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A theory is developed for the combined effects of electron-phonon scattering and elastic reAection of
electrons on electrical current through a nanostructure. We use a time-dependent quantum-linear-
response theory, then take the limit of zero frequency. In addition we develop a parallel theory that is
semiclassical. The results obtained by the two methods are the same. The effect of phonons on the
current fiow is small because in this effect final as well as initial electron states in the electron-phonon
scattering must have nonzero transmission through the nanostructure.

I. INTRODUCTION

We have derived a theory for the combined effects of
electron-phonon scattering and elastic reAection of elec-
trons on the Landauer electrical conductance G that has
maximum conductance 2e /h for each conductance
channel. ' See, for example, the steplike structures in G
versus gate voltage in Fig. 1 that have step height 2e /h.
Conductance with the maximum value 2e /h in each
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FIG. 1. Landauer conductance G of a model nanostructure

with no electron-phonon scattering and in the absence of elec-
tron reAection in the few channels occupied in the nanostruc-
ture. 1/A, F expresses a filling factor with n~ levels 1,2, 3, . . . just
beginning to be occupied when 1/A, F just exceeds 1,2, 3, . . .
times 1/2L~. (The filling factor is changed, e.g. , by changing a
gate voltage. ) The unit of temperature shown from 1 to 80 K on
the eight curves is Tp=1.25. K. Each successive curve is dis-
placed upward by an additional unit of conductance Gp =2e /h.

channel occurs only with the type of spatially localized
transport electric Geld that occurs with current Row
through nanostructures. These are mesoscopic systems,
which means with spatial extent along the current path
that is much smaller than the inelastic scattering length
Iine1'

In an earlier paper involving two of the present au-
thors, a semiclassical theory was developed for the
effects of electron-phonon scattering on G. The semiclas-
sical method of Ref. 3 is limited to changes of G by small
amounts ~b.G~ &&G and to nanostructures which are
joined to macroscopically thick lead wires in a smooth or
adiabatic manner. In that case the nth channel electron
transmission probability is T„=1 for a few channels, X,h
in number, but T„=Ooccurs for all other channels. (In a
bulk-metal lead wire attached to a nanostructure the
number of conductance channels X,'h' without the nano-
structure interrupting the wire would be macroscopically
large N,'h' & 10' .) Now we have extended the semiclassi-
cal theory to the case where elastic reflection of electrons
occurs as well as phonon scattering, so that T„&1 rather
than T„=1 among the N, h channels where T„AO. Thus
the effect of phonons on G has now been determined
theoretically for the actual situation that occurs in a
variety of nanostructures. We will present numerical re-
sults for a model nanostructure with constant cross sec-
tion which has transverse dimensions small in compar-
ison to the length of the nanostructure. Again the joining
regions from lead wires to this structure are changing in
cross-sectional area adiabatically slowly and smoothly as
discussed by Glazman et al. , but we introduce a short
potential barrier in the middle of the nanostructure
which causes refl.ection 0~ T~ &1 in each of the X,h
channels. This model nanostructure is expected to simu-
late quahtatively an actual situation where, in general,
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the nanostructure may not be smoothly or adiabatically
joined to macroscopic lead wires.

We find the effect of phonons on the Landauer conduc-
tance to be small ~b, G~ &&G even at 80 K. The inelastic
scattering time in 66 is much larger than in a bulk elec-
tron system because the small X,h restricts final as well as
initial electron states in the electron-phonon scattering,
i.e., 56 ~iY,„whereas 6 ~X,h. But the electron group
velocity in nanostructures is very much smaller than in a
bulk system. Thus the l;„,I at a nanostructure is not
strongly increased from I;„,&

for a bulk system. But the
X,

„

factor in 66 is important because without that, the
condition

~
b.G

~
&& G at 80 K would not occur.

The effects of increasing temperature on quasiquan-
tized Landauer conductance (at zero applied magnetic
field) are still large: because nonzero Fermi occupation
numbers for adjacent channels begin to overlap strongly
at higher temperature at the steps in Fig. 1, the steps are
smeared out and are gone when T is larger than 10 K,
shown theoretically in the model nanostructure of Ref. 3
and widely observed experimentally. ' But effects of pho-
nons in limiting one-electron coherence effects in trans-
port measurements are predicted here to be small, pro-
portional to AG «6, even up to 80 K. This suggests
the possibility that some coherence effects in transport
measurements may be observable even at liquid-air tem-
peratures, e.g., Aharonov-Bohm interference patterns. '

(One disappointing aspect of the many startling effects in
mesoscopic physics has been the limitation to very low
temperatures. ) At this time that is only speculation be-
cause we have not yet developed a theory, e.g. , for the
magnetic Aharonov-Bohm effect at higher temperatures.

