Ge under pressure release from P-tin Ge depends on
the conditions of pressure release. Recent experiments
have indicated that germanium brought rapidly to am-
bient pressure from 140 kbar transforms into the bc8
phase, whereas the st12 phase is favored under slower
decompression. In the case of silicon the bc8 phase is
obtained under slow decompression from the P-tin
phase, ' ' ' and two other fourfold-coordinated phases
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with large tetragonal unit cells (named Si-VIII and Si-IX
by the authors of Ref. 25) have been obtained under rapid
decompression. These phases have space groups P4&2&
and P4z2, respectively, but the positions of the atoms
within the unit cells are not known. Heating and recry-
stallization of bc8 Si produces the hexagonal diamond
structure ' (known as Si-IV), in which the layers are
stacked in the wurtzite manner. (Small regions of wurt-
zite stacking may also be induced in diamond structure
silicon by nanoindentation. ') The hexagonal diamond
structure is known to be very slightly higher in energy
than cubic diamond structure silicon (calculated to be
about 0.01 eV per atom). ' '

The aim of this work is to produce a highly accurate
set of results from the first-principles pseudopotential
method for the energies of structural phases of silicon.
We have calculated the energies of the diamond (cd), P-
tin, simple hexagonal (sh), hexagonal-close-packed (hcp),
double-hexagonal-close-packed (dhcp), face-centered-
cubic (fcc), body-centered-tetragonal (bct), simple cubic
(sc), body-centered-cubic (bcc), bc8, and st12 phases of
silicon. The results of previous calculations have often
been subject to inaccuracies due to the use of inadequate
basis sets and poor Brillouin-zone integrations. In this
study we have taken great care to make sure that such
numerical errors are very small, and we believe that our
study is the most complete and accurate published to
date.

There are a number of unresolved issues concerning
the phase diagram of silicon; for example, the structure
of the stable phase Si-VI is still completely unknown. In
addition there are discrepancies, some of them serious,
between the various theoretical calculations and between
the theoretical and experimental results. The calcula-
tions reported in this study have enabled us to draw
several conclusions about the high-pressure phase dia-
gram of silicon.

The rest of the paper is organized as fo11ows. In Sec. II
we summarize the main features of our calculations. In
Sec. III we give a short account of the construction of the
zero-temperature phase diagram. A discussion of the re-
sults concerning the relative stability of the phases and
their structures under pressure is presented in Sec. IV.
Concluding remarks are made in Sec. V.

II. FIRST-PRINCIPLES PSKUDOPOTKNTIAL
CALCULATIONS

The first-principles pseudopotential method has been
applied to a wide range of systems, generally giving good
agreement with experimental results. An excellent re-
view of this method and applications of it has been given
in the recent article by Pickett. In this section we give
only the computational details pertaining to the present
calculations.

Our calculations are for periodic crystals. The poten-
tials and wave functions were expanded in a plane-wave
basis set containing all waves up to 24 Ry in energy, and
the resulting matrix equations were solved using an itera-
tive diagonalization technique. We used the Ceperely-
Alder form of the local-density approximation (I.DA)

for the exchange-correlation energy. Scalar relativistic
corrections were included in the manner of Kleinman,
incorporating the relativistic exchange corrections pro-
posed by MacDonald and Vosko. We neglected spin-
orbit splitting, which can be included within this frame-
work, but which adds significantly to the computational
effort while having only a very small efFect for silicon.
The first-principles norm-conserving pseudopotential
used to represent the Si + ions in our calculations was
constructed using the scheme due to Kerker. We also
incorporated the nonlinear core exchange-correlation
corrections introduced by Louie, Froyen, and Cohen,
which improve the transferability of the pseudopotential.

Integrations over the Brillouin zone were performed by
sampling on regular grids of points in reciprocal space us-
ing the method of Monkhorst and Pack. ' These integra-
tions need to be very accurate because the energy
differences between phases are small. We have carried
out a careful study of the size of grid required, and have
concluded that grids containing many more k points
should be employed than used in many previous calcula-
tions. For the semiconducting diamond phase only a rel-
atively small number of k points is needed, but for the
metallic phases many more k points are required to
resolve the Fermi surface. The numbers of k points used
in the current study for each of the 11 structures con-
sidered are listed in Table I. To ensure comparable accu-
racy for calculations on different metallic phases, the
number of k points used should be roughly proportional
to the volume of the Brillouin zone (BZ), which is in-
versely proportional to the number of atoms in the unit
cell. For the metallic phases we have used approximately
8000 k points for structures with one atom per unit cell,
4000 k points for structures with two atoms per unit cell,
etc. To account for the Fermi structure we have used the
Gaussian occupation scheme of Fu and Ho, with the
modification of Ref. 43. In each case a Gaussian of width
0.05 eV was used.

