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Small-signal ac response of an electron gas under a strong dc bias
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We analyze the small-signal ac response of an electron gas with or without a dc bias, including contri-
butions due to plasma modes and electron temperature oscillations. It is pointed that under a strong dc
bias the prominent plasma-induced structure showing up in the 0-K memory function is greatly
suppressed by the rise of the electron temperature in a realistic semiconductor, in contrast with the ear-
lier result. Oscillation of the electron temperature also plays an important role in the ac response in a
parallel configuration at low frequency under a strong dc bias.

The high-frequency ac response of semiconductor ma-
terials has been the subject of many theoretical studies in
the literature. ' When only a weak-signal ac electric
field was applied, a good understanding of the dynamic
conductivity has been achieved for a two-dimensiona1
electron gas, where significant contributions from plasma
excitations to the real and imaginary parts of the memory
function show up at low lattice temperatures. The
effect of the intercarrier Coulomb interactions on the
high-frequency response in a three-dimensional bulk ma-
terial, on the other hand, is relatively less clear. The situ-
ation becomes more complicated when a strong dc bias
field is simultaneously applied. The balance-equation
theory developed by Lei and Ting provides a very con-
venient tool for investigating the effect of a strong dc
electric field on the ac response of an electron system
when the role of the electron collective modes is included.
Dynamic conductivity under the inAuence of a dc bias
was systematically discussed by Cai et al. on the basis of
the balance-equation approach, with an emphasis on the
large ac-signal response. A comprehensive analysis con-
cerning small-signal conductivity has also been given by
Lei and Boring. ' Recently Ma and Shung" carried out
a detailed calculation of the high-frequency small-signal
conductivity limited by the impurity scattering in n-

doped bulk GaAs, and found that the optical reAection
and absorption coefFicients of the system could experience
drastic changes at the frequency co around the plasma fre-
quency co due to the prominent structure in the memory
function at co-co, even when a strong bias electric field
is applied such that the dc drift velocity vd is as large as
the Fermi velocity v~ of the system. This result, howev-
er, relies on their assumption that electrons stay as cool
as the lattice, which is considered to be at zero ternpera-
ture, even when a strong bias dc current (with drift veloc-
ity vd-v~) flows in the system. Such a model, which re-
quires an infinitely strong mechanism to dissipate elec-
tron energy while it contributes nothing to the frictional
forces, is far from a true GaAs system. The purpose of
this paper is to take account of the realistic energy-

It is obvious that after a transient process the system will
reach an oscillatory steady state in which the center of
mass moves at a constant drift velocity vd and oscillates
with a small amplitude at the single driving frequency co,

v(t)=vd+v, e ' '+vl e'"',

and that the electron temperature T, (t) will also experi-
ence a small-amplitude harmonic oscillation about a con-
stant value T„

T, (t)=T, +T)e ' '+T*, e' ' (3)

These, to leading order in the small quantities, provide
the frictional force f= f;+ f~ (due to impurity and pho-
non scatterings) and the energy transfer rate tv (due to
phonon scattering) with the following expressions:

dissipation mechanisms (phonon scatterings) in bulk
GaAs, and to calculate the small-signal ac response of the
system under the inAuence of dc biases of various
strengths. We find that the electron temperature at bias
Ud

—U~, determined by the energy-balance equation, is so
high (even at zero lattice temperature) that the previous
(zero electron temperature) huge hump around co-co„ in
the imaginary part of the memory function is greatly
suppressed, leading to a relatively structureless high-
frequency resistivity p(co, v&), in contrast to p(co, O) at
zero dc bias. Furthermore, unlike the case without a dc
bias, under the inAuence of a nonzero dc bias a small
change of the electric field (in the bias-field direction)
gives rise to a small change of the electron temperature in
the linear order, resulting in an additional contribution to
the small-signal ac parallel resisitivity, thus a different re-
sult at low frequency from that evaluated based on the
formula pertinent to the case without a dc bias.

We consider a small-amplitude ac-signal electric field
2E&cosset applied to an isotropic system together with a
constant dc bias field Eo..

E(t) =E +oE,e '"'+E,e'"'
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f=f +f"'(T e ' '+T*e' ')+(f e ' '+f'e' ')0 0 1 1 1 1

w=w +w"'(T e ' '+T'e'"')+(w e ' '+w*e' ')0 0 1 1 1 1

(5)

neE0+ f0=0,
vd f0+too=0,

(6)

(7)

which determine the dc drift velocity vd and the electron
temperature T, for a given bias field E0. The linear-order
ac balance equations are '

Here fp= fp(ud, T, ) and wp =wp(vd, T, ) are the well-
known force- and energy-transfer rate expressions in the
dc steady state, with drift velocity ud and electron tern-
perature T„' fp" ——Bfp(vd, T, )IdT, and wp =(}wp(vd,
T, )IdT, . f, =f)(ro, ud, T, ) and w, =w, (co, ud, T, ) are
frequency-dependent hnear-order small quantities re-
lated to the memory effect. Their zero-frequency
values are just f, (O, v d, T, )=v ) ()f p( u&, T, )/Bvd and
w )( 0, v d, T, ) =v ) Bw p( ud, T, )I (}vd. For their full expres-

sions please refer to Refs. 9 and 10.
The force- and energy-balance equations ' can then

be written up to linear order in the small-amplitude ac
quantities. For zeroth order we have exactly the same
balance equations as those in the dc steady state:

where C, is the specific heat of the electron system at the
bias electron temperature T, . From Eqs. (8) and (9) the
ac quantities v, and T1 can be determined for a given ac-
signal field E1.

