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Molecular-exciton approach to spin-charge crossovers in dimerized Hubbard and excitonic chains
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The crossover from band to correlated states in half-filled quantum cell models is studied in a
molecular-exciton framework based on a chain of dimers. Crystal states with one or several excited di-

mers yield analytical excitation energies to first order in interdimer Coulomb interactions V(p, p ) for ex-
citonic chains or interdimer electron transfer t = t (1—6) for Hubbard chains. Molecular-exciton
analysis of excitations and transition moments rationalizes exact numerical solutions of oligomers with
arbitrary intradimer correlations U, V&, and electron transfer t+ = t (1+5), including the number, posi-
tions, and transition moments of low-lying excitations. Short correlation lengths of infinite chains with
large alternation 6)0.6 lead to converged crystal states for oligomers containing X=4—7 dimers. The
present approach provides a detailed picture of excited-state crossovers with increasing U, V&, and

V(p, p ). Quite generally, the lowest singlet excitation S, is one-photon allowed (18) on the band side of
the spin-charge crossover and two-photon allowed (2A) on the correlated side. Intermediate correla-
tions and large 5 reveal different crossovers in Hubbard chains, where 1B involves charge transfer be-
tween dimers, and excitonic chains, where 1B has an excited dimer. We also obtain two-photon transi-
tion moments M and extend vanishing M (2A) in the band limit up to U =2t+, the 5-1 crossover of
Hubbard chains. We find finite M(2A) on the correlated side, however, where 2A contains two triplet
dimers in either alternating Hubbard or excitonic chains. Their different spin-charge crossovers appear
as an abrupt and continuous increase, respectively, of two-photon intensity on going from the correlated
to the band side. The greater delocalization (6-0.07—0.33) realized in conjugate polymers is consistent
with excitonic chains. The potential V(p, p ) in the Pariser-Parr-Pople model for conjugated hydrocar-
bons distinguishes strongly Auorescent polymers with S& = 1B from others with S& =23. We also relate
our results at large 6 to other approximations for nonlinear optical spectra of conjugated polymers.

I. INTRODUCTION

Many recent studies' have explored the nonlinear
optical (NLO) properties and electroluminescence (EL) of
conjugated polymers in connection with a variety of ap-
plications. Pristine polymers are semiconductors with
optical gaps around 2 —3 eV whose electronic excitations
are the microscopic basis for NLO responses and EL.
The Su-Schrieffer-Heeger (SSH) model describes the cou-
pling between electronic states and lattice vibrations for
noninteracting ~ electrons in a Huckel or tight-binding
chain. The low-lying excitations are solitons and pola-
rons for polymers with a degenerate ground state, such as
trans-polyacetylene (PA), and bipolarons for many other
polymers with nondegenerate ground states. These self-
localized states have been widely applied to polymer
spectra generated by chemical doping or photoexcitation.
Quantum fluctuations of the lattice strongly enhance the
NLO response of trans-PA over that of cis-PA. The neu-
tral excitations of conjugated polymers and hydrocar-
bons also indicate the importance of electron-electron
(e-e) correlations, notably through exciton formation in
polydiacetylenes, negative spin densities in PA, and
diferent energy thresholds for triplet, one-photon, two-
photon, and charge-carrying excitations. Since NLO

coe%cients are formally given as sums over virtual states
and their transition dip oles, correlations rather than
excited-state relaxation are probed. The 1owest singlet
excitation 5& is dipole allowed in conjugated polymers
that fluoresce strongly, but two-photon allowed in sys-
tems with weak or extrinsic emission. ' Increasing e-e
correlations ensure" a sharp S& crossover from dipole to
two-photon allowed in centrosymmetric polymers.

Many-body and exciton theories are traditional ap-
proaches to e-e correlations in extended systems, especial-
ly for ground states and energy thresholds, and some ex-
act results are known for uniform Hubbard, Heisenberg,
or related chains with one orbital or spin per site. ' Al-
ternating single and double bonds in the PA ground state
preclude exact analysis for interacting vr electrons. Elec-
tronic states of extended systems such as conjugated po-
lymers have consequently been approximated by a variety
of techniques for both ~- and all-electron models. ' Our
discussion of correlated states is restricted to quantum
cell models with one orbital per site. In contrast to direct
solution of many-electron problems, exciton theories' for
organic crystals such as anthracene start with molecular
excitations observed in the gas phase and apply degen-
erate perturbation theory to the intermolecular interac-
tions and lower symmetry in the solid. Crystal states
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FIG. 1. Partial single and double bonds of trans-
polyacetylene, with unit cell 2a, transfer integrals t (1+6), bond
lengths R, =1.45 A, Rd =1.35 A, and bond angles 2m/3.

then implicitly contain molecular correlations.
The PA backbone in Fig. 1, with two sites per unit cell,

has generally been used for modeling the half-filled ~ sys-
tems of conjugated polymers. Alternating transfer in-
tegrals t+ =t(1+5) lead to an energy gap 4t5 between
the filled valence and empty conduction bands in the
noninteracting limit. We introduce an arbitrary spin-
independent potential V(p, p') and consider the evolution
of the ground and excited states. On-site repulsions
U » t in Hubbard models lead to localized spins with an-
tiferromagnetic Heisenberg exchange J-2t IU, and
such spin-charge separation is typical for any V(p, p')
that favors uniform charge distribution in the ground
state. Mott's analysis' of the metal-insulator transition
of atomic hydrogen invokes variable bandwidth 4t in a
uniform (5=0) lattice. The hypothetical variation of 4t
in dimerized chains produces a crossover between local-
ized spins for U)&t and a semiconductor for t)&U.
Since the symmetry of Si is different in the two limits,
the crossover" can be precisely associated with the sym-
metry change. Spin-charge crossovers naturally occur at
intermediate correlations U-2t realized in conjugated
polymers. We expect similar correlations V (p,p

'
) in

conjugated backbones of sp - or sp-hybridized carbon
atoms. Different bond lengths, topologies, and substi-
tuents modulate the observed optical gaps and can be
modeled' in terms of the PA backbone with variable 6 at
fixed bandwidth 4t and correlations V(p,p'). The present
study is motivated by the generality of spin-charge cross-
overs in quantum cell models and the realization of con-
jugated polymers on either side.

Intermediate correlations U 2t are particularly chal-
lenging. Band theories with U =0 are highly developed
and have recently been extended' ' to include Coulomb
interactions between an electron in the conduction band
and hole in the valence band. Corrections for weak e-e
correlations suggest configuration-interaction (CI)
schemes, ' ' but CI in extended systems is not size con-
sistent beyond the first order, and that is not sufficient
for intermediate correlations. Strong correlations U &)t
have also been treated rigorously in terms of Heisenberg
spin chains in half-filled systems " or t-J models for
other filling. Degenerate perturbation theory gen-
erates corrections in (tlU) " None of th. ese methods
extend to intermediate correlations, which is precisely the
relevant regime for the spin-charge crossover. The lack
of accurate solutions at intermediate correlations has led
to controversies about correlated states of simple ex-
tended systems. One issue is the location and NLO con-
tributions of even-parity states below the lowest one-

photon absorption; another is the role of biexcitons above
the one-photon transition involving two-electron excita-
tions in the band limit. Lattices with uniform t s have at-
tracted most theoretical attention. They illustrate max-
imum delocalization and avoid such chemical details as
bond-length variations in conjugated polymers. To ob-
tain correlated states in the crossover region of extended
systems, we consider below chains in the opposite limit of
reduced delocalization and start with dimers whose
correlated states are exactly known for arbitrary Ult.

We develop in this paper a general approach to excited
states of infinite chains with intermediate correlations
and focus on the spin-charge crossover where S

&
switches

from a dipole-allowed to a two-photon excitation. We
obtain analytical solutions in Sec. II for a chain of isolat-
ed dimers, or molecules, that correspond in Fig. 1 to a
C=C bond with transfer integrals t+ =t(1+5). Elec-
tron transfer and Coulomb interactions between dimers
are treated analytically by first-order perturbation theory
for the infinite chain and verified by exact numerical solu-
tions to oligomers. The single bond t =t(1 —5) in Fig.
1 is a sufficiently small perturbation for 5 ~ 0.6 to demon-
strate convergence for 14-site oligomers. Such large al-
ternation 6 is not directly applicable to conjugated poly-
mers, which are more extensively delocalized. But the
polysilane backbone with 6= —, provided initial applica-
tions of dimer states, and the direct characterization of
crystal states and transition moments allows us to fol-
low all low-energy excitations through the spin-charge
crossover. Moreover, since the unit cell in Fig. 1 is the
same for any 5 & 0, the state symmetries also hold for al-
ternations realized in conjugated polymers.

Our approach is a generalization of molecular-exciton
theory. ' We find dimer states explicitly and consider pa-
rameter regimes in which dimer excitations cross. Elec-
tron transfer or e-e interactions between dimers mix the
states too strongly to use perturbation theory. We then
resort to exact analysis of oligomers with sufficiently
large 5 to ensure convergence to the infinite chain. Exact
solutions to quantum cell models with one orbital per site
take advantage of the large but finite basis for oligo-
mers. Diagrammatic valence bond (VB) methods are
convenient for any model that conserves the total spin S
and yield transition dipoles and NLO coefficients as
well as excitation energies. Oligomers up to 14 sites are
currently feasible. Whether this sufFices for infinite
chains depends on the electron coherence length, which
in the noninteracting limit involves the ratio of the
bandwidth 4t and band gap 4t6. The coherence length is
clearly a unit cell for decoupled dimers (5= 1) and
diverges for regular (5=0) chains. We combine analytical
dimer and exciton functions for infinite chains with exact
oligomer results to follow all excitations in the crossover
region. We can thereby distinguish between different pa-
rameter regimes of Hubbard, extended Hubbard, or
Pariser-Parr-Pople (PPP) models.