We have also tested the efFects of basis set truncation
on our results, which we believe to be very small with the
24-Ry cutoff used for all the results presented in this pa-
per. The effect of the 11.5-Ry cutoff used in the pioneer-

cd
st12
P-tin
sh
hcp
fcc
bc8
bcc
dhcp
sc
bct

512
64

3920
7776
3888
8000
1000
8000
1944
8000
8000

60
6

1050
1080
540
770

64
250
270
220

1155

2
12
2
1

2
1

8

1

4
1

1

TABLE I. The total number of k points and the irreducible
number of k points used in the calculations for each phase of sil-
icon. The number of atoms in the unit cell is also given.

k points in k points in the Atoms in the
Structure the whole BZ irreducible BZ unit cell
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ing work of Yin and Cohen was to introduce a systemat-
ic bias in the energies whereby energies calculated at
small volumes per atom are shifted upwards in energy
with respect to those at larger volumes. We believe that
the errors introduced by the truncation of the basis set
and the finite resolution of the k point sampling have
been rather underestimated in previous studies. After ex-
tensive tests we believe that in the present calculations
the energy differences between phases are converged to
better than about 0.005 eV per atom. We have also tested
the effects of the nonlinear core exchange-correlation
corrections. The most significant effect is that for a given
volume the pressure is increased by about 10 kbar, which,
for instance, changes the equilibrium lattice constant of
cd Si from 5.382 A (without core corrections) to 5.400 A
(with core corrections); i.e., moves it toward the experi-
mental value of 5.429 A. Although the incorporation of
nonlinear core corrections undoubtedly improves the
quality of our calculations, we do not believe that they
are particularly important in silicon, even at the
compressed volumes considered in our study.

Several of the structures that we have considered have
internal degrees of freedom. The P-tin, bct, hcp, dhcp,
and sh phases have a single degree of freedom, which we
take to be the c/a ratio. The bc8 structure also has a sin-
gle internal degree of freedom, while the st12 structure
has five. (Full descriptions of the bc8 and st 12 structures
are given in Refs. 45 and 13.) For each structure and
each volume considered, a full minimization with respect
to all degrees of freedom was performed, using the calcu-
lated values of the forces on the atoms and the stress ten-
sor. For the more complicated st12 phase, a steepest
descents algorithm was used to locate the structure with
minimum energy.
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FIG. 1. The energy E in eV per atom vs the volume V for the
11 phases under consideration. The volume is given in terms of

0 3
the reduced volume V/Vo"P, where Vo" =20.024 A per atom is
the experimental equilibrium volume of cd-Si. The difT'erent

symbols indicate our theoretical values, and the lines are fits to
these data.

the relative stability of the phases is best illustrated by
the enthalpy-pressure plot of Fig. 3, which will be dis-
cussed in detail in Sec. IV. For clarity we plot the
difference in enthalpy between each phase and the bcc
phase. The most stable phase at any given pressure is the
one with the lowest enthalpy.

III. CONSTRUCTION OF THE PHASE DIAGRAM -132.10

The total energies per atom for each structure as a
function of volume were fitted to Chebyshev polynomial
series of degree 4—6, depending on the number of data
points available for each phase. The number of points in
the fits varies from 8 to 15, and in each case the fit is
good, with an estimated error of less than 10 eV per
atom. To investigate the phase stability at zero tempera-
ture we require the enthalpy H as a function of pressure,
p, where

H=E+pV .

The pressure was calculated by direct differentiation of
the Chebyshev series, and the values so obtained are in
excellent agreement with those calculated from the stress
theorem.

