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Magnetic anisotropy of iron multilayers on Au(001):
First-principles calculations in terms of the fully relativistic
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L. Szunyogh
Institut fur Technische Elektrochemie, Technische Universitat Wien, Getreidemarkt 9/158, A-1080, Wien, Austria

and Institute of Physics, Technical University Budapest, Budafoki ut 8, H 11-11, Budapest, Hungary

B. Ujfalussy
Institut fur Technische Elektrochemie, Technische Universitat Wien, Getreidemarkt 9/158, A-1080, Wien, Austria

and Research Institute for Solid State Physics, Hungarian Academy of Sciences, H 1525 -Budapest, P O. B.oz )9, Hungary

P. Weinberger
Institut fiir Technische Elektrochemie, Technische Universitat Wien, Getreidemarkt 9/158, A-1080, Wien, Austria

(Received 4 November 1994; revised manuscript received 13 December 1994)

In order to treat the orientation of the magnetic field at surfaces properly, the spin-polarized
fully relativistic version of the screened Korringa-Kohn-Rostoker method for semi-infinite systems
is presented. Magnetic anisotropy energies up to six iron layers on Au(001) are calculated by
using the force theorem, predicting a change from a perpendicular to a parallel magnetization for
a layer thickness between three and four layers of Fe, in very good agreement with experimental
observations. In particular, the magnetic anisotropy energy is discussed in relation to the orbital
magnetic moment and to the orientation of the magnetic field when changed continuously.

I. INTRODUCTION

Since recently many overlayer and superlattice systems
have been predicted to be useful for purposes of high-
density magneto-optical storage, ' theoretical investiga-
tions of the magnetic anisotropy of such systems became
of particular interest. As proposed originally by van
Vleck, the magnetic anisotropy arises primarily from a
spin-orbit coupling (SOC) interaction. Since, in partic-
ular, for 3d transition metals, this interaction energy is
thought to be fairly small as compared to the 3d band-
width, perturbative treatments of SOC have been ap-
plied in many theoretical investigations. Tight-binding
studies cleared up some important features of the mag-
netic anisotropy for monolayers and multilayers, in par-
ticular with respect to the orbital moment anisotropy,
band-filling, and crystal-field eKects. Concomitantly, a
large variety of ab initio calculations within the local spin
density approximation (LSDA) and by using the "force
theorem" have been published, yielding mostly good
quantitative explanations or predictions for the magnetic
anisotropy of several layered ferromagnetic systems.

However, for systems containing heavy elements it is
a priori not evident that the SOC can be treated as
a perturbation. It seemed therefore desirable to de-
velop techniques based on a nonperturbative treatment
of SOC, namely to use a fully relativistic description.
Solutions of the Dirac Hamiltonian in the presence of
a magnetic field have been discussed by Feder and
Rosicky and Strange et al. that, in turn, allow a
proper description of the orientation of the magnetic

field. This approach has then been incorporated to the
Korringa-Kohn-Rostoker (KKR) method and the
linear muffin-tin orbital (LMTO) method. 22'2s The lat-
ter technique was used, for example, by Guo et al. to
compute the magnetic anisotropy energy of a single Fe
layer and of thin Fe films in noble metals.

Experimental studies reveal a pseudomorphic epitax-
ial growth of ultrathin Fe films on a Au(001) 1x 1
surface, because of a very small misfit between the
lattice constant of the 2D fcc(001) lattice of Au and that
of the bcc Fe, and because of the Au atoms segregating
at the top of the film. Liu and Bader found that when
grown at 100 K these films have a magnetization perpen-
dicular to the surface for thicknesses less then 2.8 mono-
layers (ML) and in-plane magnetization beyond that. 2s

In this paper, the spin-polarized relativistic version of
the screened KKR method is applied to calculate the
magnetic anisotropy energy of the Fe Au(001), n ( 6,
multilayer systems. Theoretical aspects concerning the
relativistic spin-polarization are described in Sec. II. Ap-
proximations used in our model are mentioned in Sec. III
together with some of the computational details. In
Sec. IV the results for the Fe Au(001) films are presented
and discussed.