In the theory of Landauer conductances there has been
continuing doubt in a wider community of theoreticians
about the derivation of 6, but not the result, in heuristic
or semiclassical methods. These methods, including our
own in Ref. 3, require that the current-Aow state of the
system be characterized entirely by a quasichemical po-
tential p, =eV; for each lead wire, where V, is an electri-
cal voltage. In the Buttiker theory, great care was taken
in defining a thermodynamic reservoir with chemical po-
tential p; that is at some distance from the nanostructure.
Moreover, equal care was taken in not specifying p, for
any species of current carriers within or near the nano-
structure itself. ' Proceeding well beyond the careful
limitations specified by Biittiker in his heuristic theory,
we have earlier in Ref. 3 taken quasichemical potentials
in the nanostructure itself as characterized by
p+ —p, =eh, V, as in Eqs. (16) and (18) below. (See the
book by Shockley for a definition of quasichemical poten-
tials and a discussion of chemical versus electrical poten-
tials. ) The p, + characterize forward-flowing (+) or
backward-flowing ( —) current carriers. b, V is the electri-
cal voltage drop, the line integral of electric field through
the conductor. Ideally it is measured by a battery-based
balanced potentiometer at room temperature wherein
differences of the electrical potentials and the chemical
potentials are known to be equal differences according to
fundamental properties of a battery. But this known
equality is not near or at the nanostructure.

In contrast to heuristic or semiclassical derivations of

6, quantum-mechanical transport theory must express
current How in terms of something that can be expressed
in a Hamiltonian, a vector or scalar potential (or both)
characterizing a transport electric field. We have extend-
ed an earlier quantum-response-theory derivation of G by
one of the authors, wherein no phonon scattering oc-
curred, to include effects of both phonon scattering and
elastic reAection on the Landauer conductance. It will be
seen below that results of the quantum-linear-response
theory are identical to those obtained in our semiclassical
theory. But this and many other quantum-linear-
response theories say nothing about chemical potentials
of the current-How state. In addition, however, in a
separate publication one of the authors has used a gauge-
invariant quantum-response theory, previously applied by
Ambegoakar and Kadanoff to superconductors, to show
that the relation p+ —p =ehV required for the semi-
classical theory does occur in the nanostructure itself.
(As no current-flow state can arise in quantum mechanics
without a time dependence in the Hamiltonian, even in
the zero-frequency limit, the quantum theory is necessari-
ly time dependent. ) There are essential characteristics for
current carriers leaving and approaching a nanostruc-
ture, at distances far from the nanostructure, in
Buttiker s carefully defined thermodynamic reservoirs.
In the quantum theory of Ref. 8, these characteristics as
well as the e /h quantum of conductance are caused by
quantum mechanics of the nanostructure itself. This may
not be surprising: surely e /h must arise rather directly
from the quantum mechanics and not depend critically
on a careful thermodynamic definition for distant macro-
scopic bodies.

The quantum-response theory and the semiclassical
theory will both be derived below. Following that, nu-
merical results will be presented for a model nanostruc-
ture that incorporates both elastic reAection of electrons
and electron-phonon scattering in several conductance
channels.

II. QUANTUM-I. INEAR-RESPONSE THEORY

The main result in the quantum-response theory of
Ref. 2 was that whereas the Boltzmann-Drude transport
theory descriptive for bulk metals was obtained for an
effective transport electric field E(r, t) that is character-
ized by a single wave vector qo, with qo =0, the
Landauer-Buttiker conductance G characterizing mesos-
copic system is obtained only when E(r, t ) is localized in
space to the region of the mesoscopic system itself —a
continuous spectrum of qo wave vectors. The theory of
Ref. 2 included elastic scattering only. In the following
we will first derive the conductance with only phonon
scattering, for a transport field E„(qo„,coo) in the limit
coo—+0, with a continuous qo wave-vector spectrum
representing an E(r, t) that is localized in the current-
Aow x direction within a mesoscopic length LE. For
wave vector qo « 7T'I E the Fourier component
E„(qo,too) is equal to b, V, the electrical voltage drop
through the mesoscopic system. Following the deriva-
tion of the conductance 6+66 with only phonon
scattering, we will then determine 6+66 with both elas-
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tic and phonon scattering present.
The Hamiltonian for the system in the zero-current

state is

H =g e„kc„kc„k+g V(nk, n'k')c„.k.c„k
n', k'