In Fig. 1 we plot the energies per atom, E, against the
volume per atom, V, for the 11 phases considered. The
high-pressure region in Fig. 1 is very congested, and for
clarity we give an enlargement of this region in Fig. 2.
Such plots have normally been given in theoretical stud-
ies of high-pressure phases, and therefore they allow for
comparisons to be made with previous studies. However,
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FICx. 2. As in the previous figure, but showing more detail of
the high-pressure region.
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FIG. 3. The enthalpy 0 in eV per atom vs the pressure p in
kbar for 11 phases of silicon. The enthalpy is plotted with
respect to that of the bcc phase.

IV. RESULTS

A. Relative stability of the phases

TABLE II. Calculated transition pressures p, for each of the
transitions I~II and the corresponding volumes of each phase,
V,

' and V,". We also include the hcp~dhcp and dhcp~fcc
transitions (see text).

cd~P-tin
P-tin~ sh
sh~hcp
hcp~fcc
hcp~dhcp
dhcp~fcc

p, (kbar)

78
102
377
843
830
874

V,
' (A /atom)

18.361
13.796
11.877
9.545
9.575
9.374

V," (A /atom)

14.013
13.581
10.999
9.404
9.476
9.332

The enthalpy-pressure plot of Fig. 3 shows that the fol-
lowing sequence of phase transitions is predicted with in-
creasing pressure: cd ~P-tin —+sh ~hcp ~dhcp —+ fcc.
The transition pressures and volumes corresponding to
the calculated sequence of transitions are given in Table
II. This sequence differs from the experimentally ob-
served one in three ways; we have not studied the Imma
phase between P-tin and sh in detail, or the Si-VI phase of
unknown structure between sh and hcp, and we have
found a very small range of pressures at which dhcp is
stable between hcp and fcc. In fact the enthalpy curves
for fcc, hcp, and dhcp are so close in the region 800—850
kbar that the small region of stability for the dhcp phase
may be due to small residual inaccuracies in the calcula-
tions. The Imma phase has been reported experimentally
in Ref. 7 and has been theoretically studied in detail in
Ref. 16 by Lewis and Cohen, who found that it actually
lies at slightly lower energies than both the 13-tin and the
sh structures, except at very compressed volumes. The
existence of such a phase is not completely unexpected,
since similar structures have previously been found to be
stable at high pressure for InSb and GaAs. ' More-
over, both the P-tin and sh structures can be thought of

as particular cases of the body-centered-orthorhombic
Imma structure for which the so-called u internal param-
eter takes the values —,

' and —,', respectively, and the two
axial ratios are no longer independent but are related by
b/a =c/a (P-tin) and by b/a =&3c/a (sh). Lewis and
Cohen' found that a stable Imma phase exists with a
structure intermediate between the P-tin and sh struc-
tures. We have performed just two calculations for this
structure using (a) the experimental values of the
structural parameters given in Ref. 7, and (b) the values
calculated by Lewis and Cohen' by relaxing the struc-
ture at the same volume. In our calculation the latter set
gives a slightly lower energy than the former, which lies
below the curves for both the P-tin and sh structures on
Fig. 1.

The calculated pressure for the cd~P-tin transition of
78 kbar is significantly lower than the experimental re-
sults of about 103 kbar due to McMahon and Nelmes,
113+2 kbar due to Hu et al. ,

" 117 kbar by McMahon
et al. , and 125 kbar given by Jamieson, ' although it is
plausibly close to the value of 88 kbar quoted by Olijnyk
et al.~' Calculations of the cd~P-tin transition pres-
sure in silicon have yielded a variety of results over the
years, although modern calculations support a transition
pressure close to ours. The recent pseudopotential calcu-
lations of Boyer et al. ' gave a value of 84 kbar. In addi-
tion, a very recent pseudopotential calculation by Moll
et al. ' obtained a cd~P-tin transition pressure of 80
kbar. We believe that the lower value of about 80 kbar is
now firmly established as the LDA prediction for the
cd —+P-tin transition pressure in Si. A similar state of
affairs holds for germanium. We had previously reported
the LDA value of the cd~/3-tin transition pressure in Ge
to be 60 kbar. We have now repeated these calculations
with the same accuracy as the present study of silicon,
and have obtained a more accurate value of 74 kbar. We
note that this value is very close to the transition pressure
of 75 kbar obtained by Kresse and Hafner, who used
similar calculational methods to ours. The two calculat-
ed values are significantly lower than the commonly ac-
cepted experimental value of about 105 kbar.