The PA backbone in Fig. 1 illustrates the partitioning
used throughout this paper. We consider transfer in-
tegrals t(1+5) along a chain of 2N sites, with sites
2p, 2p —1 corresponding to the pth dimer, and arbitrary
spin-independent interactions V(p, p') between electrons
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Hd + y( 2p 2p —1 + 2p —I 2p
po

+ U, g np(n —1)/2, (2)

with t+ = t (1+5), U, = U —V(Rd ) for bond length Rd in
Fig. 1, and ~-electron number operators n . The dimer
states form a complete basis for (1). Interdimer contribu-
tions are restricted to electron transfer t =t(1—5) in
Hubbard models and also include Coulomb interactions
in excitonic models,

on sites p,p'. The half-filled case has one electron per
site, two per dimer. The m-electron Hamiltonian is

H(5)=Hd(5)+H (5)+ Vdd,

where Hd is restricted to one dimer, H transfers elec-
trons between dimers, and Vdd contains all interdimer
V(p, p ) interactions. Similar Hd occur in all half-filled
dimers,

@=ger q (4)

symmetry. The C2, backbone in Fig. 1 has even-parity

A~ singlets, including the ground state ~G ), and odd-

parity B„singlets. Thus S
&

is either 2 ' 2 or 1 '8„, taken
as 2A and 18 below. We invoke the usual m-electron or
tight-binding restrictions to one orbital per site, nearest-
neighbor hopping integrals t~ + &, and the zero-
di6'erential-overlap (ZDO) approximation ' for e-e in-

teractions, which restricts V(p, p') to two-center in-

tegrals. Half-filled models (1) with arbitrary spin-
independent e-e interactions also have ' electron-hole
(e-h) or charge-conjugation symmetry. We choose e-h in-
dex J =1 for ~G ). Two-photon excitations conserve J,
while dipole transitions reverse J. Translational symme-

try for 2N sites gives crystal states with wave vector
k =~m/Xa and ~/2—(k ~~/2 in the first Brillouin
zone. The many-electron states of (1) have fixed, J, k,
and total spin S. The ZDO approximation for the dipole
operator p is

(5)=t(1—5) g(a,p a,p+, +a,„+, a, ),

V„d=+—,
' g' V(R, )q q, ,

PP

where q =1—n is the ~-electron charge operator and
the primed sum is restricted to p,p in diferent dimers.
The form of V(p,p') = V( p' —

p~ ) is arbitrary at this
stage and depends on the distances R ~ between sites in
Fig. 1. Large alternation 6 and interdimer separations
R „.clearly reduce (3) to a small perturbation. The excit-
ed states of (1) are accessible in this regime and can be
followed with increasing interdimer coupling.

The paper is organized as follows. We introduce dimer
states in Sec. II, construct crystal states with one or
several excited dimers, and obtain approximate analytical
solutions in the dimer (5=1) limit. The major distinc-
tion is between systems whose lowest dipole-allowed
singlet is a band state or an exciton. We then demon-
strate in Sec. III convergence for threshold excitations of
2% = 14 chains with 5=0.6, compare one- and two-
photon excitations of oligomers with crystal energies in
the crossover region, and relate 5=0.6 eigenstates of oli-
gomers to the dimer basis. We present in Sec. IV transi-
tion dipoles for one- and two-photon excitations of linear
oligomers due to mixing of dimer states by H (5) and
discuss the diA'erent behavior for two-photon intensities
of band and excitonic systems at the S& crossover. We
then discuss correlated spectra of (1) and comment on
previous applications of Hubbard and PPP models to
NLO spectra or photophysics of conjugated polymers.

II. MOLECULAR-EXCITON THEORY
NEAR THE DIMER LIMIT

Conjugated polymers often have centrosymmetric
backbones in their idealized extended conformation.
Dipole-allowed transitions to odd-parity states and two-
photon transitions to even-parity states then follow by

We suppose the alternating chains (1) to be along the z

axis and consider dipole processes polarized along the
chain; transverse components can be treated the same
way. All NLO coefficients reduce to matrix elements of
(4) in the dipole approximation and k =0 singlets with
J =+1 are sufficient in general for (1).

Electron transfer between dimers generates ion radicals
D+cr or D o. Solution of (2) is again elementary, since
the cation and anion have one electron and one hole, re-
spectively, but Coulomb interactions between charged di-
mers n, n' are potentially large. We incorporate first-
order corrections ( Vdd ) in the zeroth-order Hamiltonian

tan2y=4t+ /U, . (6)

There is equal mixing in the Huckel (U, =O) limit. As
indicated in Fig. 2, we reference all excitation energies to

HQ=Hd+ —,'g' V(Rpp ) .
PP

We take all expectation values with respect to the eigen-
states of Hd and note that H0 conserves the electron
count n2&+ n2~ &

separately for each dimer. The pertur-
bations (3) then become H (5) and b. Vdd

=
Vdd

—( Vdd ).
The H0 spectrum is restricted to dimers and reduces to
Hd excitations in the limit of isolated dimers.

Figure 2 shows the excitations and eigenstates of a neu-
tral dimer, whose second-quantized eigenstates are ex-
plicitly given in Appendix A and are simply the Hz func-
tions with CI in the is orbitals. The triplet

~
t ) has paral-

lel spins on both sites and is strictly covalent, with n = 1,
while the ionic singlet ~b ) is the odd linear combination
of both electrons on the same site. The ground state ~g )
and excited state ~a ) are even-parity singlets whose com-
position depends on U, /t+. For U, ))t+, ~g ) is the co-
valent (Heitler-London) singlet with one electron per site
and ~a ) is the ionic, even linear combination of both elec-
trons on the same site. Intr adimer correlations are
governed by the mixing of ~g ) and ~a ) according to
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la& la& = sinq~l —& - cosqi(i+-& + I-+&)/l2

E. = gU,'+16t,' = 2e, + U,

Ib& Ib& = (I+-& - I-+&)/l2

E:, = U,'+16t,'+U, l2 = e +U,

It& = lm &

Ig&

U'+16)' —U /2

Ig& = cosql —& + sing(l+-& + I-+&)/l2

FIG. 2. Excitation energies and eigenfunctions of Hd, Eq. (2),
for a neutral dimer with mixing angle 2y=tan '4t+ /U, in Eq.
(6) between the even-parity covalent singlet

~

—) and ionic
states ~+ —) and

~

—+ ). The triplet ~t) has parallel spins
denoted by an arrow, while the odd-parity singlet ~b ) is strictly
1onlc.

are also Ecz(r) in first order. All CT states are degen-
erate in Hubbard chains, with W ( r ) =0.

Crystal states are products of molecular functions, or
of Hd eigenstates in the present context. The crystal
ground state

~
G ) = ~gg

. g ) is nondegenerate, with ~g )
given by (Al) for arbitrary U, /t+. Since ~g ) contains a
pair of fermions, the ordering of the product is arbitrary
and

~

G ) is fully antisymmetric under electron inter-
change. The simplest crystal excitations contain one ex-
cited dimer. We define product functions ~T„), ~B„),
and

~ A„) to have a triplet, odd-parity, and even-parity
excitation at dimer n and ground-state dimers elsewhere.
Phases of the many-electron function are again indepen-
dent of the ordering of operators in Appendix A. The
normalized crystal states are

) —~—i/2 y ei2ank B )

~CTn, r, +1)=(~D„+D„+„)+ID„D„++„))/v2 . (9)

They transform as J =+1 for arbitrary separation 2ra be-
tween the charged dimers. First-order excitation energies
0 oa

EcT(r)=2s, 2t+ + U —W(r),—

W(r) =—{V(2n, 2n +2r —1)+2V(2n, 2n +2r)

+ V(2n —1,2n +2r) I /4 .

(10)

The W(r) contributions ( Vdd ) depend explicitly on the
chain geometry in Fig. 1. In addition to singlet CT states
(9), we have triplet CT states whose excitation energies

the ground state. We have

s, =(QU, +16t+ —U, )/2,
while ~b ) is at sb =s, + U, and ~a ) at s, =2s, + U„~b )
and ~a ) are one- and two-photon allowed, respectively,
and the latter clearly corresponds to two-electron excita-
tion in the Huckel limit. The dimer excitations are relat-
ed by

Ca =Cb+E]

As the triplet excitation (7) decreases with increasing U„
~a ) and ~b ) become degenerate to order t+ /U, . The
transition dipoles (4) between ~b ) and ~g ) or ~a ) are, re-
spectively, eRd sing and eRd cosy, as can be verified using
the functions in Appendix A.

The radical ions D+ and D contain one electron and
one hole, respectively. Their ground energies are —~t+ ~

and U —
~ t+ ~, with the full on-site repulsion in the anion

and delocalization —t+ of the electron in D+ or hole in
D . The CT singlet ~ID„D„) with charged dimers at n

and n'=n+r is given in Appendix A. To construct
eigenstates with e-h symmetry, we combine states with
reversed charges,

~

gk ) —~ '/2 g e' '"k~ g„),

with k =~m/Xa in the first Brillouin zone. All % states
in the triplet band have S = 1 and J= 1, while the entire
~Bk ) and

~
Ak ) bands have 5 =0, J = —1, and S =0,

J = 1, respectively.
Expectation values of Ho in (5) with respect to (11) give

first-order excitation energies. Neither ~TO) nor
~
AO) is

shifted by interdimer Coulomb interactions, since the
operators q~ in Vdd connect states with opposite J. The
singlet-exciton band Bk ) is split, however, because
(B ~q q +i~B +i) does not vanish and the exciton can
hop to a neighboring dimer. The first-order shift of ~BO)
is11

Eb"= —W (1—cos2y),

W—:I V(2n, 2n +1)—2V(2n, 2n +2)

+ V(2n —1,2n +2) j .

(12)

The shift is largest at U, =0 [2y=O in (6)], when ~g ) is

50% ionic, and there is no shift at large U„when ~g ) is
the covalent Heitler-London singlet. BO) is at the bot-
tom of the band in extended Hubbard models ( V, )0,
V„=O, r =2, 3, . . . ), in PPP models (V, —2V2+ V3) 0),
or any other V(R) with positive curvature. The width of
the exciton band is 2Eb".

