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We have studied the behavior of the conductance in large disordered systems using a numerical
real-space renormalization-group (RG) technique. Using a distribution of scattering matrices as the
fundamental building blocks of our system, very large structures can be studied by combining the
blocks in the appropriate way and performing a RG step at each stage. The method is sufficiently
general that it allows several RG techniques to be used and thus be compared with one another.
We examine the conductance behavior in two and three dimensions with increasing system size for
different shaped building blocks and difI'erent initial disorders. We compare the results with other
work. Our results are extremely sensitive to the detailed implementation of each RG method used
and therefore we suggest that all localization results obtained via RG methods must be interpreted
with caution.

I. INTRODUCTION

Although the physics of Anderson localization ' is well
understood in one dimension (1D), there are still un-
resolved questions concerning the behaviour of systems
near the metal-insulator transition in 3D. In particular,
there is disagreement about the values of the critical ex-
ponent (to the first decimal place)" s and the behavior
of the conductance is still not well understood.

The most widely used numerical method for studying
localization is the finite size scaling technique. ' Al-
though it has been quite successful in describing various
aspects of localization, it requires vast amounts of CPU
time and makes the study of very large systems almost
impossible. An alternative method is the vector recursion
technique. It produces conHicting results (compared to
the finite size scaling method) about the nature of the
localization, but it too suffers from the fact that large
systems are inaccessible.

An alternative technique which can be used to study
Anderson localization is the real-space renormalization-
group (RG) approach, developed by Wilson. It allows
much larger systems to be studied in a fraction of the
time taken by finite size scaling methods. However, one
has to be extremely careful when applying this technique
to the localization problem. The first attempt was made
by I ee, from which he concluded that there existed a
metal-insulator transition in 2D, in contrast to the scal-
ing theory. This was later shown to be incorrect.

Another attempt was made by Shapiro and co-workers
using the scattering properties of a lattice rather than
the more conventional Hamiltonian. However, there
are some shortcomings in their approach: They do not
include the dimensionality of the lattice in a proper way
and they severely overestimate the conductance Huctua-
tions in the weak scattering and metallic regime.

Recently, two more real-space renormalization-group
methods have been reapplied to the localization problem.

White and Noack ' successfully described the one-
dimensional case and explained why previous attempts,
based on the tight-binding Hamiltonian method, gave
wrong answers. However, they are still some way from
being able to describe Anderson localization in 2D and
3D. Finally, Dasgupta et al. studied two-dimensional
localization, using the vector recursion technique as a
means to replace their large tight-binding lattice by a
single site.

In this paper, we show how to improve on the approach
of Shapiro and co-workers and by trying several different
RG techniques we show that some caution must be used
when examining the claims of Dasgupta et al.

II. THEORY

Consider some fundamental building blocks of a large
system. In 2D, this object could be a triangle or a square;
see Fig. 1. If the object causes scattering to take place,
then we can represent it mathematically by its scattering
matrix. For the triangular scatterer in Fig. 1,

(a, )
B2

&~)
where we use the following notation: r; is the complex
reHection coeKcient from the ith face of the nth scatterer
and t,~ is the complex transmission coeKcient from face
i to face j of the nth scatterer. A,. and B,. refer to the in-
put and output wave amplitudes respectively. For other
scatterers the notation is the same, the only difference
being the size of the scattering matrix. required to repre-
sent the object.

By joining the input and output channels of one scat-
tering object to another, it is possible to create a larger
scattering object; see Fig. 2. Mathematically, we must
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Rearranging Eq. (6) gives an expression for C which
can be substituted into Eq. (5) to eliminate the inter-
nal amplitudes C, and give an expression for the output
amplitudes in terms of the input amplitudes only. Thus
the scattering matrix S of this larger object can be found
and is given by

—1
S —Sl1 + S12 1 —S22 S21 )

A2 B

FIG. 1. Two simple scattering objects in 2D. The leads in
and out of the scattering blocks are channels through which
waves can scatter into and out of the object.
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and the second object has
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We now write these two equations as a single matrix
equation having the form

(B) /Sing S'g2) &A)
&c) &s s-i &cr ' (4)

represent this by a new scattering matrix. The scattering
matrix of the first object is given by

where the multiple scattering is contained within the ex-
pression (1 —S22) . This can be used continuously to
build larger and larger systems and is not restricted to
any particular shape of scatterer or dimension. Of course,
for more complicated scatterers the size of the matrices
becomes larger, making Eq. (7) more laborious to evalu-
ate.