The consistency between the various modern theoreti-
cal values of the cd~P-tin transition pressures in Si and
Ge shows that the results are not sensitive to the precise
details of the calculations such as the scheme used for
generating the pseudopotential, etc. The reasons for the
discrepancies between the calculated and experimental
transition pressures in Si and Ge are unclear at the
present time. The cd~P-tin transition involves consider-
able bond breaking and the reverse P-tin~ cd transition
is severely hindered by kinetic factors, which make it
difBcult to estimate the actual equilibrium transition pres-
sure. Depending on the conditions of pressure release,
the metastable fourfold-coordinated structures known as
bc8 and st12 are formed. ' ' ' Consequently the
higher experimental values for the cd~P-tin transition
pressure may be due to kinetic effects. Besson et al.
discussed the problems inherent in determining equilibri-
um transition pressures from experimental data, and sug-
gested that the accepted diamond —zinc-blende~metallic
phase transition pressures in group-IV and III-V semi-
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conductors should be revised downwards. On the other
hand it is also possible that the LDA is not accurate for
determining the energy difference between semiconduct-
ing and metallic phases, or that it is inaccurate when the
volume difference between the phases is large, as is the
case with this transition.

The calculated pressure for the P-tin~sh transition of
102 kbar is significantly lower than the experimental
values of 132+2 kbar, and about 160 kbar (Ref. 2) for
the onset of the formation of the sh structure. Our value
is also smaller than the previously calculated value of 143
kbar, "but is reasonably close to the more recent value of
120 kbar. ' ' As can be seen in Fig. 1, the enthalpy
curves of the P-tin and sh phases are very close, and very
small inaccuracies in the energies can result in a
significant shift in the transition pressure. The existence
of the intermediate Imma phase, which we have not con-
sidered in detail, will further increase the calculated pres-
sure for formation of the sh structure.

Although a sh~hcp transition was reported in early
experimental investigations, it is now well established
that this transition does not occur directly, and that the
intermediate phase Si-VI, of unknown structure, is stable
in the pressure range of 380—420 kbar. ' In early work,
Si-VI was tentatively assigned to the dhcp phase, al-
though this identification was later established to be in-
correct when higher-resolution x-ray data were obtained.
Our results confirm that dhcp is not a stable phase in this
pressure range, as it is about 0.02 eV per atom higher in
enthalpy than the hcp phase. This value is in good agree-
ment with the pseudopotential result mentioned in Ref.
57. Our calculated value of 377 kbar for the sh~hcp
transition should be considered as an upper bound for the
stability of sh Si, which is consistent with the experimen-
tal facts.

We have found a very small region of stability for the
dhcp phase in the pressure range 830—874 kbar, between
the hcp and fcc phases. The bonding in hcp, dhcp, and
fcc (and all other poltypic stackings of close-packed lay-
ers) is very similar and, consequently, the enthalpy curves
are very nearly parallel (see Fig. 3). The enthalpies of
hcp, dhcp, and fcc are almost identical at a pressure of
about 850 kbar, and it is not possible to determine wheth-
er or not the small range of stability of the dhcp phase is
a consequence of very small inaccuracies in the calcula-
tions. The energies and enthalpies of different polytypic
stackings of layers can be expressed in terms of interlayer
interactions. If we use a model for the enthalpy which in-
cludes only interactions between nearest-neighbor and
next-nearest-neighbor layers, it is possible to distinguish
between the hcp, dhcp, and fcc phases. This model has
been shown to give an excellent description of the ener-
gies of SiC polytypes. A property of the model is that
when the enthalpies of the hcp, dhcp, and fcc stackings
are equal, then all possible polytypes have the same
enthalpy. Therefore we predict that at pressures of about
850 kbar the enthalpy required to create a stacking fault
in polytypes of close-packed silicon layers vanishes.

Our value for the hcp~fcc transition pressure of 843
kbar is close to the experimental value of 790+20 kbar,
and also close to the CAPT and LMTO results of Ref. 18.

A considerably larger transition pressure of 1160 kbar
was obtained in a previous pseudopotential study. ' The
discrepancy between this higher value on the one hand,
and the all-electron and experimental results on the other
hand, led the authors of Ref. 6 to suggest that core relax-
ation effects, which are not included in pseudopotential
calculations, are important at these compressed volumes.
Our more accurate pseudopotential results show that this
evidence must now be disregarded.