Molecular-exciton theories use crystal states (11) in
systems whose excitation energies are large compared to
intermolecular interactions. We focus instead on param-
eters in which the excitations of (1) are almost degenerate
and also consider composite excitations in which two or
more dimers are excited. States with two excited dimers
resemble an electron-hole pair in band theory in having
-X states with k =0 for the center of mass. Additional
internal degrees of freedom lead to -X and -X states
in the k =0 manifolds for three and four excited dimers,
respectively. The dimer basis provides controlled ap-
proximations at small t for enumerating all many-
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electron excitations in subspaces with fixed S, J, and k.
We begin with triplet dimers at n and n + r and obtain

states with J =1 and S =0, 1, or 2. The singlet combina-
tion

~
TTn, r ) is given in Appendix A for any separation

2ar. All TT states discussed below are k =0 singlets with
J= 1 and normalized wave functions

~TTr)=N ' g ~TTnr), r =1 2, . . . , M, (13)

with M =N/2 for even N and (N —1)/2 for odd N. The
first-order energy is 2c„ independent of r or interdimer
e-e interactions. The TT states (13) are M-fold degen-
erate in the dimer limit and are all potentially two-
photon active, but have vanishing intensities because

~
t )

is purely covalent and thus does not couple to the dipole
operator p. Angular momentum addition leads to one
singlet TTT state, while four triplets give two TTTT
singlets. The construction of crystal states with k =0
and excitation ene'~y pc, is straightforward in either
case.

The dimer basis also contains CT states whose long-
range Coulomb interactions (10) are included in Ho The.
singlets ~CTn, r, +1) in (9) with charged dimers at n and
n+r generate a k =0 crystal state for each separation
2Q7'~

~CTr, +1)=N ' g ~CTn, r, +1), r =1,2, . . . , M,

(14)

with excitation energy EcT(r) and J =1 or —1. The po-
tential V(p, p') controls the spacing of the CT excitations.
For completeness, we note that there are additional CT
states in which one or both dimers are excited, either 2t+
or 4t+ higher in energy, and composite k =0 singlets
based on CT+ T, two CT pairs, doubly charged dimers,
or other combinations of dimer excitations. Although
elementary, the first-order spectrum of Ho rapidly be-
comes congested with increasing energy and many
different orderings of excited states are possible for vari-
ous t+, U„and V(p,p'). Linear combinations of all
these excitations appear automatically in exact analysis of
oligomers.

Singlet excitons and composite TT or CT excitations
exhaust the energy thresholds of Ho. Intradimer correla-
tions are fixed by (6), while interdimer e-e interactions ap-
pear for CT states and for the singlet exciton ~BO). The
first-order excitation energies of these crystal states fol-
low from (7), (8), (10), and (12),

cent D D, while the lowest J =1 singlet is either a TT
or a CT state. The spin-charge crossover depends on the
nature of the J= —1 threshold. We distinguish between
excitonic chains with Eb & EcT(1) and "Hubbard" chains
with the opposite ordering. The latter include extended
Hubbard models with suKctently small V(p, p') to have
18 in the CT manifold at t =0.

The energies (15) for excitonic chains are shown in Fig.
3, in units of Eb, as a function of intradimer correlations
2y=tan '4t+ /U, . Solid and dashed lines correspond to
J =1 and —1, respectively, and the TT line is M-fold de-
generate in the separation r. The actual curves are k =0
singlets for the Ohno potential

V(p,p')=V(R ~
)=e l(p +R~~ )' (16)

and the PA geometry in Fig. 1, with 120' bond angle and
bond lengths 8&=1.35 A, R, =1.45 A. The on-site
repulsion V(0) =e /p = 11.26 eV for carbon is taken
from atomic data and fixes the orbital size p=1.28 A.
Although high-energy excitations in Fig. 3 depend on
V(R), the spin-charge crossover at t =0 is fixed by the
singlet exciton Eb. All spin states with p 2 triplets have
low energies pc, for U, &&t+, while all CT states become
degenerate on the t+ scale for t+ && U, . For clarity, we
have not shown all high-energy compound excitations in
Fig. 3. The full spectrum of all k and S states is even
more complicated, but is not needed for NLO spectra.

The 2A /1B crossover of excitonic chains is given by
ET7 =Eb in (15). This relates the triplet excitation at the
crossover to the stabilization 8'

2.0

0.5

E,(W )=(U, —2W +'1/ 9U, —4U, W +4W )/4 .

(17)

ETTIU, =2e, IU, = (1 cos2y) Ic—os2&p,

E&IU, =(1+cos2y)/2cos2y —W (1—cos2y)/U, ,
(15)

0.0
30 60

2$=t.an '4t, /U

E, /U, = 1/cos2y,

EcT(r)IU, = (2—sin2y) l2 cos2p+ [ V (Rd ) —W(r) ]IU, .

These analytical expressions hold for any spin-
independent potential V(p, p') in a chain with t =0.
The lowest dipole-allowed (J=—1) excitation is either
the singlet exciton ~BO) or a CT state, usually with adja-

FIG. 3. Crystal excitations, Eq. (15), of excitonic chains in
the dimer (5=1) limit as a function of intradimer correlations
2y=tan '4t+ /U„ in units of Eb, to erst order in the Ohno po-
tential, Eq. (16), for the PA structure in Fig. 1. Solid and
dashed lines are k =0 singlets with J=1 and —1, respectively.
The TT line is M-fold degenerate in the separation 2ar between
triplets and some high-energy composite excitations have been
omitted. The spin-charge crossover is between TT and ~BO).
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The 8' =0 crossover of isolated dimers occurs at
U, /t+ =&2. Since W )0 lowers s„ the 2A/18 cross-
over shifts in Fig. 3 to higher U, /t+ -2 for the Ohno po-
tential. The dimer state

~
AO) at the crossover has

E, /Eb =1+U, /2c, , ( W ) and the ratio is 1.5 for
8 =0. Two-electron excitation of the dimer is around
1.5Eb when S, becomes a TT state in chains with 6=1.
Similar ratios occur in oligomers ' with the Ohno po-
tential and smaller 5-0.2 where, however, the energy
thresholds have not converged to the infinite chain. We
note that TT and CT excitations cross in Fig. 3 at lower
U, /4t+, with the first crossing for Ecz.(1). Since CT
manifolds also contain J=l states, the sharp TT/CT
crossovers in Fig. 3 become avoided crossings for any
t %0 in (3) and these states are strongly mixed at alter-
nations realized in conjugated polymers.

The spin-charge crossover of Hubbard models is quali-
tatively different. All V(p,p') vanish, U controls the in-
tradimer correlations (6), and there are no potential terms
in (15). The crossover of Ho is now exactly at U=2t+ at
5=1 and involves TT and CT states because Eb is no
longer the lowest J = —1 singlet. But the CT states (14)
are split by H (5) and are not proper zeroth-order states
for 5 & 1. We again include first-order corrections in t
for crystal excitations. The relevant matrix elements
are"

(CTr, J~H (5)~CTr', J') =t si n2y 5„.„+, 5~&. (18)

with M=N/2 for even N and (N —1)/2 for odd N.
Since the entire band consists of k =0 singlets, the linear
spectrum starts at E(18)=Ecz 2t sin2q and is sym--

metric about Ecz-.
Figure 4 shows spin-charge crossovers in Hubbard

chains with 5=0.6 (t /t+ =—'), in units of Ecz., as a
function of intradimer correlations 2y = tan 4t+ /U.
%'e again use solid lines for k =0, J =1 singlets, dashed
lines for k =0, J = —1 singlets, and both for the CT band
edges from (19). TT and TTT singlets appear at low ener-

gy on the correlated side and lead to additional com-
pound excitations that are not shown in Fig. 4 for clarity.
The singlet exciton Eb has higher energy. The crossover
clearly involves a CT state for 1B, but the lowest J =1
singlet is a mixture of TT and CT states for any 5 & 1.
The mixing is necessarily strong because the crossing of
J= 1 states occurs at the same y in first order.

Before comparing the analytical results in Figs. 3 and 4
for infinite chains with oligomer excitations, we summa-
rize transition dipoles and the mixing of crystal states due

for CT states of either e-h symmetry. Interdimer electron
transfer connects k =0 singlets whose charge separation
increases or decreases by 2a. Since the CT states (14) are
degenerate, (18) leads to a tridiagonal matrix with
r =1,2, . . . , M that maps into a regular Hiickel chain
with t'=t sin2y. Hubbard chains with small t conse-
quently form CT bands whose first-order corrections to
Ecz in (15) are

c,
'"= —

2~ t ~sin2p cos2pm I(M +1), p = 1,2, . . . , M,
(19)

2.5

2.0

1 ~ 5

1.0

0,5

0.0
0 30 60

tan '&lt. /U

FIG. 4. Crystal excitations, Eq. (15), of Hubbard chains with

5=0.6 as a function of intradirner correlations
2y=tan '4t+/U, in units of E&&, to first order in interdimer

hopping H (5), Eq. (3). Solid and dashed lines are k =0
singlets with J =1 and —1, respectively. The CT band is given

by Eq. (19) and the TT line is M-fold degenerate. The spin-
charge crossover is between TT and the edge of the CT band.

to H (5). Only intradimer transitions in Fig. 2 are pos-
sible at t =0, since the number of electrons on each di-
mer is conserved in Ho. The crystal states (11), (13), or
(14) are linear combinations of products of dimer states.
Transition moments for singlet excitons (11) are

pt, = ~BklplG ~ =N' eRdsinq&5k o . (20)

The intensity is entirely in the k =0 mode and pb scales
as the number of dimers X. The linear spectrum at 5=1
has a single line at Eb in (15), regardless of the location of
CT states. The two-photon spectrum has a single line at
E, in the dimer limit. Using the transition dipole
eRdcosy between ~80) and

~
AO) in (11),we obtain

Pagb
M, = =X'

Ei, E, /2 —2Ei, E, — (21)

and depends on U, /t+ through (6). Small t shifts oscil-
lator strength from ~80) to

~
CT1, —1), while the matrix

element (18) insures smaller admixtures of CT states with
r ) 1. The magnitude of W(r) in (10) governs the actual

for the two-photon transition moment. The intensity
goes as M, and scales as X, as required on physical
grounds for weakly coupled molecules. When ~g) be-
comes covalent for U, &&t+, y is small and both the
linear and two-photon intensities are weak.