+g A'co (aqaq+ —,
'

)

FIG. 2. Diagram integral equation for the phonon-
renormalized current propagator 2), summing an infinite dia-
gram series where noncrossing wiggly phonon lines occur
0, 1,2, 3, . . . times. The double solid line is an electron line re-
normalized by phonon scattering, in the self-consistent approxi-
mation where only noncrossing phonon lines occur.

+ rf g 'qc 'k+q c k(a q +aq )
X

n, k

q, n'

The one-electron energy c„kis that of the basis function
for a bulk metal or a two-dimensional electron system (2
DES). There is a propagating-mode wave vector k in the
current-Aow x direction and one of the n-channel
standing-wave states such as sink~. r~ from the k~ spec-
trum. Vis the k-wave and n-mode transform of an elastic
scattering potential V(r). The third and fourth terms of
H are phonon and electron-phonon parts with g„nq

the
n-mode transform of the usual electron-phonon coupling
constant. The T, =1 Glazman et al. channel states or
partially reAected channel states can be constructed for a
nanostructure (with attached lead wires) as linear com-
binations of the nk basis states.

The quantum theory for linear current response to a
time-dependent electric field in Ref. 2 used the Baym-
Kadanoff formalism which derives Matsubara-Feynman
response diagrams from the diagrams of the zero-current
state. In contrast to the well-known impurity-averaging
theory, ' the theory of Ref. 2 for elastic scattering only
has no imaginary part in the one-electron energy. How-
ever, with inelastic phonon scattering instead of elastic
scattering in the formalism of Ref. 2, there is an imagi-
nary part in the one-electron energy. In this case the
response diagram satisfies the diagram equation of Fig.
(2). On each diagram the dashed lines on the right- and
left-hand sides represent the transport electric field
E„(x',t') and total current I(x, t), respectively. The part
between dashed lines including the two current-fiow

yR, A( )
(2)

With co+i 5~ice, the Matsubara thermal frequency, 0 is
the thermal Green function. X ' is the electron self-
energy due to electron-phonon scattering. When the
electron-phonon coupling is not too strong (not exactly
the same condition as

l
AG

l
((G), the electron self-energy

can be easily derived with quantities such as
Re[OX(cu)/Bcu] (real part) and Re[OX(co)/Bk] absorbed
into a renormalized electron density of states p„(0)and
renormalized Fermi velocity v~„,within the self-energy
diagrams. There are factors lg„„.l

equal to
I gq I I& n e " 'l n

' ) l and so on from the semiclassical
theory of Ref. 3 that just change the usual self-energy
from k-wave to n-channel notation. [It can be shown
that contributions from ReX to vF„and p„(0)do not
change the relation p„(0)=(huF„)' in the Landauer
conductance. ]

With real parts of X expressed in changes of Ez, p„(0),
and vF„,the imaginary part of the self-energy is

three-vertices is the current propagator 2) from x', t' to
x, t. (This is usually called a current-current correlation
function. ) We denote the Fourier transform of this by
2)„„(qz,coo). The bare current three-vertex is
eve„+=+evF„,electron charge times the Fermi group ve-
locity. The full current three-vertex includes effects of
the phonon scattering. In the Matsubara-Feynman dia-
gram procedure of Ref. 2, the electron Green function
(propagator for one Heisenberg field amplitude) is the re-
tarded (R) or advanced (3) function

I

Imx„k(cv+i5)=—g I l(n' e ' 'ln)l w' 6
n'

X [ [ I —f(E„,„,)+Xq l[&(~—8„,„,—~q)]+ I f(s„k.)+Xq][6(~—8„,+~q)] J

=—g lmX„k„k(co+i5) .
n'

In ImX, the initial electron state in the electron-phonon
scattering is on the energy shell, %co= c.„k, and

q
7TZ q /pcoqp where Z is the deformation potential

and p the mass density. f(c,„k) and K are Fermi and
Bose distribution functions. This expression includes
only ladder graph self-energy diagrams with noncrossing
phonon lines and bare electron lines, which omits terms
that are negligible when u„„„dl

lmXl ((v~k~ T.