In the pressure range of 380—420 kbar in which Si-VI
is stable, we find that sh (eightfold coordinated), bct
(essentially tenfold coordinated with a c/a ratio of about
0.8), and hcp, dhcp, and fcc (twelvefold coordinated) have
very similar enthalpies. This interesting observation sug-
gests that the phase Si-VI, which has a large unit c 11,

may contain silicon atoms with a variety of coordination
numbers anywhere between eight and twelve.

We also note a theoretical study in which a metallic
fivefold-coordinated body-centered-tetragonal phase was
considered, ' which the authors found to be metastable
and thought might be manufactured by a process involv-
ing the application of anisotropic stress. It should be not-
ed that the body-centered-tetragonal phase studied by
these authors is not the same as the bct phase that we
have studied, which is essentially tenfold coordinated.
Boyer et a/. ' found that cd Si becomes unstable to their
fivefold-coordinated phase at a pressure of 126 kbar.
However, inspection of Fig. 3 shows that cd Si is unstable
to many other phases at similar or lower pressures: P-tin
(78 kbar), bc8 (106 kbar), st12 (98 kbar), sh (79 kbar), sc
(127 kbar), bct (125 kbar), hcp (129 kbar), dhcp (136
kbar), and fcc (140 kbar). Kinetic barriers between me-
tallic phases are expected to be smaller than between
semiconducting and other phases. Therefore there seems
to be no good reason why one should expect that "once in
this phase it could well be stable at ambient conditions, "
as claimed by Boyer et al. '

Our values for the energy differences between the cd,
sc, bcc, and fcc phases are much closer to the full-
potential LMTO (FP-LMTO) results of Methfessel, Ro-
driguez, and Andersen that to the original pseudopoten-
tial results of Yin and Cohen. For example, we obtain
an energy difference between the cd and bcc phases at
zero pressure of 0.46 eV per atom, which is significantly
closer to the FP-LMTO result of 0.43 eV per atom than
to Yin and Cohen's value of 0.53 eV per atom. The ma-
jor difference between our calculations and those of Yin
and Cohen are that they used a 11.5-Ry plane-wave basis
set cutoff and a small number of k points for the
Brillouin-zone integrations for the metallic phases, and
that they used the Wigner formula for the exchange-
correlation energy whereas we use the more accurate
Ceperley-Alder expression. However, our calculations
locate the P-tin phase at significantly lower energies than
in the FP-LMTO calculations. In view of the good
agreement for the other phases (at more compressed
volumes) it is not likely that this discrepancy is due to the
use of a pseudopotential in our calculations. We note
that because of its crystal structure the P-tin phase is par-
ticularly dif5cult for the FP-LMTO method, and we
suspect that their results for this phase are inaccurate.
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We now consider the metastable fourfold-coordinated
bc8 and st12 phases. The structures of bc8 and st12 are
quite complex, and are discussed in detail in Refs. 13 and
45. The bond angles in bc8 and more especially st12 are
significantly distorted from the perfect tetrahedral value,
and the packing densities are larger than in the diamond
structure at the same pressure. Full details of our bc8
and st12 calculations will be published elsewhere, ' to-
gether with a comparison with the corresponding phases
of germanium. Recently we published a study of the bc8
and st12 phases of germanium, showing that both
phases are almost degenerate in energy and that both are
less stable than either cd Ge or P-tin Ge. Subsequently a
study by Crain et al. found a much smaller energy
difference between cd Ge and the bc8 and st12 phases
than in our calculations, and they claimed that st12 Ge
is actually a stable phase over some range of pressures.
We have carried out comprehensive tests on our germani-
um calculations, and are completely satisfied that no re-
gion of stability of st12 Ge exists. One motivation for
carrying out the present calculations on the bc8 and st12
phases of silicon was to test whether our results agreed
with those of Crain et al. , and in fact we find quite good
agreement with their results in this case.