II. THEORY

Within the relativistic density functional theory
and by employing the Gordon decomposition for the
current, the Kohn-Sham-Dirac Hamiltonian can be
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written as

R = cnp+ pmc + I4V [n, m]+ poB' [n, m], (1)

where the a; (i=1,2,3) and P are Dirac matrices, 0;
(i=1,2,3) Pauli matrices, I4 is a 4 x 4 unit matrix, and
n and m. denote the particle density and the spin mag-
netization density, respectively. If the effective potential
V' [n, m] and the effective magnetic field B' [n, m] is
spherical symmetric and the magnetic Beld points along
the z axis, i.e. ,

~ ~
V'"(r) = V(r),
B' (r) = B(r) z,

Eq. (1) reduces to

(2)

(3)

FIG. 1. Magnetic field pointing into a general direction
characterized by angles 0 and P, relative to a two-dimensional
square lattice.

'R = cnp + Pmc + I4V(r) + Pcr, B(r) .

For a finite-range spherical symmetric potential and mag-
netic field, the corresponding single-site scattering prob-
lem was discussed by Feder and Rosicky " and Strange et
aL, by neglecting the (second order) coupling between
scattering channels belonging to different values of the
angular momentum quantum number Z. This approach,
which reduces enormously the numerical effort in solv-
ing the corresponding radial Dirac equation, has opened
up a way for a study of magnetism on the scale of a
relativistic electron theory and will be used also in the
present paper. Only very recently, Jenkins and Strange
emphasized that keeping the full coupling in the radial
Dirac equation might be important in some applications.
Also rather recently, the single-site scattering problem
was discussed for a space-filling full potential by Lovatt
et al.3'

For the purpose of magnetic anisotropy calculations it
is essential to determine the single-site t matrix corre-
sponding to different orientations of the magnetic Beld.
Such an arbitrary situation is shown in Fig. 1. Let
R = R(O, P) E O(3) be the rotation, which transforms

I

the axis of B into the direction z. Furthermore, let t(E)
refer to the single-site t matrix (matrix representation
in angular momentum space) if B is parallel to the z
axis, while t&(E) refers to the t matrix if B points along
the direction B z. Because the effective potential and
magnetic Beld are spherical symmetric, these two single-
site t-matrices are related to each other by the following
similarity transformation:

t„(E) = D(R)t(E)D(R)+,
where D(R) contains blockwise the irreducible projective
representations of B.

Relativistic spin-polarized multiple scattering theory
was formulated originally by Schadler and co-workers
and Strange et at. A latter rigorous derivation for the
more general case of space-filling potentials by Wang et
al. stresses the formal similarities to the familiar ex-
pressions of "standard" multiple scattering theory for
mufBn-tin potentials. Within multiple scattering the-
ory the Green function, i.e. , the configuration space rep-
r'esentation of the resolvent g(E) of the Hamiltonian for
an ensemble of individual scatterers is given by

(r
I
&(E) I

r') = ).Zq(E r-) ~qq (E) Zq (E r' )'
QQ'

—b ) (Jq(E, r )Zq(E, r' )t8(r —r' ) + Zq(E, r )Jq(E, r' )tO(r' —r„)),
Q

where n, m label sites, Q, Q' denote pairs of quantum
numbers, Q = (imp), 7qq, is the corresponding matrix el-

ement of the scattering path operator (SPO), and 8(x)
denotes the step function. The normalization of the reg-
ular and irregular scattering solutions, Zq(E, r ) and

Jq(E, r ), can be found, e.g. , in Ref. 21. It was pointed
out by Tamura that the right- and left-hand-side solu-
tions to Diraq equation cannot, in general, be used inter-
changeably because of the required Herglotz properties
in the complex energy plane. However, by evaluating (6)
in a local coordinate system, where the magnetic Beld
points along the z axis, one easily can show that the
right-hand-side expression can always be used, whereby
for any complex energy z = E+ ib, the Hermitean conju-

gation (f) leaves the radial part of the scattering solutions
unchanged.