Electron transfer between dimers has far more impor-
tant consequences for transition dipoles than for excita-
tion energies. Since all matrix elements of Ho(5) over
crystal states are found below, perturbation theory can be
carried out formally to any order. The mixing of ~80)
by H (5) is exclusively to ~CT1, —1) in the dimer basis.
The matrix element is

(BO~H (5)
~
CT1, —1)= t (cosy+sing)/2
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pc@(r)=(CTr, J~p~CTr', —J)=2ear5„„ (25)

The orthonormality of the dimer states gives the restric-
tion r =r' and the unit cell 2a in Fig. 1 fixes the magni-
tude. Very large transition dipoles occur at large separa-
tion r between the charged dimers, but the matrix ele-
ments (22) and (24) show r =1 to be most important for
excitations of ~G ). For completeness, we note that both
transition dipoles and H (5) matrix elements can readily
be extended to composite excitations within the dimer
basis. But spin-charge separation depends on low-lying
states of Hd with one or two excited dimers. We turn
next to oligomer calculations to test the rich variety of
excitations and transition moments predicted near the di-
mer limit.

mixing and thus depends on the potential V(p, p'). In
Hubbard models, r generates the CT band (19) and

~
CT1, —1) now appears with coefficient c, in the pth

eigenstate. We again use the connection between (18) and
a regular Hiickel chain to obtain a general expression '

for the coeScients

c „=[2/(M+1)]' sinpmr/(M+1), p =1,2, . . . , M
(23)

of k =0 states ~CTr, —1) with separation 2ar between
charges. The oscillator strength borrowed from the exci-
ton moment (20) is modulated as c~, over the symmetric
CT band at Ecz.. The maximum intensity is at the band
center, p =M/2-N/4, while the intensity at the band
edges goes as I . The red edge rapidly gains intensity,
however, with increasing t and dominates the linear
spectrum of linear conjugated systems. ' The admix-
ture of

~
CT1, 1) in the CT band (19) with J = 1 is also c~,

in (23).
The mixing of J =1 states by M (5) is more diverse,

with ~TT1) and
~
AO) as well as ~CT1, 1) appearing in

lowest order. The matrix elements are

(TTl IH (5)iCT1, 1)=t

( AO~H (5) ~CT1, 1)=t (sin2&p+cos2tp)/2, (24)

(G~H (5)~CT1, 1)=N'~ t (1+sin2y)/2 .

Different U, /t+ dependencies result from the different
covalent and ionic compositions of dimer states, with

~
t )

purely covalent,
~
b ) purely ionic, and

~
a ) mixed. When

TT bands are lowest in Figs. 3 and 4, we expect
~
TT1 ) to

be split off, or stabilized, by mixing with ~CT1, 1); 2A
then acquires two-photon intensity for finite t
Higher-order mixing couples in

~
TTr ) states with r ) 1,

TTT states, and other composite states with J = 1.
The admixture of CT states due to interdimer electron

transfer generates many additional transition moments.
For NLO coeScients in general, we also need transition
dipoles between CT states with opposite e-h symmetry:

AE(Q)/4t5= [1+(5 —1)sin vr/Q]' (26)

Q = 14 is -4% from the converged value for

TABLE I. Energy thresholds, in eV, of 2N-site chains with
t+ = —2.0 eV and 6=0.60 in Eq. (1), the Ohno potential
V(p,p') in Eq. (16), and PA geometry in Fig. 1; E& is the lowest
triplet, E (23 ) and E (1B) the lowest even and odd singlets, and—E~ /N is the ground-state energy per site.

2N E(2A) E (1B) —Eg /N

results for all excitations. The first-order contributions
discussed above can be extended to second order, but rap-
idly become cumbersome and fail in the crossover region
of degenerate excitations. As noted in the Introduction,
the alternation 5 is related to the coherence length of
infinite chains and to the convergence of oligomers to
infinite chains. The choice 5 =0.6 corresponds to
t =t+/4, with substantial but smaller delocalization
than realized in conjugated polymers.

The large but finite basis of (1) allows exact solutions,
currently to 2N =14 sites with a Silicon Graphics com-
puter. Energy thresholds for triplet, one-photon, and
two-photon excitation of excitonic chains with 5=0.6
and open boundary conditions are listed in Table I. We
used the Ohno potential (16) for hydrocarbons and the
PA geometry in Fig. 1. In order to place 2A slightly
below 1B, we took t+ = —2.0 eV and t = —0.5 eV. We
first note that all thresholds in Table I are close to con-
vergence for seven dimers. Convergence is faster for
larger 5, slower for smaller 5. We then compare with the
first-order estimates (15) for H0 at 5= 1, which are
c., =2.612 and Eh=5. 725 eV for these parameters. As
expected for CT stabilization (24) of ~TTl ), we have
E(2A)(2s, . These 5=0.6 oligomers hardly require ex-
trapolation and are close to crystal results at 5=1. Table
II lists the same thresholds of Hubbard chains with
t+& = —2.0/ —0.5 eV and U=5. 0 eV, again with 2A
just below 1B. The convergence is comparable and the
estimates (15) and (19) now yield s, =2.217 eV and
E(lB)=4.586 eV at the CT band edge. The Hubbard
chain also has E (2 A ) (2c,, as expected" on general
grounds.

The convergence illustrated in Tables I and II is sup-
ported by all other calculations on shorter or cyclic oligo-
mers on either side of the 1B/2A crossover. Similar con-
vergence is found in antiferromagnetic Heisenberg
chains, the strong-coupling limit of (1), with alternating
exchange constants J(1+5); the ground state and e, con-
verge for 5=0.2 in spin chains and rings up to %=22
and 28, respectively. For the band limit, with U =0, we
use analytical results for cyclic oligomers with Q =4n +2
sites and nondegenerate ground states. The Huckel gap
between filled and empty orbitals approaches the band
limit 4t5 as

III. EXCITATION KNKRGIES
AND CORRELATED STATES OF CYCLIC OLIGOMKRS

Molecular-exciton analysis of alternating chains (1)
works best in the dimer limit, where it yields analytical

8
10
12
14

polymer

2.5165
2.5099
2.5060
2.5035
2.50

4.9187
4.9097
4.9054
4.9031
4.90

5.4472
5.3717
5.3203
5.2835
5.20

1.3213
1.3224
1.3231
1.3237
1.335
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TABLE II. Energy thresholds, in eeV of 2¹iteHubbard
chains with U= . e, + ——cha' ' =5.0 V t = —2.0 eV, and 5=0.60; E& is the

nd E(1B) the lowest even and oddlowest triplet, E (2 A ) and
singlets, an d —E /N is the ground-state energy per site.

1.6

2N

8
10
12
14

polymer

E

2.1220
2.1154
2.1114
2.1088
2.10

E(2A)

4.1677
4.1549
4.1482
4.1445
4.13

E (1B)

4.8282
4.7239
4.6574
4.6124
4.50

—Eg /X

1.1248
1.1259
1.1266
1.1272
1.13

1.0

0.8

2N= 10 12 10 10 14

noninteracting electrons at 6=0.6. To first approxima-
ran Ution, convergence epene depends on the alternation for any

and V(p, p ) in') '
(1). The convergence of higher-energy ex-

3 nd 4 is less rapid, but adequate tocitations in Figs. an i, to
—1.5Eb. NLO coe%cients of Huckel chains exp icit y i-
lustrate various size and alteration dependencies.

(19) are for k =The first-order excitations (15) and (

tes at 6=1. We compare them below to k =0y
excitations of cyclic oligomers wit
are, rst, o see, fi t t e whether the pattern of J=1 and —1

in-char estates in igs. anF' 3 and 4 is preserved near the spin-c g' nsind second to analyze the exact excitations
'

crossover and, secon, o
in the dimers of TT, CT, and other crystal states in e

s we consider thelimit. To illustrate excitation patterns,
for 2N = 10 and classify them according

to dimer states. There is one crystal state wi an e-
1) and ~TT2) in (13), and

of CT states ~CT1, +1) and ~CT2, +1) in ( ).

d on TTTT, and various combinations of a
tri let with CT excitations in either the J = or — man-

'th 2N = 12 or 14 have an addition-ifolds. Larger rings wit
al TT or CT state. A known number of TT states is con-

1 redicted below Eb in excitonic systems.

rin s with 5=0.6 are shown in Fig. 5 in the crossover re-
f E in (15), for the Ohno potential (16)gion, in units o b in

lines are J=1d PA eometry. The solid and dashed lines arean geom
Fi . 3. Each intra-and —1 excitations of Ho taken from ig.

' 'n 2 in Fi . 5 provides a direct comparison
between exact oligomers with 6=0. an in ni

'
h 5=1. The expected ordering of low-lying states is

found on bot si es oh 'd f the crossover, as summarized in
Appendix 8 for 2N =10, 12, and 14.

f H bbard rings in the crossover regionExcitations o u ar r'n
=10 12,h Fi . 6 in units of Ezz-, again for 2N =g.

~

'
1 d 1and 14. The solid and dashed lines for J= an

taken from Fig. . ec r' . 4 El tron transfer between dimers
a ain splits the TT states (13) on either side of the cross-

d 2 X 2 matrix in (18) whose bandwidt is
h lf th t of the infinite chain. Three s a es

-70%%uo of= 14 3 X 3 matrix whose bandwidth is-
the infinite chain's. As noted in Appendix, our

f N =5 two with each J, while N =7 gen-states appear or
atternscrates six sta es.CT t The complicated excitation pa

0.6
60 66 69

Zy = tan-"~t /U

of 2¹itecyclic oligomersFIG. 5. Exact excitation energies of 2N-
'

y
with 5=0.6 and the Ohno potential (16) for the PA geometry in

E in E . (15) for the infinite chain of dimers.
0 en circles and closed stars are k =0 singlets wit

. Th 1'd and dashed lines are crystal excita-—1, respectively. T e so i an
The s litting of oligomer excitations ytions from Fig. 3. e sp i

H (5), Eq. (3), is discussed in the text.

in Fig. 6 are readily interpreted up to —. b
—1.5E in terms of

cr stal states wit exci e 'm'
n t d dimers. The J=l dirner exci-

tation E, in (15 as igj h h' h energy in Hubbard chain,

19 1 'f th t of
over re ion of both excitoniclow-lying states in the crossover g' ' ic

an Hubbard chains with 6=0.6. With t ——0. e
h expect nearby excited states to mix and ana-however, we ex

oli ornerlyze the mixing yh
'

b expanding the normalize 'g

eigenstates in eth (complete) dimer basis. We again con-
sider k =0 singlets with J=1 or —1 and write

1.5

„r/
o
1(

0

CT-Band

2N= 10 10 10 12 10

0.5
50 55 60 65

2g = tan '4t /U
70

f 2 -site cyclic oligomersFIG. 6. Exact excitation energies of 2 - '
y

5=0.6 and Hubbard potential U, in unitnits of E & in Eq.
~

Q ...;,.l....d.l...d(15) for the infinite chain of dimers. Open
'

h J=1 and —1, respectively. Thestars are k =0 singlets wit
from Fi . ; on y. 4; 1solid an as ed d h d lines are crystal excitations g.

in ofthe lower edge of t eg h CT + T band is shown. The splitting
E . (3), is discussed in the text.oligomer excitations by 8, q. , is
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~e' (&,J)&=gck Irk(I, J)&,
k

c„=(e„(i,J)ie (S,S) & .
(27)

TABLE IV. Expansion coefficients cI, )0. 10 in Eq. (27) for
the five lowest J = —1,k =0 singlets on the dirner basis of the
same excitonic ring as in Table III.