This process could be repeated indefinitely to create
a large system, for which the scattering matrix would
be known. However, the matrix will quickly become too
large to manipulate or store in a computer and hence is
of little practical use in calculating the transport prop-
erties of the infinite lattice. For this reason we make use
of the numerical real-space renormalization group: If we
join together four triangular or square scatterers, we end
up with an object which resembles the original scatterer;
see Fig. 3. The purpose of the RG approach is to replace
this scattering object by a smaller one which nonetheless
contains all the relevant information of the large object.
Thus the approach we adopt is to try to replace the scat-
tering matrix of the large object by a matrix with the
same dimensions as the original scattering matrices. To
do this we must reduce the number of channels on each
face of the large object or decrease the space of the large
object's scattering matrix. We can do this in a number
of different ways.

S11++ S12C
C = S21A+ S22C.

(5)

(6)

B6 A6 B5 A5

B

B

where A = (Aq, . . . , As), B = (Bq, . . . , Bs), and C =
(Cq, C2). The submatrices of the scattering matrix
Sll, S12, S21, and S22, contain the relevant matrix ele-
ments of Eqs. (2) and (3) and where an output amplitude
is not directly related to an input amplitude (e.g. , Bq and
A3), a zero is placed in the 8 x 8 matrix. Equation (4)
can be written explicitly as

A. RG approach 1: Current conservation

Suppose we reduce the dimensions of the scattering
matrix, but ensure that the new matrix describes the
same current Howing between faces of the scatterer. This
would seem a natural thing to do since, ultimately, it is
the conductance which we are most interested in and it
is also a natural generalization of the idea of the conduc-
tance as the only relevant scaling variable. Consider Fig.
3(a). Before applying the RG procedure the scattering
matrix of this large triangular scatterer can be written
as

r

�1lr
12r lip 12$11$12$rl rl 12 12 13 13

22rrl 12 12 13 13

1 r 2r 1r2 r2 23 23

22r 21' 22'r2 23 23

A2 B A3

llrr3 12rr3
22rr3

FIG. 2. By joining the input and output amplitudes of two
scatterers together it is possible to create a larger system.

where the notation has changed slightly: The super-
scripts denote the channels on each face through which
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transmission or reflection occurs. The matrix is symmet-
ric if we have no external magnetic field. If we feed a
wave of unit amplitude into face 1, then the dimension-
less conductance measured on face 2 will be (from the
Landauer formula )

11 2

Similarly, the conductance measured on face 1 due to
reflection is

(io)

and the process can be repeated for all reflections and
transmissions. Now we replace each conductance with
a single reHection or transmission amplitude. These will
be the amplitudes of matrix elements of the renormalized
scattering matrix S

i=12 3

gR&gRGt

Suppose the reflection phase from each face of the scat-
terer is known. In fact, we assume it is a random vari-
able, which is valid if we have a disordered system.
Then, perform the following transformation to remove
the phases from the diagonal elements of S

S' = ~SRGW, (i4)

where

A = diag [exp (—i Oj /2), exp (—i 82/2), exp (
—i Os/2)]

The price which has been paid in using this RG proce-
dure is the loss of the phase information. Fortunately,
the unitarity condition provides the way to recover the
phases. The condition of unitarity is given by

and O1, O2, and O3 are the reflection phases from faces 1,
2, and 3, respectively. The unitarity condition now gives
us three diagonal equations and six off-diagonal equa-
tions, only three of which are independent. The three
diagonal equations give the conditions of current conser-
vation and provide a useful test that the RG procedure
has been successful up to this point. The three inde-
pendent ofF-diagonal equations can be solved analytically
and thus the phase information is obtained. If, however,
we wish to study more complicated scatterers such as
squares or cubes then we must resort to numerical meth-
ods in order to determine the phases since, in these cases,
we will obtain a system of nonlinear equations.

B. RG approach 2: Channel mixing and closing

The previous RG procedure, although elegant in its
simplicity, is by no means the only one which we can
apply to our system. If we have two input and two output
channels on each face of the large scatterer, then another
procedure would be to redistribute the reflected current
from that face between the two channels and then close
oK the appropriate channel on the face.