In order to calculate the SPO's for systems
with two-dimensional translational symmetry, we re-
cently developed the screened Korringa-Kohn-Rostoker
method (SKKR), which, due to the screened structure
constants, makes use of block-tridiagonal supermatri-
ces. By using the corresponding single-site quantities,
the relativistic SKKR Green function method can be
extended also to spin-polarized systems. In this case,
however, special care has to be taken in performing the
occurring Brillouin zone integrals needed to evaluate the
SPO's, since in the presence of a magnetic field these inte-
grals can no longer be restricted to an irreducible wedge
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of the corresponding surface Brillouin zone (SBZ). Let
G be the point group of the underlying two-dimensional
translational lattice, such as, for example, C4„ in the
case of an fcc(001) surface, and suppose D(S) contains
blockwise the irreducible projective representations of
S g G. If IBZq denotes an irreducible wedge of the SBZ,
then any other wedge IBZs of the SBZ is defined by

IBZs ——(Skll I kll C IBZi); S E |,
such that

SBZ = ).IBZs.
SqG

It easily can be shown that

~-(E) = ) D(S)+
SgG
x D(S),

~IBZl Zl
dkll l~'(kll, E)

where OyBz, denotes the surface area of IBZq. Equation
(9) implies (i) that the structure constants need only be
evaluated for a chosen set of kll E IBZi and (ii) that for
any pair S, B C G for which t~&(E) = t~&(E) the integrals
in Eq. (9) are identical. For a magnetic field perpendic-
ular to the surface, for example, the number of integrals
to be performed is reduced therefore to 2 (proper and
improper rotations).

Based on the Green function (6) physical observables
can be evaluated in the usual manner (see, e.g. , in
Ref. 41). For matters of completeness below, only the
corresponding expressions (in units of p~) for the spin-
only magnetic moments m, ~;„and the orbital magnetic
moments m, b are given,

1
m, p,„———Im dz Tr (Pcr, g(z)),

7l

7." (S 'kll., E) = D(S)+7.~ (kll, E)D(S),
where p, q are layer indices and the SPO r~z~(kll, E) refers
to the corresponding similarity transformed t matrix
t~+(E), as defined in Eq. (5). The SBZ integral for the
SPO's can therefore be expressed as

pendicular to the surface were carried out in turn for each
multilayer system Fe Au(001), where n denotes the num-
ber of Fe layers on top of a Au(001) surface. Similarly to
Ref. 30, the screened two-dimensional (2D) structure con-
stants were calculated by using the structure constants of
an ideal 3D fcc lattice. Therefore, the subsequent Fe lay-
ers were placed into the perfect fcc(001) layer structure
of Au, i.e., no lattice strain was taken into account. For
this particular setup, in each case, two layers of empty
sphere potentials between the perfect vacuum and the
surface, as well as at least two layers of Au potentials
between the perfect bulk and the Fe film, were treated
self-consistently. During the self-consistent procedure,
the energy integrations were performed along a semicir-
cular contour using a 16 point Gaussian sampling on an
asymmetric (logarithmic) mesh. For the Brillouin zone
integrations 45 kII points in IBZ& have been used. By us-

ing a modification of Broyden's second method fairly
fast and accurate convergence for the self-consistent po-
tentials and the interface total energy was obtained.

The evaluation of the magnetic anisotropy energy is
based on the so-called "force theorem" or frozen poten-
tial approximation. Within this approximation, for each
system Fe Au(001), two calculations were performed us-
ing the previously determined self-consistent potentials,
namely one with the magnetic field perpendicular to the
surface (J ), and one with the magnetic field pointing
along the x axis of the 2D square lattice (II). In these
calculations, only the band energies and the magnetic
moments were determined with an extremely high accu-
racy. For that reason, convergency tests have been made
using up to 40 energy points along the contour and up to
325 kII points in IBZq. It turned out that for a given set
of kII points, 30 energy points were suKcient to obtain
an error well below 0.01 meV/Fe for the difference AEb
of the band energies,

AEb=Eb —EbII

For a single Fe overlayer on a Au(001) surface, Fig. 2

shows the convergence of AEb with respect to the number
of kII points in IBZq. Due to the enormous computational
efforts, for all other cases presented in this paper, we used

1m, b = ——Im dz Tr (PL,g(z)),
7t

0.75

0 70--

where C denotes an integration contour in the upper half
of the complex energy plane, which starts at a real en-
ergy point below the valence band and ends at the Fermi
energy, Tr denotes the trace in the tensorial space of spin
and configuration, and I is the z component of the an-
gular momentum operator.