CT1 CT2 CT+ T CT+ T
The expansion coefficients ck are projections on the di-
rner states defined in Sec. II and their squares are the
weights.

Table III contains the coefficients ck )0.1 for the
lowest eight singlets with k =0 and J=1 of a ten-site ex-
citonic ring with t+ = —2.0 eV, 5=0.6, and Ohno poten-
tial (16) for the PA geometry in Fig. 1. Smaller ck
represent weights of less than l%%uo. The ground state is al-
most the pure dimer in Table III, with

~
CT1, 1 & provid-

ing a 3%%uo correction in accord with (24). The two TT
states mix appreciably with each other and with CT
states, while CT + T and TTT states appear already in
the fourth state. State 8, the dimer excitation E„hardly
mixes in this instance. Expansion coefficients of k =0,
J= —1 singlets are listed in Table IV and also support
the dimer analysis. As indicated by (22), ~BO& and

~
CT1, —1 & mix strongly. The latter is coupled to

~
CT2, —1 & according to (18). Triplets now appear in

combination with the triplet CT states. For higher-
energy states in Tables III and IV, the sum of ck over k
is less than unity because other dimer states also contrib-
ute. In addition to expanding in the dimer basis, we can
analyze oligomers in terms of VB diagrams or various
correlation functions to obtain any desired degree of
characterization.

The dimer basis sharply separates covalent TT and ion-
ic CT states, as well as excitations of one, two, or more
dimers. These distinctions are blurred by H (5) at
small alternation. The oligomer results above and in Ap-
pendix B show that TT, CT, and excitonic states are
reasonably accurate at 5=0.6. We emphasize the com-
peting goals of convergence to infinite chains, of general-
ity for arbitrary potentials V(p, p') in (1), and of under-
standing exact oligomer results through molecular-
exciton theory. Correlated states of infinite chains with
large 5 can be extracted from oligomers, as shown in
Table I and II for excitonic and Hubbard chains near the
spin-charge crossover. Molecular-exciton results for Ho
account for the ordering of low-lying excited states in
Figs. 5 and 6. Crystal states also indicate which states
are mixed by t, although the quantitative analysis of ex-
pansion coefficients ck in Tables III and IV requires ex-

Bd
CT1d
CT2d
(CT+ T)„
(CT+T),

"

0.85
0.50

—0.51
0.81
0.23

0.17
0.62
0.13

—0.14
—0.42

0.71
0.97

act results. Crystal states with one or more excited di-
mers provide a general approach for constructing many-
electron functions with arbitrary parameters in (1). The
dimer basis can also be used at smaller 6 where delocali-
zation eA'ects are more pronounced and longer oligomers
are needed for convergence. The regular (5=0) chain is
qualitatively diferent, however. Exact solution ' of the
regular Hubbard chain yields E ( IB))0 for U )0 and
rigorously a vanishing spin-wave gap. The e-h symme-
try of extended Hubbard or PPP chains indicates vanish-
ing alternation gap, ' E(2A), in regular chains. In or-
der to discuss NLO responses, we need transition dipoles
(4) as well as excitation energies and accurate wave func-
tions are then restricted to oligomers or to the dimer lim-
it.

IV. ONE- AND TWO-PHOTON SPECTRA
IN THK CROSSOVER REGION

In the previous section, we found cyclic oligorners to
suffice for extended states of highly alternating chains.
Neither excitation energies nor transition dipoles depend
on boundary conditions in extended systems, but care
must be taken with transition dipoles of oligomers. An
applied field along the polymer lifts cyclic symmetry. We
can retain k =0 states in cyclic oligomers by using the
velocity operator for transition dipoles or by correct-
ing explicitly for deviations of the field from the back-
bone. We use instead 2X-site chains with inversion sym-
metry and decompose k =0 states into 3 and B„
singlets with the same e-h index J. The number of A
and B„states depends on N and the type of excitation, as
summarized in Appendix B. The first-order energies (15)
and (19) also hold approximately for finite chains and
H (5) again mixes dimer states.

TABLE III. Expansion coefficients ck )0. 10 in Eq. (27) for the eight lowest J = 1, k =0 singlets for
an excitonic ring with 2' =10, 5=0.6, and 2y=66. 29 in Fig. 5 in terms of the corresponding dimer
states Xd at 5=1.

TT2 CT1 CT+T

TT1d
TT2d
CT1d
TTTd
TTTd
(CT+ T)
Ad

0.99

—0.17

0.80
—0.40
—0.32

—0.11

0.40
0.87

—0.17

0.13
0.39

0.75

0.46

—0.16
—0.25

0.65
—0.42

0.31

—0.14
0.33
0.81
0.24

—0.38
—0.55

0.70
0.92
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The linear spectrum is simple for excitonic chains
when ! CT1, —1) is a proper zeroth-order function. Its
mixing with !80 ) leads to

50-
(a) 1Ag states

IAO&

with

!18) =cosP!80) +sing! CT1, —1),
!28 ) = —sinP!80)+cosP!CT1, —1),

tan213=t (cosy&+sing) /[Ecz. (1) Ei, ] .—

(28)

CT(1)
I

I

I

(I

)I
I

I

(I

)I

I

Transition dipoles with !G ) involve only !80) in lowest
order and partition the intensity Xpb in (20) as cos P for
the exciton and sin P for the CT state. The mixing of
!80) and the CT band (19) in Hubbard chains is similar
except that the coefficients c, in (23) are used for the
eigenfunctions ! CTp, 1). T—ransition moments
(m 8„!p!G) with m =1,2, . . . appear in the linear
spectrum of open chains. The two-photon transition mo-
ment M, is given by (21) in the dimer limit. The most
important intermediate state is 18 in conjugated poly-
mers, !80) in the dimer limit. The corresponding ex-
pression for chains is

M(nA)

=g ( n A
I p I

mB ) ( mB
I p I

G ) /[E (mB) —E (n A ) /2]

(29)

for even-parity states ! n '
As ) with excitation energy

E (n A). We use the lowest 10—15 odd-parity states in the
sum, an approximation that has previously been tested
against exact M(nA) in PA chains with smaller 5, and
exact transition dipoles and excitation energies. Two-
photon intensity for TT states requires CT contributions
(24) and transition dipoles (25) between CT states.

We present in Figs. 7 and 8 transition dipoles
( m '8„!p!G ) and M(n A ) for excitonic chains of X =4
and 5 dimers on either side of the spin-charge crossover,
while Figs. 9 and 10 show the corresponding Hubbard
moments. We took alternation 6=0.6 throughout, again
used the Ohno potential (16) for the PA geometry in Fig.
1, and chose identical intradimer correlations to the cy-
clic oligomers in Figs. 5 and 6. All transition dipoles are
along the polymer backbone. These representative spec-
tra are discussed separately.

The excitonic chain in Fig. 7 has N =4 and 5,
U, /t+ =1.757, t+ = —2.0 eV, and 5=0.6. Its excitation
thresholds appear in Table I, while the k =0 states of cy-
clic oligomers are the 2y=66. 29 column in Fig. 5 and
the k =0 expansion in terms of dimer states is given in
Tables III and IV for N =5. Di6'erent boundary condi-
tions do not change the pattern of TT and CT states in
the J =1 manifold [Fig. 7(a)] or of exciton and CT states
with J = —1 [Fig. 7(b)]. Loss of translational symmetry
simply increases the number of transitions in each energy
regime, as indicated in Appendix B. We find the expect-
ed number of TT states, four for N =4 and six for N =5.
We also expect four and six CT states with adjacent
charges for N =4 and 5, respectively, and they are easily
counted in Fig. 7. The J=—1 exciton gives two and

(b) ~ BU states

cT(1)

cT(a)

0
0.8 1.0 1.2

50
(a) ~Ag states

cT(1)

IAO&

I

I

I

TTT
i

l

I

1B (b) ~ BU states

cT(2)

0.8
/E

FIG. 8. Same as Fig. 7, but with 2A above 1B, on the band
side of the spin-charge crossover. Spectra in (a) extend to 1.5Eb
for N =5.

FIG. 7. Transition moments p (b) in D, and M (a) in D /eV
for linear and two-photon absorption of 2¹ite excitonic
chains, on the correlated side of the spin-charge crossover, with
6=0.6 and the Ohno potential (16) for the PA geometry in Fig.
2. Solid and dashed lines are for N =5 and 4, and energies are
in units of Eb, Eq. (15). Spectra in (a) extend to 1.5Eb for N=4
and to 1.4Eb for N =5, as discussed in the text.
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50
(a) ~A9 states

CT+T

I

I

I

I

I

I

I~ ~l
Analytical
CT—Band

(b} ~BU states IBO&

I

I

I

CT

I

I

I I

I

I

0.5 1.5
E/E

FIG. 9. Transition moments p (b) in D and M (a) in D /eV
for linear and two-photon absorption of 2¹iteHubbard chains
with 5=0.6, on the correlated side of the spin-charge crossover.
Solid and dashed lines are for N =5 and 4, and energies are in
units of EcT, Eq. (15). Spectra in (b) extend to 1.38E&T for
%=5 and in (a) to 1.4ECT and 1.17ECT for N=4 and 5, respec-
tively.