The wiggly line in the third response diagram of Fig. 2
is the phonon propagator renormalized by electron-
phonon scattering, self-consistent with the noncrossing
approximation. We can easily show by direct algebraic
evaluation that in this third response diagram the phonon
line, two electron-phonon three-vertices, the two electron
lines to the right of the phonon lines, and the dressed
current three-vertex are just together equal to
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(—2i /e )ImX„g„ksgnk "2)„k-„k. (Summation over
n "k" is implied. ) This equivalence is most easily seen by
replacing the right-hand dressed three-vertices with the
bare three-vertex evF„.+, which algebraically yields
—(2i/e)1m')' ', and then iterating the integral equa-

tion to infinite order. 2)( ' is the current propagator with
no phonon renormalization of the current three-vertex.
The integral equation represented by the diagram equa-
tion of Fig. 2 is

2)„k„.), (cop, qp, co) =2)'„k'(cop,qp, co)6„„5),«+2)'„k'(cop,qp, co)(e vF„) '[ 2i I—mX„k„.k-(co)sgnk sgnk")2) "k" 'k'(cop qp co)

Summation over n "k" is implied. %(„k)(cop,qp, co) is defined by

(4)

2)„+(qp,cop)= dco g e UF„Q„k~pco-Of(co) 2 2 A

BCO

COp COp

i
9'„k)p Co+-

dco e UF„[coQ Upn+qp 2i ImX„k(co)]
Of(co) 2 R

d co 2)„+( q p, cop, co )
Of (co) (p)

In 0"', the electron wave vector is k —qp/2 for A and k+qp/2 for R. R(cop, qp) is related to 2)(cop, qp, co) by an equa-
tion analogous to the last equality in Eq. (5).

The elements 2)„„ofthe full current propagator comprise a square matrix 2) and we denote by K the matrix of the
elements —2i(e UF„) 'ImX„„sgnksgnk". The diagram equation of Fig. 2 becomes

Multiplying Eq. (6) on the left-hand side by 2)( ' and on the right-hand side 2)

(6)

We define 2)„'as g„2)„„'and 1(.„asg„X„„.. Then

=(e UF„) '
cop qpvF„+——g 2i ImX„„(co)(1—sgnk sgnk')

—:(e vF„) '[co()—q()vF„++2iImX'„'(co)] .

X&n+(qo~cop~co)

=y e UR„[coo qovR„++2i ImX'„'),—(co)] (10)

Here the 2)„+are the algebraic inverses of the 2)„+and
are components of a diagonalized response matrix.

The current is obtained by summing or integrating the

The quantity 2ImX'„' is A times the inverse transport
time, corresponding to the usual inverse transport time in
bulk metals wherein the factor 1 —cos8(k, k') occurs in a
scattering integral. The approximation we have used is
appropriate except right at the steps in Fig. 1, where
UF„—+0 and this approximation breaks down. We will
comment on this later.

The full current propagator for the E (qp, cop) com-
ponent of the electric field including phonon scattering
but no elastic scattering is

current propagator over the qo components and the elec-
tron energy cu, in the limit where the field frequency is
Cop~0. The qp component of 2) is multiplied by
exp[iqp(x —x')] times E(x'). A factor A' deleted from
ficop and A'qpvF„+ (in the usual convention) must be re-
stored and there is a factor i/2' as well. As with the
elastic scattering case in Ref. 2, the full qp spectrum of
the localized transport electric field for a mesoscopic sys-
tem contributes a dominant real term to I(x), here pro-
portional to 5[ficop fiqpvF„+ 2i ImX'„——'(co)], and there is
a (usually) negligible imaginary term from the principal
part in the qo integration that is of order
max(COQLR /UF„,ks TLR /irivR„) compared to the real term.
In the limit cop~0, the integration over the electron ener-

gy fico is weighted by a factor Of (co) /Oco as in Eq. (5).
With two spin states per channel, the current Aow with

only phonon scattering present is given in the limit
~o Oby
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—2 2

I(x)= g f "dco f "dx'exp[ —x —x'~21m''„'( co)/RuF„]E (x') .
h

„

E.p c)co

In Eq. (11), %co=a„& in each channel and so the lower
limit on co is c„&at k =0. This expression does not ex-
press current that is independent of x at zero frequency.
This is because with no elastic scattering at all, i.e., with
translational invariance in the x direction, the static