III. COMPUTATIONAL DETAILS

0.65--

0.50--

0.45
50 100 150 200 250 300 350

Number of points in IBZ

Self-consistent calculations within the local spin den-
sity approximation (LSDA), the atomic sphere approxi-
mation (ASA), and with a magnetic field pointing per-

I' IG. 2. Convergence of the band energy difFerence,
KEs =Es —Es, for a Fe monolayer on Au(001) with respectII

to the number of kII points in the irreducible wedge of the 2D
Brillouin zone. The solid line serves as a guide for the eye.
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TABLE I. Calculated spin-only magnetic moments (ys) for Fe Au(001) multilayers, for a mag-
netic 6eld pointing along the z axis.

n
1
2
3
4
5
6

Fe(1) Fe(2) . Fe(n) Au(1) Au(2)
3.155 0.006 -0.009
3.071 3.041 0.023
3.067 2.974 3.030
3.075 2.950 2.971
3.071 2.940 2.927
3.075 2.949 2.937

-0.006
0.023
3.026
2.947
2.923

-0.005
0.022
3.022
2.964

-0.006
0.023
3.031

-0.006
0.025 -0.005

210 k~~ points, which —as can be seen from Fig. 2—ensure
a relative accuracy of about 5% for b,Es.

Within the &ozen potential approximation the total
magnetic anisotropy energy LE is then given by the sum
of AEb and the- anisotropy energy related to the magne-
tostatic dipole-dipole interaction, AEg~,

LE = LEb+ LEgg, (12)

which for systems with two-dimensional translational
symmetry is discussed in the Appendix.

IV. RESULTS

Let us Grst discuss the results of the self-consistent cal-
culations corresponding to an orientation of the magnetic
6eld perpendicular to the surface. The layer-resolved
spin-only magnetic moments (m,p;„) of the Fe„Au(001)
multilayers are displayed in Table I. As compared to
the values calculated recently within a scalar-relativistic
layer KKR method by Crampin, using an approximate
model for the strained geometry, it is not surprising that
in the present case of increased volumes per Fe atoms
also the calculated magnetic moments are enhanced. In-
specting Table I, one can see that the spin-only magnetic
moments related to the Fe layers show symmetric behav-
ior going &om the top of the surface to the Fe layer closest
to the first Au layer. This behavior 6ts well to a similar
observation made in Ref. 43 and simply indicates rather
weak hybridization between the Fe and Au d bands. It
is worthwhile to note that the m, ~;„'s for Fe(n) sites,
n ) 2, are in very good agreement with those calculated
by the spin-polarized relativistic LMTO method for an
unstrained Au/Fe/Au(001) interface (3.046@~), whereas
the m, p,

.„'s on the Au(l) sites ( 0.023@~) are closer to
the corresponding values in Ref. 43 ( 0.04 p~) than to

the values given in Ref. 24 (0.001@~). This probably is
due to the fact that in Ref. 24 an FeAu5 supercell geom-
etry has been used, while in the present method and also
in Ref. 43 a true semi-infinite system is considered.

The calculated orbital magnetic moments (m, ,b), see
Eq. (11),are shown in Table II. Quite obviously, the top
Fe layer again carries the largest moment. It should be
noted that for n ) 4 the calculated m, b's for the nth
Fe layer and the two subsequent Au layers, Au(1) and
Au(2), agree very well with the corresponding values in
Ref. 24 (0.094p~, 0.015@~, and —0.002@~, respectively).

In Fig. 3 for all the multilayers under consideration the
total magnetic anisotropy energy LE is shown together
with the corresponding band energy contribution AEb
and the magnetostatic dipole-dipole interaction energy
AE~~. The positive values of AEb clearly indicate that
spin-orbit coupling favors a perpendicular orientation for
the magnetic field. As can be seen, AEb shows quite
large fluctuations for a small number of Fe layers, but
tends to a value of about 0.6 meV for n = 5, 6. These
fluctuations are considerably smaller in magnitude than
those obtained very recently for ferromagnetic slabs by
Cinal et al. , using a tight-binding model. In order to
explain these fluctuations Cinal et al. investigated par-
tial anisotropy constants and concluded that beyond the
surface layers all layers in the slab had signi6cant contri-
butions to the magnetic anisotropy. 4 Within the multi-
ple scattering theory it is straightforward to split up AEb
into contributions related to different layers (Table III).
The leading contribution to the anisotropy arises from
the Fe layer at the Fe/Au interface, Fe(n). This indeed
suggests that the substrate plays an important role for
the actual magnitude of surface magnetic anisotropies.
With the exception of n = 2, the surface Fe layer, Fe(1)
also has a large positive contribution to the anisotropy.
Quite surprisingly, the Fe layers between these two lay-
ers have negative contributions. Nevertheless, these con-