50
(a) &Ag states

I

I

TT
I

I

I

I

I

I

I

I

Analytical
CT-Band

25—
I

I

I

I

I

I

I I

I I

CT+T

(b) ~ 8& states

IBO)

I

I

I
I

I I

l

0.5 1.5
/E

FIG. 10. Same as Fig. 9, on the band side of the spin-charge
crossover. Spectra in (a) extend to 1.43E&T for N =5.

three lines for %=4 and 5, with greatest intensity at
lowest energy. Transition dipoles for

~
CT1, —1) states in

Fig. 7(b) are realizable in the first-order mixing (28). The
smaller moments for ~CT2, —1) refiect a higher-order
process in t, with minimally two interdimer electron
transfers. The mixing of these CT states, given in Table
IV for 1V =5 rings, supports the analysis in terms of di-
mer states.

The two-photon transition moments in Fig. 7(a) are
quite diff'erent from the dimer limit. The E, excitation
around 1.5Eb gives the two lines expected for %=4.
Spectral congestion and the limitation to —15 exact exci-
tations restrict the two-photon spectrum to 1.5Eb for
X =4 and to 1.4Eb for X =5, so that E, does not appear.
Interdimer electron transfer is needed for all A states
(29) related to TT, CT, TTT, and CT+T excitations.
Beyond the dimer limit, the matrix elements
( m 'B„~p ~

6 ) in (29) do not vanish for composite excita-
tions in (22), (24), or (28). The transition moments (25)
connecting CT states then imply appreciable two-photon
intensity M(n A) for ~ICT1, 1) even in first order, as cor-
roborated in Fig. 7(a). The appearance of intense CT + T
states at higher energy in Fig. 7(a) is beyond low-order
perturbation theory, but can be rationalized in terms of
strong mixing of

~
CT2, 1 ) and nearby J = 1 states.

Only intradimer correlations U, /t+ = 1.464 for
t+ = —2.4 eV have been changed for the excitonic chain
in Fig. 8 on the band side of the crossover. The corre-
sponding k =0 excitations of rings are the 2y=69. 9
column in Fig. 5, whose general pattern is retained in
chains. We now have larger t = —0.6 eV at 5=0.6.
The linear moments in Fig. 8(b) hardly change when S,
becomes 1B; shghtly greater CT contributions are con-
sistent with larger t and smaller EzT &

—Eb. Two-
photon moments in Figs. 8(a) and 7(a) are also qualita-
tively similar. Distinctly larger M(n A ) in the TTT re-
gion of Fig. 8(a) are rationalized by their proximity to CT
states and are again beyond low-order perturbation
theory. The dimer state E, appears for IV=4 and the
X =5 spectrum in Fig. 8(a) extends to 1.5Fb.

Near the dimer limit, two-photon intensities of TT
states are entirely due to admixtures of CT states in either
Hubbard or excitonic systems and go as t to lowest or-
der according to (29) or (21). Since CT states appear in
first order, M (CT) goes as t . Two-photon transition
moments for the lowest TT and CT states are given in
Table V for %=4 using the energies in Table I for exci-
tonic chains and in Table II for Hubbard chains. They
confirm the perturbation analysis, which indeed holds in
general for excitonic chains when t is suKciently small
compared to energy denominators E&T—2c., and
EcT —Eb in the J =1 and —1 manifolds. Table V indi-
cates deviations at t =t+/4 from lowest-order pertur-
bation theory. Since EcT—2c., and ECT —Eb are equal at
the 2A/1B crossover, stronger TT intensity above the
2A /18 crossover in Fig. 8(a) refiects smaller, but still
finite, denominators in excitonic systems and slightly
larger I; at constant 5.

The transition dipoles in Figs. 9 and 10 are for Hub-
bard chains with X =4 and 5 on either side of the 2A /1B
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TABLE V. Two-photon transition moments M(TT) and
M(CT), in D /eV, of the lowest TTand CTstates of N=4 exci-
tonic chains in Table I and, in parentheses, %=4 Hubbard
chains in Table II.
—t (eV)

0.01
0.10
0.30
0.50

M(TT)/t2

31.5 (31.1)
33.2 (26.2)
28.0 (22.7)
19.4 (21.0)

M(CT)/t

43.6 (53.0)
44.3 (52.8)
46.8 (57.6)
45.5 (58.2)

crossover. The U jt+ =2.5, t+ = —2.0, 5=0.6 results in

Fig. 9 go with the energy thresholds in Table II and the
k =0 excitations for 2y=57. 99 in Fig. 6. The linear
spectrum for % =5 extends to 1.38EcT, the two-photon
spectrum to 1.17EcT for N =5 and to 1.4EcT for N =4,
where Ecz is the analytical result (15). The linear spec-
trum in Fig. 9(b) has Eb above the CT band of four and
six states for N =4 and 5, respectively. The CT transi-
tion moments are large and the symmetric distribution
(23) of c, expected about EcT in first order is distorted to
the low-energy side in Fig. 9(b). With low-energy CT
states, we also have CT+T singlets appearing in the
linear spectrum and their intensities are beyond low-
order perturbation theory. The two-photon transition
moments of Hubbard chains with S, =2A in Fig. 9(a)
resemble the excitonic results in Fig. 7(a), in accord with
Table V. The number of low-energy TT states is the
same, while greater intensity refiects the proximity of the
CT band, in which

~
CT1, 1) is distributed according to

(23). There are many CT states in the Hubbard band, as
well as TTT and CT+T states in the J=1 manifold
whose mixing in the TTT region of Fig. 9(a) first appear
as t . The dimer state at E, is considerably higher.

The transition moments in Fig. 10 are for Hubbard
chains on the opposite side of the crossover, with
t+ = —2. 8 eV and the same U and 6 as in Fig. 9. The
k =0 singlets for 2y=65. 94' in Fig. 6 are the corre-
sponding excitations. The linear spectrum in Fig. 10(b)
does not change significantly. We have the expected
number of CT states, higher intensity for larger
t = —0.7 eV at 6=0.6, and singlet excitons derived
from ~80); the CT+ T excitations shift to higher energy
and become more intense. The two-photon moments in
Fig. 10(a) are fundamentally diff'erent, however, now that
the lowest J=1 singlet is a CT state. Thus M(n A) for
n =2, 3, . . . is much larger in Fig. 10(a) than in Fig. 9(a),
where these were TT states. We count CT states for
%=4 and 5 to identify the TT states in Fig. 10(a), but
these nearly degenerate states are strongly mixed. The
singlet A spectrum is less congested because TTT states
shift to higher energy with decreasing correlations.

The 2A ilB crossover in Hubbard models is funda-
mentally different because the energy denominator
EcT —2E, vanishes. Finite t in (24) then strongly mixes
TT and CT states at the crossover and low-order pertur-
bation theory fails. CT states dominate the two-photon
threshold in Fig. 10(a) on the band side, and their number
grows with N. We therefore expect TT contributions in
infinite Hubbard chains to be negligible when 2A be-

comes a CT state, except possibly right at the crossover.
We emphasize that different spin-charge separation in
Hubbard and excitonic systems is due to different J= —1

excitations in Figs. 3 and 4 rather than the actual ener-
gies. Since all symmetries are the same for any 6)0 in

(1), difFerent crossovers are expected in general.
Transition moments similar to Figs. 7—10 can readily

be generated and analyzed for any quantum cell model (1)
up to 2N =14. This suffices for any NLO coefficient in
the dipole approximation. Both linear and cyclic oligo-
mers follow, at least for 6 ~ 0.6, crystal states constructed
at 6=1 for an infinite chain. The low-energy excitations
in Figs. 7—10 cover a tiny fraction of the spectrum. %'e
estimate the contribution of other excitations through a
sum rule, without finding individual transition dipoles.
The identity

(30)

holds for any correlated state ~X ) of quantum cell model
(1) and relates transition dipoles to the mean square sepa-
ration W(X) of charge fluctuations in ~X). We evaluate
W(G) and compare to the sum over squares of individual
transition moments in Figs. 7(b) —10(b). The linear spec-
tra shown account for more than 99%%uo of W(G) for either
%=4 or 5.

Contributions of high-energy states to two-photon
spectra are more difficult to assess and are not limited by
sum rules. In excitonic chains, when

~ 8„) dominates in
(29), we can evaluate W'(18) and compare with the tran-
sition moments (n A ~@~18 ) found directly. Analysis of
PPP chains with small 6 showed important contribu-
tions from a two-photon state around E, that we related
to two-electron excitation. At large 6, however, the
linear spectra in Figs. 7(b) —10(b) have many additional
lines, especially in Hubbard models. Since the transition
moment (29) diverges at E ( mB ) =E ( n A ) I2, large contri-
butions can appear for weakly coupled states, as illustrat-
ed by CT+ T features in Figs. 8(a) and 10(a). The transi-
tion dipole (21) gives the entire two-photon intensity at
t =0 and M, is -25 D /eV in the crossover region,
comparable to the M(n A) in Figs. 7(a) —10(a) associated
with CT states and larger than TT moments. We con-
clude that two-photon intensities increase more rapidly
than the linear spectrum with increasing delocalization.

V. DISCUSSION

We have obtained low-lying correlated states of quan-
tum cell models (1) with intermediate correlations, arbi-
trary spin-independent potential V(p,p'), and large alter-
nation t+=t(1+ )5along the PA backbone in Fig. l.
The molecular-exciton states in Sec. II and Appendix A
are general many-electron functions near the dimer
(5=1) limit. The physical interpretation of crystal states
with one or several excited dimers clarifies the analytical
excitations (15) and (19) at the spin-charge crossover for
any V(p,p') and 5)0.6. In contrast to well-separated
excitations in organic molecular crystals, degeneracies
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are intrinsic at the crossover and crystal states are strong-
ly mixed by interdimer electron transfer t . We then ex-
ploit short coherence lengths at large 5 to obtain linear
and two-photon spectra in terms of oligomers containing
up to X =7 dimers. Tables I and II show the conver-
gence with N of threshold energies of excitonic and Hub-
bard chains. These correlated crystal states make possi-
ble a detailed analysis of spin-charge crossovers at inter-
mediate correlations U-2t+, small t, and arbitrary
V(p, p') in (1), where neither band nor strong-coupling
methods are applicable.

Although motivated by NLO spectra and correlated
states of conjugated polymers, our results are not
directly applicable to these more delocalized, less alter-
nating, systems with 10 eV bandwidths. Typical values
are 5= —,

' in polysilanes (PS's), 6=0.15 in polydiace-
tylenes (PDA's), 5=0.07 in PPP models of polyenes or
PA, and effective 5, between the PS and PDA values for
poly-p-phenylenevinylenes (PPV's) and polythiophenes
(PT's). PPP models with molecular parameters ac-
count' for strong Auorescence in PS's or PPV's and weak
or extrinsic emission in PDA's or PA. The present
analysis provides reliable excitations in the crossover re-
gion for large 5 and bears directly on the location and in-
tensities of even-parity states of quantum cell models (1)
proposed for conjugated polymers.