Consider applying the following transformation to the
large scattering matrix in Eq. (8):

where 7 is the real block diagonal matrix

7 = diag R1, R2, Rg

FIG. 3. In both cases a large scattering object, which re-
sembles the original scattering objects, has been created by
joining the input and output channels of four scatterers. The
purpose of the RG technique is to reduce the number of chan-
nels on each face of the large object without losing relevant
information.

and R~ are the usual 2 x 2 rotation matrices, j refer-
ring to the particular face of the scatterer. This rotation
redistributes the current between the channels on each
face while maintaining all the symmetries of S. Next we
close oK one channel on each face by feeding the output
back into the input channel; see Fig. 4. This can be
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the transmitted current and thus prove unimportant to
the transmission. The maximum reHected current occurs
when dI~/dP~ = 0. Evaluating this derivative leads to
the solution

(~ —~) ~ (~ —~)'
2 Re(P) 4[Re(P)]2

(20)

where

Rotate current Ill I2 + I12 I2

p 11 e 12 12 e 22r r~ + r. r~,

~ =
I
"r,l'+ I"'I' (2i)

One of the solutions corresponds to the maximum re-
Hected current and the other to the minimum. We choose
the phase which minimizes the current reHected into the
first channel, which we will leave open. Thus the max-
imum reQected current has been redistributed into the
channel which we will close off. The procedure is then
repeated for the other faces of the scattering object.

g. Choose a abandons angle

FIG. 4. After performing a rotation on the 6 x 6 scattering
matrix, the first channel on each face of the large triangular
scatterer is closed o8' to produce the required 3 x 3 matrix.

done coherently or incoherently by the introduction of
some random phase. Then, rearranging the matrix equa-
tion which relates the output amplitudes to the inputs,
we obtain an expression for the renormalized scattering
matrix which is equivalent to Eq. (7).

The only thing left to determine is the choice of the
rotation angles P~ in the transformation matrix 7 . These
angles can be chosen in at least two different ways.

Moainaize the reflected current
into the closed channel

I et the current reHected back &om face j of the large
triangular scatterer in Fig. 3(a) be I~ If a wave w. ith
amplitude (cosPz, sing&) enters the scatterer, then the
current which is reHected back &om face j is

I~ = (cosP~, sing~) Tr r~r
( cosP~ l
g sin

where r~ is the 2 x 2 reHection block

The simplest possible approach is to choose the rota-
tion angle randomly. In the spirit of a maximum entropy
approach, we would then hope to explore all of the rota-
tion angle space. We can do this as long as we make our
distribution of scattering objects very large, so that we
carry out the RG procedure a sufficient number of times.
Unlike the previous method of maximizing the current,
this simpler approach does not rely on selecting extremal
values.

III. RESULTS AND DISCUSSION

We ran a numerical simulation with an initial array of
8192 elements for triangular and square scatterers in 2D
and for cubic scatterers in 3D. Each scatterer constituted
an element in our array. The initial array was obtained
by randomly generating 8192 scatterers, specified by a
disorder parameter. Our method of generating the initial
scatterers has been explained elsewhere, ' but involves
combining one-dimensional wires to create the type of
scatterer we require. The transmission and reHection of
the scatterers can be determined &om the transmission
and reHection coefficients of the one-dimensional wires,
which we select randomly &om a disorder dependent dis-
tribution. We use the distribution derived by Azbel,

( llr 12r

2 "2
exp (—W) & ltl & i, (22)

What we are really interested in is the transmission
through the sample; hence what we aim to do is to re-
distribute as much of the reHected current as we can into
one of the channels and then close it oK In doing so,
we hope that the reHected current will decouple &om

where R" is the disorder in the one-dimensional wire and
we assume that the reHection and transmission phases
are random. %'ith this distribution we are assuming that
transmission through the wire is dominated by tunneling
via an eigenstate in the wire. The parameter R', which
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we term the disorder, should not be confused with the
disorder in the Anderson model. The microscopic pic-
ture of the Anderson model requires two parameters to
be specified, namely, the energy of the state and the dis-
order within the system. Ours is a macroscopic model of
the transport properties and requires us to specify only
one parameter.

The particular RG procedure selected was then per-
formed on the scattering matrices selected &om the ar-
ray to create a new array of scattering matrices on a
longer length scale. Once the new array had been cre-
ated, we discarded the array representing the previous
length scale. The procedure was then iterated an arbi-
trary number of times. Each element of our array could
be selected more than once, since they all remained in
the array until the new ensemble had been created. To
create a new scatterer at every stage would have been too
wasteful of CPU time. This Inust introduce some corre-
lations into the new array of scattering matrices, but it
is believed that these will be almost insignificant for an
array of 8192 elements. ~ After the new' array had been
created, we calculated the conductance of each scatter-
ing object using the Landauer formula and studied the
behavior of this distribution with system size, initial dis-
order, and RG procedure.
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A. RG approach 1

We attempted this RG method on triangular scatter-
ers first, because the phase information could be recov-
ered analytically. Unfortunately, though, we found that
for many of the large triangular scatterers (around 10'%%uo)

that we tried to renormalize, we could not find a real so-
lution to the ofF-diagonal conditions of Eq. (13) for the
transmission phase angles. The problem occurs when
only one of the three renormalized transmission ampli-
tudes is small. With no way to find these phases, we had
to reject them Rom the simulation. Although the renor-
malized scatterers were unphysical in these instances, we
know that the conductance is often dominated by rare
events and therefore rejecting these scatterers in this way
is really not acceptable.