TABLE II. Calculated orbital magnetic moments (ps) for Fe Au(001) multilayers, for a mag-
netic 6eld pointing along the z axis.

1
2
3
4
5
6

Fe(1) Fe(2). . . Fe(n) Au(1) Au(2)
0.125 0.017 -0.002
0.129 0.110 0.015
0.125 0.101 0.106
0.113 0.093 0.093
0.117 0.091 0.095
0.115 0.090 0.088

-0.001
0.017
0.093
0.087
0.085

-0.001
0.018
0.095
0.087

-0.001
0.018
0.094

-0.001
0.018 -0.001
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FIG. 4. Dependence of the band energy di8'erence,
AEg(O) =Et, (e) Ez, w—ith respect to the azimuthal angle 0
for the case of 4 Fe ML's on Au(001). The solid line serves as
a guide for the eye.
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FIG. 3. Calculated magnetic anisotropy energies for Fe
multilayers on Au(001). AE&. circles, AEzz. triangles,
AE = AEg+AEpp. squares. Solid lines serve as a guide
for the eye.

tributions tend to decrease rapidly towards the middle
of the Fe film. Therefore, the band energy part of the
magnetic anisotropy energy for the whole multilayer sys-
tem converges rapidly with respect to the thickness of
the multilayer. It is worthwhile to mention that also
the top Au layers remarkably contribute to the magnetic
anisotropy energy.

Since the magnetostatic dipole-dipole interaction fa-
vors an in-plane orientation of the magnetization, in
Fig. 3 LEgg is shown with the opposite sign as compared
to AEg. Due to the short range nature of the 2D dipole-
dipole Madelung constants (see the Appendix), AEdq de-
creases almost linearly with an increasing number of Fe
layers. In total, the magnetic anisotropy energy is pos-
itive for n ( 3 and negative for n & 4. The present
calculations for Fe Au(001) multilayers predict therefore
a magnetization perpendicular to the surface up to a mul-
tilayer thickness of 3 ML Fe, and an in-plane magneti-
zation beyond that. Despite the oversimplified geometry
we used in our calculations (no surface relaxation), the
agreement to the "switching" thickness of 2.8 ML found
experimentally is excellent.

It was shown by Bruno in terms of a tight-binding
model and using perturbation theory that for ferromag-
netic monolayers (i) the magnetic anisotropy energy is
closely related to the anisotropy of the orbital magnetic
moment and (ii) for square and hexagonal 2D lattices
both are linear functions of sin (0), where 0 is the angle
between the normal vector of the plane and the mag-
netic 6eld (see Fig. 1). These features have then been
confirmed by ab initio calculations even for multi-
layers, however, treating the spin-orbit coupling as a per-
turbation to a scalar-relativistic Hamiltonian. Recently,
Weller et a/. reported enhanced orbital moments of Co
atoms in Co/Pd and Co/Pt multilayers in connection
with strong perpendicular magnetization.

In Table IV the difI'erences of the orbital moments
between a perpendicular and an in-plane orientation,
Lm~, b

——m, b
—m,» are listed. From this table, one

immediately can see a large perpendicular enhancement
(negative values) of m, b for the Fe(n) layers. Compar-
ing with Table III, it seems at first glance that this en-
hancement follows the big anisotropy energy contribu-
tions arising from these layers. There is, however, no
straightforward proportionality between the anisotropy
of the layer-resolved orbital moments and the correspond-
ing anisotropy energies. An obvious deviation from the
tight-binding prediction can be seen for the Fe(1) layer
in the n & 2 cases, where an enhancement of m, b for the
parallel orientation is found, whereas the corresponding
magnetic anisotropy energy contributions are still posi-
tive. This implies that the relationship between the or-
bital moments and magnetic anisotropy energies is much
more complicated for multilayer systems as predicted for
monolayers from a simple tight-binding model.