We deliberately chose the Ohno potential (16) for exci-
tonic chains. The PPP model gives the best fits for ~-
~* spectra of conjugated molecules within a ~-electron
approximation. Its parameters and the Ohno poten-
tial have been extensively applied to conjugated hydro-
carbons. No adjustable parameters are needed for linear
and two-photon excitations of polyenes, anthracene, or
other conjugated molecules, and a similar potential
holds for cr-conjugated silanes. In effect, we have in
V(p, p') a good approximation for semiconducting poly-
mers, where shielding of Coulomb interactions is not an
issue. Small (10%) refinements of parameters for the
solid state are secondary here compared to the
identification of the conjugated-polymer sector of the
quantum cell models (1).

The 2A/1B crossover of PPP models with the Ohno
potential and a realistic bandwidth of 4t =9.6 eV is
near ' 5 =0.20. While oligomer excitations have not con-
verged at 2% = 14 for small 5, sensible E(2A )/E (18) ex-
trapolations are possible for conjugated polymers and
E (18) provides a convenient internal standard for
NLO spectra. Recent two-photon spectra for PA films,
for PDA-PTS single crystals, and for PPV films are
consistent. with prior PPP assignments. Such data illus-
trate that increasing 5 at constant bandwidth and
V(p,p') effectively decreases e-e correlations. ' ' At
larger 5=0.60 and the same potential, the bandwidth
must be reduced to 5.0 eV in Table I to place 2A below
1B. The 1B/2A crossover in Hubbard models with in-
creasing 5 also occurs a smaller bandwidth, around
U=4t for 5=0.6 in Table II rather than U-2t for
5-0.1. Faster convergence of oligomers at larger 5 also
implies weaker correlations that must explicitly be com-
pensated to preserve the 2 A-1B order.

The theoretical challenge is to follow the evolution of

oligomers into bands for arbitrary parameters in (1), not
just in the noninteracting limit. In Huckel chains, 2A is
the band edge and linear, two-photon, or third-harmonic
generation, spectra are readily found ' up to 2%-400.
They evolve to the band results of Agrawal, Cojan, and
Flytzanis, who demonstrated a two-photon peak a few
percent above E(18)=4t5 with rigorously vanishing
M(2A). Oligomer calculations also show M(2A ) to van-
ish at large N and are understood ' in Huckel chains as
destructive interference due to e-h symmetry. In units of
the band gap 4t5, the two-photon peak associated with
one-electron excitations hardly depends on 5.

The magnitude of M(2A) has been less clear in in-
teracting chains. In the essential-states model, negli-
gible M's are predicted for 2A and other even-parity
states below E (18) for all parameters in the quantum cell
models (1), and tiny M(2A) has also been proposed
when E(2A) is above E(18) in PS or PPV. Essential
states are identified through their transition dipoles, pri-
marily with 1B, in exact solutions of extended Hubbard
chains of %=2—5 dimers. The largest transition mo-
ment with 1B identifies the m A~ state that is found be-
tween E(18) and E(28) for chains with quite different
t+, t, U, V„V2, or V(p, p') in (1). Such behavior in-
ferred from hundreds of specific calculations is taken to
be universal. Artificially large alternation is used to fa-
cilitate convergence, but the location of excited states is
taken from experiment and from internal constraints
such as the location of mA . A major conclusion ' is
the occurrence of similar THG and NLO spectra for
half-filled chains (1). This extends the band results,
which gave similar spectra in units of the gap 4t5, to in-
teracting systems and is also consistent with strong
correlations U))t, where spin waves do not contribute
and NLO responses start at E(18)-U. Hubbard spectra
in Figs. 9 and 10 show an onset of two-photon intensity
around E&z- at the spin-charge crossover, when TT and
CT states cross in the J= 1 manifold. Strong two-photon
absorption at the crossover is consistent with the
essential-states model, with mA a CT state in Hubbard
models, but differences emerge below for excitonic
chains.

The present analysis also relies on oligomers, but is
complemented by analytical results for crystal states.
Detailed information about converged crystal states in
the crossover region clarifies the magnitude of M(2A)
and differentiates between the 2A /18 crossovers of exci-
tonic and Hubbard chains. In half-filled Hubbard chains,
we rigorously have M(2A) =0 in the band ( U =0) limit
for any 5 and in the dimer (t =0) limit for any U. Since
the dimer excitations (8) are finite, perturbation theory
holds at su%ciently small t and gives the first-order
splittings (19) about Ecr in (15). The c, coefficients (23)
then show M(2A) to vanish in infinite Hubbard chains
with 5-1 as long as 2A is a CT state; the band result is
retained for U &2t+. For U) 2t+, on the other hand,
2A becomes a TT state and the magnitude of M(2A),
which goes as t according to (29) or Table V, depends
on the admixture of CT states and the energy denomina-
tors Ecr Err and Ecr Eb in the J=1 and —1 mani-
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folds. The latter imply vanishing M(2A) in the spin-
wave limit (U» t+ ), while t =0 ensures vanishing TT
intensity in the dimer limit for any 1V. The TT band thus
acquires two-photon intensity on the correlated side of
Hubbard chains [Fig. 9(a)]. To lowest order in t, the
TT bandwidth goes as t /(EcT ET—T) and 2A defines
its red edge. We have not found M(2A ) explicitly, but
the stabilization (24) of ~TT1) by CT states supports
finite M(2A) for the band-edge state.

The behavior of excitonic chains depends on the rela-
tive magnitudes of U, Vi, and V(p,p'). We still have
M(2A) =0 in the band limit at the red edge 4t5 of one-
electron excitations, while t -0 places the lowest TT
state at 8t5, twice at high. Increasing V(p,p') in weakly
correlated dimers whose TT states are well above the
band edge generates an S, crossover between a CT state
and a singlet exciton. This involves exciton formation
rather than spin-charge separation, however, and
different issues arise. Any chain whose lowest J=—1

singlet is ~80) is defined as "excitonic" in Fig. 3. The
2A /18 crossover in Figs. 7 and 8 then involves discrete
levels and M(TT) increases smoothly through the cross-
over, with finite energy denominators ECT(1) ETT and—

EcT(1)—Ei, in (29). Stronger mixing eventually occurs
on the band side of the crossover, when EcT, —E„T van-
ishes in Fig. 3. The mixing (24) of ~TT1) and ~CT1, 1)
again indicates finite M(2A) at the edge of the TT mani-
fold in the crossover region. These denominators become
large for strong correlation and suppress spin-wave con-
tributions. As noted in connection with Figs. 7 and 8(a),
M(TT) at the crossover is about half as large as the di-
mer transition M, in (21).

In contrast to the essential-states analysis, we find
different NLO responses for Hubbard and excitonic
chains with intermediate correlations, and excitonic
chains provide examples in which m A is not between
E(18) and E(28). Large 5 and Vi imply a narrow band
of ~Bk ) states (11) above any TT state and below any CT
with J=1 in Fig. 3, without any even-parity states be-
tween E(18) and the entire band (12) about Eb. Oligo-
mers in Fig. 7 illustrate spectra without 3 states be-
tween 1B and 2B. Moreover, the state mA with the
largest transition dipole to 1B is even higher, above 4B
and 5B for N=5 in Figs. 7 and 8, respectively. The
problem is the enormous parameter space of alternating
chains (1). The trapping of mA between E(18)
and E(28) is a special case for some extended Hubbard
models rather than "universal. " An important advan-
tage of our molecular-exciton approach is the straightfor-
ward searching of parameter space guided by analytical
crystal states. As previously noted, the localized repre-
sentation of essential states is best at strong correlations
where ~G ) becomes covalent in half-filled systems. The
difficulty of essential states in the band limit is that, for
alternating even and odd orbitals, 2A is the only even-
parity state between 18 and 28, and vanishing M(2A) is
inconsistent for an essential state. The model for in-
teracting chains is not analytical in the interaction.

Two-photon spectra of polyenes ' and THG spectra of
P-carotene involve 2A and are consistent with finite

M(2A) in the PPP model with 5=0.07. We also expect
finite M(2A) in conjugated polymers near the 2A/18
crossover. PA or PDA spectra then resemble Fig. 7, with
2A below 1B, while PPV or PS excitions resemble Fig. 8,
with 2A above 1B. The TT and CT designations are only
qualitative at small alternation, however, where Hd (5 )

strongly mixes dimer excitations. PPP spectra for oligo-
mers are then much sparser than in Figs. 7 and 8. The
two-photon excitation E, is a biexciton that appears nat-
urally in PPP models and, as indicated by the dimer exci-
tations (8), shifts to higher energy on the band side. The
strongest two-photon peak of crystalline PDA-PTS is
around 1.35E(18), above the photoconductivity band
edge of 1.25E(18). Larger 5= —,

' for PS oligomers gave
transition moments similar to Fig. 8, with 2A above 1B
and more intense as expected due to stronger mixing of
CT states. Atomic data for Si in (16) place the biexciton
E, around 1.8E(18), consistent with two-photon, elec-
troabsorption, and photoabsorption spectra. The two-
photon spectra in Figs. 7(a) and 8(a) indicate considerable
mixing of J=1 states around E„and such mixing at
smaller 6 further blurs CT and TT designations. It is,
nevertheless, useful to follow the evolution of states and
energy thresholds with increasing correlations. The E,
feature in Fig. 3 evolves from 2E ( 18)=gt5 in the band
limit to -E(18) in the limit U, » t. The present results
at large 6 support the previous analysis of PPP chains
and provide considerably more information about the
correlated states.