I et Eo be along the r. direction and E1 in the x-z plane,
E1=E1 x+E, z. For an isotropic system, vd and fo are
along the z direction and v1 and f1 are in the x-z plane.
We can write v, =u, x+ui, z, and

f) =inmu(„M&((o, vd )x +inmu), M))(co, vd )z,
where M)()()(co, ud) are the momentum-related memory
functions at a bias drift velocity ud, which consists of
contributions from impurities MI(I)) (co, ud ), and from
phonons MJ(I))(co, ud). Their expressions were given in
Refs. 9, 10, and 12. The momentum-related memory
function will simply be called the memory function. Fur-
thermore, ~, is independent of v1, and can be written in
the form

w ( =inmvd u &,N(co, vd ),
where

N(co, u„)= gq, & glM(q, &)l'1

nmNvd
q

X [I (q, A, ,q, ud ) —I'(q, A, , q, v&+co)]

and

e E1+fo~ T1+ f1

l coCe T( =v )
' f()+ ( vd ' fp +w p ) T) +v d

' f ) + (() )

(8)

(9)

(12)

is the energy-related memory function. In Eq. (12), the
imaginary and real parts of the correlation function
I (q, A., ro) are expressed as

I z(q, l, , (o}=112(q,(o+0 z) n
0~
T

—n
Qqg+ co

T
—112(q,co —0 z) n n—Qqg co

T

and

+- N11,(q, k, ~)= [II,(q, ro+ &qz) —II,(q, co —Qqz) ]n +— d(o(II, (q, co()nT '1T T.
1 1

C01 + CO Qqp C01 CO Qqp

(14)

Here n(x) =1/[exp(x) —1] is the Bose function, II,(q, ro)
and 112(q,co), respectively, are the real and imaginary
parts of the electron-density correlation function.

With these, we find that the x component of Eq. (8)
determines u, „proportional to E1„,leading to a perpen-
dicular complex small-signal resistivity or conductivity

PJ(co&vd )= 1 /o ~((o, vd )

nev1„
i 2 [co+M~(—co, vd )],

ne
(15)

as given in Ref. 11. On the other hand, the z components
of Eq. (8} and Eq. (9) determine v„proportional to E„,
yielding a parallel complex small-signal resistivity or con-
ductivity, different from that of Ref. 11:

p()(m, v )—= 1/a))(~, v )

where

neu1,
i [co+M—

))
co, vd)+D(co)], (16)

ud fp '[M))((o, ud )+N(co, vd )+imp ']
()) (()u„fp +wp —icoC,

(17)

with Tp fplnmud bein—g the effective inverse scatter-
ing time related to the dc nonlinear resistivity at the bias
field.

In the absence of a dc bias E0=0, the zero-order equa-
tions (6) and (7) yield vd=0 and T, =T. We thus have
D((o) =0 and M))(co, O) =M~((o, O) =M(co). The small-
signal conductivity in the zero dc bias is direction in-
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dependent, and is given by Eq. (15). In the presence of a
finite dc bias, p~~(co, vd ) differs from p~(co, vd ) not only due
to M~~(co, vd ) differing from M~(co, vd ), but also due to the
additional term D (co) in the parallel case. This is because
a small ac current parallel to the dc bias field induces an
energy (thus an electron temperature) change in the
linear order, while a small perpendicular ac current can
induce the energy (temperature) change only in higher or-
der. A random current fluctuation is not able to induce
such a change no matter whether it is parallel or perpen-
dicular to the bias dc field. Therefore, the noise conduc-
tivity at a nonzero dc bias is always given by the simple
formula

~O.S
«0.6

4

Zl Og
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FIG. 1. Imaginary part of the impurity-induced memory
function in the parallel configuration, Mz'I~'(co, ud ), is shown as a
function of the reduced frequency co/co~ at bias drift velocities
ud =0.001uz, 0.005uz, 0.05uz, 0.5u+, and 1.0uz, corresponding
to electron temperatures T, =2.6, 22, 46, 86, and 113 K, respec-
tively.

for both parallel and perpendicular directions. Equation
(18) was used in discussing the thermal noise temperature
and diffusion under a strong dc, electric field. ' '

As an example, we consider exactly the same system as
that discussed in Ref. 11: n-doped GaAs at lattice tem-
perature T =0 K, with a doping concentration
n,. =1.4X10' cm and a conduction electron density
n =n;. We take the electron effective mass m =0.067m,
(m, stands for the free-electron mass); static dielectric
constant ~=12.9, optic dielectric constant x„=10.9,
leading to a zero-temperature Fermi level cF =3.14 meV
(counted from the conduction-band bottom) or Fermi
temperature TF =36.4 K; Fermi velocity vz = 1.28 X 10
m/s and plasma frequency co =7.79X10' /s. Scatter-
ings from charged impurities, acoustic phonons (through
deformation potential and piezoelectric couplings with
electrons), and longitudinal-optical (LO) phonons
(through Frohlich couplings with electrons) are taken
into account. The other relevant material and electron-
phonon-coupling parameters are chosen as in Refs. 11
and 14: acoustic deformation potential:- =8.6 eV,