As an example for the orientational dependence of

TABLE III. Layer-resolved band energy contributions to the magnetic anisotropy energy (meV),
AEg=E& Eb, for Fe Au(—001) multilayers.

1
2
3
4
5
6

Fe(1) Fe(2) ~ Fe(n) Au(1) Au(2)
0.454 0.160 -0.002
0.034 0.522 0.027
0.168 -0.117 0.585
0.141 -0.088 -0.129
0.204 -0.086 -0.003
0.178 -0.031 -0.014

0.015
0.078
0.514
-0.123
-0.033

0.025
0.087
0.544
-0.088

0.028
0.092
0.543

0.021
0.085 0.021
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TABLE IV. Calculated changes of orbital magnetic moments (10 pa), Amo, b = m, b
—m, b,

for Fe Au(001) multilayers.

1
2
3
4
5
6

Fe(1) Fe(2) . Fe(n) Au(1) Au(2)
-29.1 2.9 1.3
5.1 -37.3 6.3
8.3 -7.9 -30.2
7.3 0.3 -1.3
4.3 0.2 -5.7
3.6 0.5 -2.2

1.2
2.9

-23.3
2.1
3.7

0.9
1.7

-25.2
-0.3

1.2
2.5

-26.3
1.1
2.4 0.7

DEs, calculations have been carrierl out for Fe4Au(001)
for 0 = m/8, vr/4, and 3m/8. As can be seen &om Fig. 4,
the corresponding results for 4Ep are almost perfectly
linear with sin2(O). Similarly, the orbital moments ex-
hibit also a nearly linear dependence on sin2(O), i.e.,
higher order terms [sin4(O), etc.] could not be estab-
lished within the accuracy of our calculations. Additional
calculations with P= vr/8 and m/4 proved that within an
accuracy of much less than 0.01 meV, LEp is independent
of P. Recalling Eq. (A9), it can be concluded that for
the present system the total magnetic anisotropy energy
is proportional to sin2(e), i.e. , is monotonously increas-
ing for n & 3 and monotonously decreasing for n & 4
as a function of O. At least for the ground state (T=O),
this implies that for up to 3 ML Fe on Au(001) only a

perpendicular orientation of the magnetization is stable,
while for more than 3 ML an in-plane orientation of the
magnetization is favored.
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APPENDIX A: THE MAGNETO STATIC DIPOLE-DIPOLE INTERACTION
FOR FERROMAGNETIC LAYERED SYSTEMS

If one partitions the configurational space into cells centered around positions R, then within the dipole approx-
imation the relativistic current-current interaction energy is reduced to the magnetostatic dipole-dipole interaction
energy, which can be expressed in atomic Rydberg units as46

rnn, mn [rnn (R—R)][mn, (R—R)])
c2 - /R —R'fs /R —R'/s

7

(Al)

where m~ is the magnetic moment at site R and the prime at the summation indicates a restriction to R g R . Since
we are dealing with ferromagnetic systems, i.e.,

mR = TER D,

and since two-dimensional (2D) translational invariance pertains within the layers,

R = Rp + R)(,

where R~~ denotes a 2D real lattice vector and R„specifies a site in the unit cell of the system at layer p and sublattice
a, Eq. (Al) can be rewritten as

8 Q ™pAmqp
dd / ~ 2 p~~qpC

pa, qP

(A2)

In (A2) the so-called 2D ferromagnetic dipole-dipole Madelung constant matrix is defined by

aa -' (W rn II) ( r rn II)j
R~ Rap R /R ~ —Rqp —R(] f

II

(A3)

where I is a 3 x 3 unit matrix and denotes a tensorial product of vectors. In (A3) the prime indicates that for
Rp Rqp the singular term corresponding to R~~

——0 is excluded from the summation.
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TABLE V. Ferromagnetic dipole-dipole Madelung constants, M„, for fcc(001) planes in units
of 1//a, where a denotes the 2D lattice constant.