On the band side, when 2 A is above 1B, the spectra of
excitonic chains in Fig. 8 can also be found in band
theory' ' with first-order CI and very good fits have
been achieved for linear, two-photon, and THG spectra
of poly(di-n-hexylsilane) using a long-range potential
similar to (16) with adjustable on-site repulsions and
transfer integrals chosen specifically for the polymer.
These excitonic models also yield finite M (2 A ). First-
order CI can be carried out for much longer chains of
-50 unit cells, which suffices for the relevant 6. On the
other hand, the method is limited to the band side of the
crossover, since additional CI is needed to have 2A below
1B. The basis of k =0 states with two e-h pairs increases
rapidly as X and size consistency becomes a major chal-
lenge for any truncation of the states. Exact analysis of
oligomers with large 5 covers both regimes without extra-
polation, although direct solutions are not likely for ten
dimers and even longer chains will be needed for conver-
gence at small 6.

In summary, we have presented a molecular-exciton
approach for finding excited states of half-filled quantum
cell models (1) with arbitrary spin-independent V(p,p'),
intradimer correlations U/I;+, and large alternation 5.
Exact analysis of linear and cyclic oligomers indicates
converged energy thresholds at 5=0.6 with X =4—7 di-
mers and supports the occurrence of crystal states based
on excited dimers. Analytical results for crystal states ac-
count for low-energy k =0 singlets with J=1 and —1

needed for linear, two-photon, THG, or other NLQ
responses at intermediate correlations. Their mixing by
interdimer transfer t is understood qualitatively, but
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oligomer spectra also show higher-order corrections in
t . In Hubbard chains, 18 is a CT state and the spin-
charge crossover of TT and CT states leads to a sharp in-
crease of two-photon absorption on the band side. In
chains whose 18 is an exciton, by contrast, the two-
photon intensity of TT states increases smoothly through
the crossover and the dimer excitation E, appears around
1.5E(1B) for the Ohno potential (16), consistent with
previous PPP results at alternations realized in conjuga-
tion polymers. The spin, e-h, and translational sym-
metries of (1) lead quite generally to an S, spin wave with
J = 1 at strong correlations and a J = —1 band-edge state
for weak correlations. Di6'erent spin-charge crossovers
for excitonic and Hubbard chains are consequently ex-
pected at any alternation.
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APPENDIX A: DIMER BASIS

where ~0 & is the dimer vacuum. The crystal ground state
~G &= gg g & has an N fold produ-ct of fermion opera-
tors acting on the crystal vacuum. The even-parity state
~a & in Fig. 2 has coefficients of —sing for the covalent
(Heitler-London) singlet and cosy for the ionic singlet.
The odd-parity state

~
b & is

b &
= [(a 2p i, ~a 2p i, p asap, ~a 2p p)/ —2] lO& .

The crystal state ~B & with an excited dimer p contains
(A2) and a product of N —1 factors from (Al). The
singlet linear combination of triplets at dimer n and
n'=n +r is

l
&7~, r & =[(a2...ap ' —i,p

X(az„, az„. &
—a,„,@,„,.)/2]lo&

x + ~g&,
pWn, n'

(A3)

and corresponds to covalent singlets between sites on op-
posite sublattices. Since all these dimer states contain an
even number of fermions, the phases of the crystal states
(11) or (13) do not depend on the position of the excita-
tions. Crystal states containing excited dimers are both
conceptually and computationally convenient. The com-
bination of neutral excitations is straightforward and
leads to higher-energy excitations. We have one S=0
combination for three triplets n, n', and n", while four

The dimer ground state ~g & in Fig. 2 is given in terms
of the fermion operators a, a as

~g & =[cos+(asap i a2p p a2p i pQ2p )/ 2

+sing(asap i a2p i &+azp asap&)/ 2]~0&,

(Al)

x ~ ~g, & .
pWn, n+r

(A6)

The crystal states (9) with electron-hole symmetry J are
linear combinations of (A6) and the function with D at
n, D+ at n +r. There are four fermions per CT pair and
phases are easily fixed.

We may also construct CT states in which one or both
of the radical ions are in the excited state, with one elec-

tron in the antibonding orbital for D+ and two for D
Such excitations are at least 2t+ higher in energy, howev-

er, and require additional notation. The even linear com-
bination in (A6) is a triplet CT state with S, =0, while a

triplet dimer with S, =O is obtained from the covalent

part of (Al) by changing the phase of the cosine term.
The two triplets are combined to form singlet CT+ T ex-

citations in Figs. 7—10. Composite states involving TTT
singlets with k =0 symmetry are also constructed by con-
sidering products of dimer functions.

APPENDIX B: DIMER ANALYSIS
OF EXACT OLIGOMKR STATES

The k =0 singlets of excitonic chains are shown in Fig.
5 for cyclic oligomers. The column at 2q&=66. 29' (in-
trasite correlation U, /t+ = 1.757) corresponds to
2N =10, has t = —0.5 eV at 5=0.6, and is on the
correlated side of the crossover. We expect and find two
TT states with k =0 and J =1 for X =5. Here S, is 2A,
with large contribution from

~

TT1 & and small admixture
of ~CT1, 1& as indicated in (24). The next J =1 state is

~
TT2 &. The lowest J = —1 singlet, 1B, is ~BO & by

definition in excitonic chains and contains a small admix-
ture of ~CT1, —1& according to (22). At higher energy,
we encounter a J = 1 and —1 singlet whose major weight
in Tables III and IV comes from

~
CT1, 1 & and

~CTl, —1&, respectively. At higher energy we expect
and find two TTT states followed by two other J=1
states. Overlap analysis in Table III shows the first one
to have a large CT1+ T component as well as appreciable
CT1 and TTT contributions. The second J=1 state is
clearly the dimer state

~
AO&, which is seen in Table III

triplets lead to two singlets. The construction of k =0
linear combinations then involves two and three relative
separations, respectively.

The ground state of~D+o. & is

D+o &=[(asap, +azp )/&2]~0&, (A4)

and the electron is in the bonding orbital. The ground
state of~D o&is.

iD o & =[(a2, az a2„&

a2p, a2p —i, a2p —i,p)/ 2]IO&

with the electron now in the antibonding orbital. Since
the bracketed operators in (A4) and (A5) create charged
dimers in the ground state, the singlet linear combination
for a cation at n and anion at n + r is

ID.+D.+, &=2 '"(ID.+~&ID.+,P& ID.+P—
& D.+,~&)
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to be negligibly mixed for these parameters. Higher
J =+1 states have contributions from CT2 and other CT
states that preclude a simple assignment.

Still in Fig. 5, we consider the 2N =14 column at
2y =69.9, whose reduced correlations U, /t+ = 1.464
place it on the other side of the crossover; t has in-
creased to —0.6 eV at 5=0.6. S& is now largely the
BO) exciton. The next three J=1 singlets are TT states

with r =1, 2, and 3 possible for N =7; the lowest one is
~TT1). The ~CT1, 1) and (CT1, —1) states are above
the TT states. Both the increased t and smaller split-
ting between TT and CT states at 2g=69. 9' increase the
mixing of these states. As we go higher in energy, we en-
counter four TTT states with J=1 for N =14, the dimer
state E„and both CT2, CT+T states. The latter also
appear in the J = —1 manifold.

The Hubbard excitations in Fig. 6 feature the CT
bands (19) with J = 1 and —1. At 2q& =57.99'
( U/t+ =2.5), the two TT states for 2N = 10 are the
lowest singlets at t = —0.5 eV (5=0.6). Their greater
stabilization compared to excitonic chains is understood
in terms of the smaller gap between TT and CT states.
The lowest J= —1 singlet is a CT state. For N =5, the
t matrix elements (18) lead to four CT states with the
same parity as the first four states of a particle in a box.
The J=1 ( As ) and —1 (B„)states indeed alternate in
the band and the width is smaller than in the crystal limit
(18), although neither the energies nor the reduction of
the bandwidth agree quantitatively with (19). The exact
J = 1 CT states are mixed with the TT states, while the
J = —1 CT states mix with ~BO) at Eb. We again have
two TTT states with J=1 for N=5 and CT+Tstates at
the highest energy; the analytical first-order CT+ T lines
for J= 1 and —1 pass through the upper right corner of
Fig. 6 and form the red edge of another band. The E,
state is still higher in Hubbard models, as expected from
the dimer relation (8).

The excitations at 2y=69. 8' (U/t =1.471) in Fig. 6
are on the opposite side of the crossover and have larger
t = —0. 85 eV (5=0.6). Since S, is now associated with
the edge of the CT band, we expect degenerate J= 1 and
—1 singlets in infinite chains. The CT band (19) for
2N=14 contains six states, three each with J=1 and

—1, whose nodal properties are those of the first six
states of a particle in a box. We also expect and find
three J =1 states corresponding to TT states in the CT
band, while the J=—1 state associated with ~BO) is
slightly above. There is less congestion in Hubbard mod-
els with 2y=69. 8' and 6=0.6. One reason is that TTT
and CT + T states are higher on the band side; another is
that all CT states are now in the band, rather than spread
out as shown in Fig. 3 for an excitonic chain.

Similar analyses can be carried out for other exact oli-
gomer eigenstates. They are reasonable approximations
for correlated crystal states at alternation 5=0.6 or
higher, not only for threshold energies, but up to
—1.5E(1B) in the crossover regime. The strengths of an
excitonic approach to crystal states are the correct order-
ing of states in the crossover region and their straightfor-
ward interpretation in terms of dimer excitations, which
more than compensate the qualitative fits for the analyti-
cal excitation energies (15) and (19). The major weakness
is that such strong alteration does not correspond to the
extensive delocalization characteristic of conjugated po-
lymers.

The number of ' A and 'B„excitations for a chain of
N dimers can readily be found for any combination of ex-
cited dimers. The singlet exciton for N dimers has
J = —1 and leads to N/2 linear combinations with A and
B symmetry for even N, or to (N —1)/2 states of 2 sym-
metry and (N+1)/2 states of B symmetry for odd N.
The J =1 dimer state at E, also gives N/2 states with 3
and B symmetry for even N, but has (N+1)/2 states of
3 symmetry and (N —1)/2 states of B symmetry for odd
N. A similar analysis holds for constructing states with
composite excitations. There are N —1 singlets with ad-
jacent triplets, all with J =1, that form (N —1)/2 states
of A and B symmetry for odd N, while even N leads to
N/2 states 4, (N —2)/2 states B. CT states again yield
both J = 1 and —1. Adjacent D+D are most important
for the Ohno potential, while all ~CT, r ) contribute in
Hubbard models. Crystal states based on three or more
triplets, on CT states with excited dimers, or on CT + T
or other composite excitations can always be decomposed
into A and B singlets of a chain.
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