This problem is not restricted to tria, ngular scatterers,
unfortunately. We tried to use this RG method for square
scatterers. To our disappointment, we were unable to
find a numerical method which could reliably determine
the required phases as the solutions to a set of six non-
linear equations. The problem was more severe in this
case: more than 70%%uc of the large scatterers we tried to
renormalize had to be rejected, because we could not find
the root of the equations.

Nevertheless, we present the results of the simulation
for triangular scatterers in Fig. 5. Figure 5(a) shows the
behavior of (lng) against the logarithm of the system
size, as the RG procedure is iterated. After five or so
iterations of the RG procedure, straight lines of gradient

—1 are achieved for all values of disorder, indicating
power law localization. This is rather surprising: Even
for strong disorder (a disorder value of 2.0 is strong in our
case), we see no evidence of exponential localization as we
would expect. Figure 5(b) shows how the variance of lng

0.0
-28.8 -24.2 -19.6 -14.9 -10.3 -5.6

(1n(g)&

20 Iter

Z&
CO

0
0

-24.0 -20.0 -16.0 -12.0 -8.0 -4.0 0.0 -28.0:24.0 -20.0 ZA -12.0 -8.0 -4.0 .0
1n(Conductance) 1n(Conductance)

25 Iter 30 Iter

O
C4

-30.0 -26.0 -22.0 -18.0 -14.0 -10.0
1n(Conductance)

-32.0 -28.0 -24.0 -20.0 -16.0 -12.0
ln(Conductance)

FIG. 6. The behavior of the lng distributions is shown for
moderate disorder (disorder value 0.5). They match less well
to the corresponding Gaussians as the RG procedure is iter-
ated.

FIG. 5. Graph (a) shows the behavior of (ln g) with system
size for the current conservation RG. Note that only power law
localization is observed. Graph (b) shows how the variance of
the lng distribution scales with the mean. The relationship
is not linear, as it would be if single parameter scaling was
being observed.



NUMERICAL-RENORMALIZATION-GROUP APPROACH TO. . . 9549

scales with (lng), for various initial values of disorder.
The variance is not single valued, indicating that there
is no single parameter scaling.

Finally, we show how the conductance distribution
evolves with the length of the system (or the number
of iterations of the RG procedure) for a moderate dis-
order value in Fig. 6. Two points are of note when
examining these distributions: First, the tails of the dis-
tributions are very long, but more importantly the dis-
tributions become more spiky and deviate more from the
smooth Gaussian form as the RG procedure is iterated.
We would expect to see a log-normal distribution for this
disorder value, so all these results taken together cast
doubt on this RG procedure.

B. RC approach 2

The channel mixing and closing technique has the ad-
vantage that we can always renormalize the scatterers;
thus we never lose any elements from our array.

Mazimize the refiected current into the closed
channel

In Fig. 7 (lng) is plotted against the length of the
system, for square scatterers. Encouragingly, we find ex-
ponential localization in this case. In fact, no matter
how small we made the initial disorder, we found no ev-
idence for anything other than exponential localization.
As expected, Table I shows that the localization lengths
decreased as the initial disorder of the system was in-
creased.

However, the form of the conductance distributions re-
veals a major Qaw with this RG procedure: The distri-
butions are not log-normal; see Fig. 8. A large peak
around the origin is observed and a very long tail towards
low conductance quickly develops as the system size in-
creases. The method appears to be too extremal; there
is too wide a spread in the conductance measurements
on each scatterer in the array.

We repeated the simulation for two-dimensional trian-
gular scatterers and obtained almost identical results.

TABLE I. Localization length behavior with increasing dis-
order for the maximized reBected current RG.