FIG. 2. Real part of the impurity-induced memory function
in the parallel configuration, M&'~I'(m, ud ), is shown as a function
of the reduced frequency co/co~ at bias drift velocities
ud =0.001u~, 0.005uF, 0.05m~, 0.5u~, and 1.0uF, corresponding
to electron temperatures T, =2.6, 22, 46, 86, and 113 K, respec-
tively. The inset indicates the bias electric field Eo and the elec-
tron temperature T, against the bias drift velocity, as deter-
mined from Eqs. (6) and (7).

piezoelectric constant e,4
= 1.41 X 10 V/m, LO-phonon

frequency QLo=5. 38X10' /s, longitudinal sound veloci-
ty v, &

=5.29 X 103m/s, transverse sound velocity
v„=2.48 X 10 m/s, and mass density d =5.31 g/cm .

In the calculation of the momentum- and energy-
related memory functions, the random-phase approxirna-
tion (Lindhard dielectric function) is used to take account
of effects of the electron dynamic screening and contribu-
tions from plasma excitations. The calculated imaginary
part of the impurity-induced memory functions in the
parallel configuration M&~I(co, vz) is shown in Fig. 1 as a
function of the reduced frequency co/co . In the case of
zero or very small dc bias, when the electron temperature
T, remains much lower than TF, e.g., U„=0.001 UF

(T, =2.6 K), M@II(co,vd) has a remarkable enhancement
(about 75% over its value immediately before the
enhancement) starting from co=co, and exhibits a huge
hump in the frequency range between co and 1.7' be-
fore it decreases at high frequency. This is almost the
same as the vd =OU+ result obtained by Ma and Shung. "
However, with increasing dc bias velocity, the electron
temperature increases quickly, and the height of the
plasmon-induced hump is greatly suppressed, together
with a small shift of its position toward lower frequency.
At a bias of vd=0. 5vz (T, =86 K) the largest enhance-
ment is less than 10%. These results are in strong con-
trast with those of Ref. 11. Correspondingly, the sharp
peaks in the real part of the memory function, showing
up at zero dc bias, are greatly weakened with increasing
the bias drift velocity, and almost disappear when
vd )0.5v~ (see Fig. 2). The imaginary and real parts of
MI'(co, vd ) also exhibit similar behavior.

To estimate the effect of the electron-temperature oscil-
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FIG. 3. Real and imaginary parts of D(co), and the memory
function in the parallel con6guration, are shown as functions of
reduced frequency co/co~ in the case of bias drift velocity
u„=0.5uF (T, =86 K).

lation on the parallel complex resistivity, we need to cal-
culate D(co) and compare it with M~~(co, ud ). Obviously,
in the zero-frequency limit co~0, its real part D, (co) ap-
proaches zero, and its imaginary part D2(co) approaches
a finite value. Furthermore, at small dc biases both
D i(co) and Dz(co) are negligibly small and

p~~
and pi share

essentially the same expression (the difference between

M~~ and Mi also becomes very small at small dc bias). In
a strong dc bias, however, the D (co)-related contribution
is important at low frequency, as is seen from Fig. 3,
where we show D, (co) and D2(co) as functions of frequen-
cy in the case of vd=0. 5vz, together with the real and
imaginary parts of the memory function, M, i(co, vd) and

Mz~~(co, ud). Both D, (co) and Dz(co) approach zero at
high frequency (co) 0.2co ), rejecting the fact that the
electron temperature cannot follow a very rapid oscilla-
tion of the driving field. This should be compared with
the momentum-related memory functions M, ~~(co, ud ) and

FIG. 4. Absorption coeScient in the parallel configuration,

gi~(co), is shown as a function of the reduced frequency co/co~ for
dc biases ud=0. 001u+ and 0.5uF, together with corresponding
Drude forms (dashed and chain curves).

M2~~(co, ud), which approach zero only when co))2co~.
This indicates that the energy relaxation time is more
than ten times longer than the momentum relaxation
time.

The reAection and absorption coefBcients are easily ob-
tained from the results of M~~(co, Ud ) and D(co). Figure 4
shows the absorption coefticient in the parallel
configuration, g~~(co), as a function of photon frequency
for two dc biases, vd =0.001v~ and 0.5vF, together with
corresponding Drude forms (dashed and chain curves).
In the case of vd =0.001vF the result is similar to that re-
ported in Ref. 11: g~~(co) exhibits a marked dip at co=co~
before forming a bulge at the higher frequency. On the
other hand, in the case of vd=0. 5vF, the absorption
coe%cient shows an almost smooth change with frequen-
cy (except a small kink at co ), somewhat similar to the
behavior of the Drude form.
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