0
9.033 62

1
1.429 41

2
-0.022 64

3
0.000 26

For ~R„.~ —Rqp. ~~ g 0 the magnetostatic Poisson equation can be solved in a straightforward manner (see also
Ref. 47). Similarly to the electrostatic case it is possible to use a Fourier expansion that results in a fast convergent
series

M„"'.,p = ——) . I C(i I
e» (

—
Icosi I IR -;~ —Rq/;~ I) e» ('CiI (Rp-;ii Rqp'll))

Gll

~ii
I~() I'

1A((
( —x sgn (Rp~;z — qp;z)

Gii 1—'c sgn (Rp~ g —Rqp g)
(A4)

where A is the 2D unit cell area and G
II

is a 2D reciprocal space vector. It should be noted that the G
II

——0 component
does not contribute to the "off-plane" terms. For the (001) and (ill) faces of the simple cubic lattices (sc, bcc, or
fcc), (A4) can be further reduced to

where

M"" = M"" x—s e s'a 0

( 0

0 0)
01

0
(A5)

M„", = ——). I&~~l exl (—ICE[I IRp;~ Rq;~I) cos +[[ (Rp;[[ Rq;][)I
G(( $0

(A6)

Restricting ourselves to this special case, the 2D ferromagnetic dipole-dipole Madelung constants for p = q can be
evaluated by using a standard Ewald summation technique to give

erfc(fa((f/2e) exp( —JS((/ /4rr )

)
). (~IOig~ler«(~IOiiii~le)

— err (
—IOigl'e')I—

1 2~or
6o s ~sr Ao. (A7)

where 0 is the Ewald parameter and erfc(x)=1—erf(x). The independence of (A7) from the Ewald parameter has
been tested numerically for a wide range of 0. Table V clearly indicates the fast decay of the magnetic dipole-dipole
interaction with the distance between layers. For practical purposes contributions to magnetic anisotropy energy &om
next nearest neighbor planes and beyond can be neglected.

Finally, the orientational dependence of the magnetostatic dipole-dipole energy shall be discussed. By using the
usual expression of the unit vector n=[sin(O) cos(P), sin(e) sin(P), cos(O)j, one immediately obtains that

n 0
0

1
2

0

0) 3 2 1
0 n = —cos (0) ——

) 2 2
(A8)

which implies that the orientational dependence of the magnetostatic dipole-dipole anisotropy energy, AEpp, can be
simply written as

(O) = (&' —& ) '(O). (A9)

L.M. Falicov, D.T. Pierce, S.D. Bader, R. Gronsky, K.B.
Hathaway, H.J. Hopster, D.N. Lambeth, S.P. Parkin, G.
Prinz, M. Salamon, I.K. Schuller, and R.H. Victora, J.
Mater. Res. 5, 1299 (1990).
S.D. Bader, Proc. IEEE 76, 909 (1990).
J.H. van Vleck, Phys. Rev. 52, 1178 (1937).
P. Bruno, Phys. Rev. B 39, 865 (1989).
S. Pick and H. Dreysse, Phys. Rev. B 46, 5802 (1992).

S. Pick, J. Dorantes-Davila, G.M. Pastor, and H. Dreysse,
Phys. Rev. B 50, 993 (1994).
J.G. Gay and R. Richter, Phys. Rev. Lett. 56, 2728 (1986).
J.G. Gay and R. Richter, J. Appl. Phys. 61, 3362 (1987).
C. Li, A.J. Freeman, H.J.F. Jansen, and C.L. Fu, Phys.
Rev. B 42, 5433 (1990).
G.H.O. Daalderop, P.J. Kelly, and M.F.H. Schuurmans,
Phys. Rev. B 42, 7270 (1990).