Disorder
0.001
0.500
1.000
2.000

Localization length
13.33
9.346
5.987
0.491

2. Random phaee

Figure 9(a) shows that this RG procedure gives only
power law localization. This is true whether we use tri-
angular or square scatterers. In this case the decay is
somewhat greater, giving an exponent of —4. How-
ever, unlike RG approach 1, we 6nd that single param-
eter scaling holds for this method. In Fig. 9(b), the
variance is plotted against the mean for the ln g distribu-
tions and the points from all the initial disorder values
lie on a single straight line, giving the relation

Var (lng) = —2(lng)

C. Three-dimensional systems

The random phase RG procedure seemed to work best
in 2D. Although no exponential localization could be

1 Iteration 3 Iterations

for triangular scatterers. If the simulation is repeated for
squares, then the gradient changes to = —3.

In Fig. 10 the lng distributions are shown for increas-
ing system size. Superimposed on these numerical dis-
tributions, we show the corresponding Gaussian distri-
butions. The agreement between the two is excellent for
all system sizes. Unlike the other RG procedures, the
smooth Gaussian shape is maintained throughout the it-
eration sequence. Again, very similar results were ob-
tained on the square scatterers.
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FIG. 7. The behavior of (1ng) with system size is shown
for the maximized re6ected current RG at moderate disorder.
Exponential localization is observed.

FIG. 8. The behavior of the lng distributions is shown for
a disorder value of 0.5. The distributions are not log-normal
and develop exceedingly long tails, with a peak near zero.
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FIG. 10. The behavior of the lng distributions with in-
creasing system size; superimposed are the corresponding
Gaussians. The numerically obtained distributions are always
log-normal.
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FIG. 9. The behavior of (lng) with system size shows
power law localized behavior in (a). Graph (b) shows a lin-
ear relationship between the variance and mean of the lng
distributions: Single parameter scaling is thus obeyed.

achieved, we decided to employ this technique in 3D.
It is, of course, faster and since it is the transition it-
self which is of interest to us, the fact that the technique
did not behave as expected at high disorder may not be
a problem in 3D. Unfortunately, however, we could And
no evidence of any transition in 3D with this technique.
Just as in 2D, we found only power law localization. But
unlike the random phase RG in 2D, we did not find sin-
gle parameter scaling: The variance of lng behaved very
much as in Fig. 5(b).

The extension of the maximized reflected current RG
to 3D is not straightforward. Also, given that it did not

produce the expected ln g distributions in 2D, we decided
not to test it in 3D.

IV. CONCLUSIONS

Var(ln g) —2(ln g), (24)

The results of our investigations are summarized for
2D in Table II. Unfortunately, it proved impossible to
produce all the expected results with any one of the RG
techniques we described in this paper. We expected log-
normal conductance distributions in 2D. ' ' ' ' We
also expected that the variance of the lng distribution
should have scaled with the mean for moderate d.isor-
der, but should break d.own at higher disorder. ' ' It
has proven possible to achieve log-normal distributions of
the conductance with variance scaling with the mean, in-
dicating single parameter scaling, with the random phase
RG, but no sign of any exponential localization could. be
achieved with this method. . If exponential localization of
the conductance is sought, then the minimized re6ected
current RG must be used. However, in this case the dis-
tributions do not resemble anything approaching a log-
norrnal distribution and thus the technique is clearly not
realistic. In 1D the variance is known to vary with the
mean as

TABLE II. Summary of results of the RG techniques in 2D.

RG technique
Current conservation

Maximized re6ected current
Random Phase

Type of
localization
Power law

Exponential
Power law

Log-normal
distribution

Probably not
No
Yes

Single parameter
scaling

No
No
Yes
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in agreement with the random phase RG technique for
triangular scatterers. In these simulations, no evidence
for the breakdown of single parameter scaling could be
found for the random phase RG. However, it can be ar-
gued that, since no evidence of exponential localization
was detected, single parameter scaling must hold since
the system must always be in a regime of low disorder.

These results cast some doubt on the results of Das-
gupta et al. , who claim that power law localization does
exist for intermediate disorder, in contrast to MacKinnon
and Kramer, who found no evidence of it. Since, for
two of our RG methods, we found no other form of local-
ization, it would appear that the very nature of the RG
method gives power law localization. Therefore it seems

dangerous to claim that power law localization does ex-
ist, when other techniques have shown no sign of it and
we have shown that RG techniques, when applied to An-
derson localization, are not entirely reliable.

Perhaps it is not entirely unsurprising that the RG
methods we employed failed in 3D. The very nature of
our technique meant replacing all the channels on each
face of the scatterer by a single channel. Thus, in 3D
the loss of information was greater since the number of
channels we had to reduce was greater. Furthermore,
the random phase RG introduces some disorder into the
scattering matrix by its very definition. It could be that
this small amount of disorder was sufBcient to keep the
system on the insulating side of the transition.
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