From Fig. 3 we see that both bc8 Si and st12 Si are less
stable than either cd or P-tin Si at all pressures, and can
therefore be formed only as metastable phases. This is
consistent with bc 8 being observed .under slow
decompression of the P-tin phase. ' ' At zero pressure
the bc8 phase is 0.126 eV per atom higher in energy than
cd Si, while st12 Si is 0.136 eV per atom higher in energy
than cd Si. These energy differences are to be compared
with the values obtained by Crain et al. of 0.110 and
0.118 eV per atom, respectively. The result for bc8 Si is
also in good agreement with the earlier pseudopotential
result of Biswas et al. ' of about 0.120 eV per atom. For

0 3bc8 Si the calculated zero-pressure volume of 17.724 A
per atom is in good agreement with the experimental
values of 18.26+0.04 A per atom and 18.13+0.08 A
per atom. Our calculated value of the x internal param-
eter of 0.1022 at zero pressure is in reasonable agreement
with the old experimental value of 0. 1003+0.0008, and
is in excellent agreement with the most recent experimen-
tal value of 0.1025. Our value of the x parameter is also
in good agreement with previous calculated values. ' ' '

The bulk modulus of the st12 phase is calculated to be
0.82 Mbar, which is a little smaller than the value of 0.96
Mbar [cf. the experimental value of 0.98 Mbar (Ref. 63)]
for cd Si, as was found previously for germanium. The
calculated bulk modulus of bc8 Si of 0.91 Mbar is inter-
mediate between that of cd Si and st12 Si.

B. Variation of the structural parameters with volume

We now turn our attention to the variation of the c/a
ratios with volume for the P-tin, sh, bct, hcp, and dhcp
phases, and to the variation of the x internal parameter of
bc8, which are plotted in Figs. 4(a) —4(fl, respectively, to-
gether with various experimental data.

For the P-tin phase we find that the c/a ratio decreases
with increasing pressure (decreasing volume). Our values

are close to the calculated values of 0.55 (Ref. 10) and
0.551 (Ref. 14) at a volume of 16.0 A per atom, and are
in extremely good agreement with the experimental
values of 0.550+0.002 at a volume of about 14.2 A per
atom, and 0.550 at a volume of 14.0 A per atom. We
believe that the value obtained by Needs and Martin" of

0 30.525 at a volume of 13.5 A per atom is inaccurate,
probably because of an inadequate number of points used
in the Brillouin-zone integration. We have found that the
c /a ratio is rather sensitive to the quality of the
Brillouin-zone integration used. Even with the large
number of k points that we have used, the uncertainty in
the c/a ratio of the P-tin phase is about 0.002. The trend
observed for the pressure dependence of the c/a ratio is
in good agreement with the calculation of Ref. 16. P-tin
Si is stable over only a small range of pressures, and we
could not locate any experimenta1 data for the volume
dependence of the c/a ratio of 13-tin Si with which to
compare our results.

For the sh phase we find that the c/a ratio increases
with decreasing volume, in agreement with the trend seen
in the experimental data. This agreement is consider-
ably better than for previous calculations, which gave
values of the c/a ratio which are too large. Chang and
Cohen' obtained a value of 0.955 at a volume of 13.5 A
per atom, which is significantly larger than both our cal-
culated value of 0.940 and the experimental values of
0.937+0.005 (Ref. 3) and 0.936+0.005. Needs and Mar-
tin" obtained a similar volume dependence to that of Fig.
4(b), but with the c/a ratios approximately 0.015 larger
than in the present calculations. Our results for the pres-
sure dependence of the c/a ratio are again in good agree-
ment with the theoretical results of Ref. 16.

The bct phase has not been observed experimentally in
silicon, although it has been obtained in tin where it is
formed as a high pressure stable phase with a c/a ratio of
about 0.91. For silicon we obtain a c/a ratio of about
0.80, which increases with decreasing volume. With a
c/a ratio close to 0.80 each atom is approximately ten-
fold coordinated. At the larger volumes considered, the
structure is very soft to changes in the c/a ratio, which
makes it quite difficult to obtain accurate values.