MAGNETIC ANISOTROPY OF IRON MULTILAYERS ON. . . 9559

G.H.O. Daalderop, P.J. Kelly, and M.F.H. Schuurmans,
Phys. Rev. B 44, 12 054 (1992).
G.H.O. Daalderop, P.J. Kelly, and F.3.A. den Broeder,
Phys. Rev. Lett. 68, 682 (1992).
D.S. Wang, R. Wu, and A.J. Freeman, Phys. Rev. Lett.
70, 869 (1993).
D S Wang) R Wu) and A.J. Freeman, Phys. Rev. B 47,
14 932 (1993).
R.H. Victora and J.M. MacLaren, Phys. Rev. B 47, 11 583
(1993).
E.M. Rose, Relativistic Electron Theory (Wiley, New York,
1971).
R. Feder and F. Rosicky, Z. Phys. B 52, 52 (1983).
P. Strange, 3. Staunton, and B.L. Gyorffy, J. Phys. C 17,
3355 (1984).
G. Schadler, P. Weinberger, A.M. Boring, and R.C. Albers,
Phys. Rev. B 34, 713 (1986).
G. Schadler, R.C. Albers, A.M. Boring, and P. Weinberger,
Phys. Rev. B 35, 4324 (1987).
P. Strange, H. Ebert, J. Staunton, and B.L. Gyorffy, 3.
Phys. Condens. Matter 1, 2959 (1989).
H. Ebert, P. Strange, and B.L. Gyorffy, J. Appl. Phys. 63,
3052 (1988).
H. Ebert, Phys. Rev. B 38, 9390 (1988).
G.Y. Guo, W.M. Temmerman, and H. Ebert, J. Phys. Con-
dens. Matter 3, 8205 (1991).
G.Y. Guo, W.M. Temmerman, and H. Ebert, J. Magn.
Magn. Mater. 104-107, 1772 (1992).
D. Bader and E.R. Moog, J. Appl. Phys. 61, 3729 (1987).
R. Germar, W. Durr, J.W. Krewer, D. Pescia, and W.
Gudat, Appl. Phys. A 47, 393 (1988).
C. Liu and S.D. Bader, J. Vac. Sci. Technol. A 8, 2727
(1990).
A.M. Begley, S.K. Kim, J. Quinn, F. Jona, H. Over, and
P.M. Marcus, Phys. Rev. B 48, 1779 (1993).
L. Szunyogh, B. Ujfalussy, P. Weinberger, and 3. Kollar,

Phys. Rev. B 49, 2721 (1994).' A.K. Rajagopal, J. Phys. C ll, L943 (1978).
A.H. MacDonald and S.H. Vosko, 3. Phys. C 12, 2977
(1979).
G. Baym, Lectures on Quantum Mechanics (Benjamin,
New York, 1969).
A.C. Jenkins and P. Strange, J. Phys. Condens. Matter 6,
3499 (1994).
S.C. Lovatt, B.L. Gyorffy, and G.Y. Guo, 3. Phys. Condens.
Matter 5, 8005 (1993).
X. Wang, X.-G. Zhang, W.H. Butler, G.M. Stocks, and
B.N. Harmon, Phys. Rev. B 46, 9352 (1992).

"J.S. Faulkner and G.M. Stocks, Phys. Rev. B 21, 3222
(1980).
E. Tamura, Phys. Rev. B 45, 3271 (1992).
L. Szunyogh, B. Ujfalussy, P. Weinberger, and 3. Kollar, 3.
Phys. Condens. Matter 6, 3301 (1994).
S.L. Altmann and P. Herzig, Point-Group Theory Table8
(Clarendon, Oxford, 1994).
P. Weinberger, Electron Scattering Theory for Ordered and
Disordered Matter (Clarendon, Oxford, 1990).
D.D. Johnson, Phys. Rev. B 38, 12 807 (1988)
S. Crampin, J. Phys. Condens. Matter 5, 4647 (1993).
M. Cinal, D.M. Edwards, and J. Mathon, Phys. Rev. B 50,
3754 (1994).
D. Weller, Y. Wu, J. Stohr, M.G. Samant, B.D.
Hermsmeier, and C. Chappert, Phys. Rev. B 49, 12 888
(1994).
G.H.O. Daalderop, P.J. Kelly, M.F.H. Schuurmans, and F.
Jansen, Phys. Rev. B 41, 11 919 (1990).
E. Tsymbal, J. Magn. Magn. Mater. 130, L6 (1994).
J.M. MacLaren, S. Crampin, D.D. Vvedensky, and J.B.
Pendry, Phys. Rev. B 40, 12 164 (1989).
Handbook of Mathematical Functions, edited by M.
Abramowitz and I.A. Stegun (Dover, New York, 1970).