For hcp Si we find that the c/a ratio initiall increases
with decreasing volume down to about 11.0 A per atom,
while at smaller volumes the c/a ratio decreases. The
hcp phase is initially formed at a volume of just less than
11.0 A per atom, and at this volume our value of the
c/a ratio of 1.697 is in good agreement with the experi-
mental value of 1.700. ' The data of Duclos, Vohra, and
Ruoff indicate that as the volume is further decreased
the c/a ratio decreases much more rapidly than predict-
ed by our calculations, although error bars in the experi-
ment are certainly significant. The experimental value of
Hu et al. for the c/a ratio at about 11.0 A per atom of
1.64+0.02 is much smaller than both our calculated
values and the other experimental values. In Ref. 6 it is
suggested that this experimental value is indeed inaccu-
rate, and arises from an overestimation of the a parame-
ter. The present calculation lends support to this sugges-
tion. We also note a similar disagreement concerning the
p versus V data measured by Hu et al. for the sh and
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hcp phases, while for the P-tin phase the agreement with
other experimental studies is remarkably good. Our
value of the c/a ratio at 11.0 A per atom is in very good
agreement with the theoretical result of Chang and
Cohen. '

The dhcp phase has not been observed experimentally
in silicon, and we could not locate any previous calcula-
tions of the volume dependence of its c/a ratio. We find
that the c/a ratio decreases with decreasing volume, and
tends toward the ideal value of 1.633.

The x internal parameter of bc8 Si increases with de-
creasing volume, as was found for bc8 Ge, and in agree-
ment with other pseudopotential calculations. No ex-
perimental data for the variation of x with pressure exist.
Our zero-pressure value is in excellent agreement with
the experimental values.

C. Equation of state

Although it is most common to compare calculated
transition pressures and volumes with experimental
values, there is actually much more information than this
in the experimental data. Furthermore, the comparison

between calculated and experimental transition pressures
and volumes is not straightforward because of the com-
plex kinetic factors involved in the transitions. This im-
plies that an analysis based solely on equilibrium thermo-
dynamics may be misleading; however, a proper theoreti-
cal treatment of these kinetic factors has not yet been
achieved. A fuller comparison between the calculated
and experimental results, which is valid even when kinet-
ic factors are important in the transition, can be made by
comparing the pressure-volume relation or equation of
state for each of the phases. In Fig. 5 we plot the reduced
volume of the various phases against the pressure for
pressures up to 400 kbar, while in Fig. 6 we plot the same
quantities, but for the pressure range from 400 to 2500
kbar. For the theoretical data we give two curves: the
solid lines are plotted in terms of the theoretical zero-

0 3pressure volume per atom of cd Si of 19.686 A per atom,
and the dashed lines are plotted in terms of the experi-
mental zero-pressure volume of 20.024 A per atom.
For the experimental data (various symbols) the reduced
volume is defined in terms of the experimental zero-
pressure volume per atom of cd Si.

Some scatter is apparent in the experimental data plot-
ted in Figs. 5 and 6, even for data obtained by the same

0.69

0.6S-
0

~ le+I

Cd 0.M'-

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.96

(b) .
Q

- 0.95+

&Cd O.e6-
0 - 0.94 0

0.66-

0.64 "
0.66

0..ei I

0
Cd

~o.eo-
Cd

V.

(c)
g.19 ' I I

o.46 o.ee o.se 0.06 o.4o

i. f

0~ 1 66—
Cd

(e)

~ ~ ~ ~

Cd

&1.66-

0
~ 0 ~~ 0

0 0

1 I

0.50
I

0.60

~
- 1.60 a

0
- 1.65

~ ~ I 1 63
0.'VO

0.1(V) &

- 0.105 +

- 0.103

- 0.101 +

I j I I I I I I j 0.930.06 o.ae 0.96 0.46 0.65 0.65 0.05

FIG. 4. The calculated e/a
ratio for the P-tin (a), sh (b), bet
(c), hcp (d), and dhcp (e) struc-
tures; and the calculated x inter-
nal parameter for the bc8 struc-
ture (f) as a function of the re-
duced volume V/ Vo"", where
Vo" =20.024 A per atom is the
experimental equilibrium vol-
ume of cd-Si. The filled circles
correspond to our calculated
values and the open symbols cor-
respond to experimental data
taken from dift'erent sources:
triangles —Ref. 3; squares-
Ref. 4; diamonds —Ref. 2;
circles —Ref. 6; stars —Ref. 54;
crosses —Ref. 49; circle with
cross —Ref. 1; circle with dot-
Ref. 23; square with cross —Ref.
26.

0.40 o.eo 0.60
V Vp

1.64 ~ ~ I I ~ ~ ~ I

0. /0 0.04
I I I I

0.84 0.94
V Vp

0.099 +
1.04



FIRST-PRINCIPLES PSEUDOPOTENTIAL STUDY OF THE. . . 9659

1.0 0.55

Q 0.9
O

~ 0.8
(U
U

gg 0.0

0.6 I I I

50 100 150 200 250 300
Pressure (kbar)

I

350 400

Q

2 o.5t—

0~0.47—

(D

&0.43-
e
Q

0.39—

CP

&IG. S. The reduced volume against pressure for observed
phases in the pressure range up to 400 kbar. The experimental
data and the dashed theoretical curves are normalized to the ex-
perimental zero-pressure volume of the cd-Si structure V0" of

0 3
20.024 A per atom, while the solid theoretical curves are nor-
malized to the theoretical zero-pressure volume of cd-Si V0"' of

0 3
19.686 A per atom. The sources for the experimental data are
as follows (see text for further details): filled and open
triangles —Ref. 3; filled squares —Ref. 4; open squares —Ref.
23; open circles —Ref. 2; crossed circles —Ref. 1; filled stars-
Ref. 7; open stars —Ref. S4; filled crosses —Ref. 49. Filled
symbols correspond to synchrotron x-ray-diAraction data.

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I t \ I i I I I I I

400 900 1400 1900 2400
Pressure (kbar)

FICx. 6. As previous figure but for the pressure range
400—2500 kbar. Filled circles —Ref. 6; open circles —Ref. 2.

is consistent with the trend observed in a recent quantum
Monte Carlo study of the nitrogen atom, dimer, molecu-
lar solid, and atomic solid, which showed that the LDA
results improve with increasing homogeneity and increas-
ing electron density.

authors, because of the use of different x-ray sources and
other experimental conditions. The interested reader
should consult the original references for more details
and for estimates of the experimental error bars. In Figs.
5 and 6 the filled symbols represent synchrotron x-ray-
diffraction data obtained from various references, and the
open symbols represent data obtained from other x-ray
sources. We have not distinguished data measured on the
upstroke from those measured on the downstroke.

The most obvious point to make about Figs. 5 and 6 is
that for either definition of the reduced volume the agree-
ment between the calculated and experimental data is
good over the entire pressure range. For the phases plot-
ted in Fig. 5 the agreement between the calculated and
experimental curves is better for the solid line (normal-
ized to the theoretical volume), and this is especially true
when comparing with synchrotron data. For the highly
compressed hcp and fcc phases plotted in Fig. 6 the
agreement between the calculated and experimental
curves is better for the dashed line (normalized to the ex-
perimental volume). By construction the theoretical solid
curve should coincide with the experimental data for the
diamond structure at zero pressure, but the agreement is
remarkably good over the entire pressure range of Fig. 5.
For the hcp and fcc phases, which are stable at high pres-
sures and correspondingly small volumes, the agreement
between the calculated dashed curves normalized to the
experimental volume and the experimental data is very
good, and is better than the agreement between the solid
curves and experiment. The implication of these results
is that the LDA calculations are more accurate for the
highly compressed and close-packed hcp and fcc phases
than for the lower-pressure phases which have more open
structures and larger volumes per atom. This conclusion

V. CONCLUSIONS

We have performed a first-principles pseudopotential
study of 11 phases of silicon. Full minimization of the
energy with respect to all structural degrees of freedom
has been performed, and we have taken great care to en-
sure that our results are numerically accurate. The cal-
culated pressure for the cd~P-tin transition is
significantly lower than measured values, as has been
found previously for germanium. In the pressure range
in which the phase of an unknown structure named Si-VI
is stable, we find that phases with eightfold, tenfold, and
twelvefold coordination are very close in enthalpy. This
may be an important observation because it suggests that
Si-VI could contain atoms with a variety of different
coordination numbers. We predict that the enth@lpy re-
quired to create a stacking fault in polytypes of close-
packed silicon layers vanishes at a pressure of about 850
kbar. In contrast to earlier pseudopotential results our
value for the hcp~fcc transition pressure is in excellent
agreement with the experimental data. The agreement
between our calculated p-V curves and the experimental
data is remarkably good, and we have found some evi-
dence that the LDA results are more accurate for the
highly compressed close-packed structures than for the
phases formed at lower pressures.
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