O~O electric field localized to —
2 LE x' —,'L,E could

not occur. We can still use Eq. (11) with no elastic
scattering present in the theory for an actual physical
case where all but a few of the macroscopically large
number of channels X,'b' have zero electron transmission
through the mesoscopic system. The remaining few
channels must be for a smoothly entered mesoscopic sys-
tem which has adiabatically changing k, (x) and trans-
verse wave functions g„(rj,x ) so that uF„becomes uz„(x)
and the transmission probability is T„=1.In this case
uF„(x=0) is much smaller than uF„(x~+~ ) so that a
localized E„(x')is consistent with I(x)=I when coo~0.
There must remain at large ~x'~ a spatially constant part
of E„(x')denoted by Eo6(qo) that is added to the qo

spectrum of the localized electric field. Whereas the lo-
calized electric field at the mesoscopic system corre-
sponds to a resistance on the kilohm scale over a very
short distance„ the field Eo for a bulk metal corresponds
to resistance of less than 1 0 over macroscopic lengths of
lead wire. The Eo contribution to the voltage drop AV
across the mesoscopic system is vanishingly small

In Eq. (11), formally ImX'„'t, (co) is exact. After the x'
F

integration has been done, the approximation for ImX"
in Eqs. (3)—(10) is made. For example, in a bulk degen-
erate semiconductor the effective transport field is homo-
geneous and the x' integration results in
E fivF„/ImX'„'& (co). Summing over a very large number

F
of channels of a bulk system results in the standard ex-
pression for the conductivity ne ~«/m. Here
r,, '=2(1m'&" (co) ) /fi, where the angular brackets

denote the thermal and Fermi-surface average. At this
stage the approximation for ImX" in Eqs. (3)—(10) can
be made and the result determines resistance or voltage
drop to lowest order in v„„„d~imX~/v FksT. This is an
excellent approximation in strongly degenerate semicon-
ductors with, e.g. , relative error less than 10 when
T=77 K for GaAs. We will comment later on the accu-
racy of this approximation in our determination of AG in
nanostructu res.

We now consider the combined effects of elastic and
phonon scattering on the current response. In Ref. 2 the
elastic scattering potential V(r) in H of Eq. (1) was
represented as an X on an electron line in the response di-
agram, representing Q„&(co)V(nk, n'k')Q„.z (co). The
infinite sequence of such events sums as usual to an elas-
tic scattering transition (not transmission) matrix
T„z„.& (co) for transitions from state nk to state n'k'.
(The transmission probability through the mesoscopic
system in the nth channel is something different from
that and denoted by T„with only one subscript and no

energy argument. ) For the localized E(r, t) at a mesos-
copic system, electron lines between two or more
T„&„.z (co) are not distinguishable from an internal elec-
tron line within the infinite series summed by T„z„&(co),
so that a series of more than one T matrix collapses into
the internal structure of one T matrix. Thus there can be
only zero or one T„&„.z (co) on one upper or lower elec-
tron line on a response diagram in Fig. 2, in the absence
of phonon scattering. [In contrast, an arbitrary number
of T„&„,z, (co) from one impurity can occur on one electron
line in the response diagram of Ref. 2 for a bulk metal. ]
When we introduce phonon scattering, two distinct cases
emerge. The first case is where pairs of electron-phonon
three-vertices on one electron line are connected by a
phonon line. When these connected pairs are between
two X elastic scattering events, they constitute phonon
renormalization of the energy-conserving and nk-
conserving electron line between the two X events. Con-
sistent with the noncrossing phonon-line approximation
used above in Eq. (3), valid when u„„„dImX~ ((vFks T,
we restrict the renormalization again to noncrossing pho-
non lines. When there are phonon lines which connect
two three-vertices that are on opposite sides of one X
event, then this is renormalization of the elastic V(r)
scattering. We must self-consistently restrict to a nested
set of noncrossing phonon lines at each X with each pho-
non line commencing on one side of X and finishing on
the other side. Within T„A.„,&,(co) the internal k" are
summed over all states, so that effects of the renormaliza-
tion are only of order

~
X

~ /uF„k~„, completely
insignificant in almost. every physical situation and the
same order of magnitude or smaller than small terms that
were dropped throughout Ref. 2.

The second case of phonon scattering added to elastic
scattering is that an electron-phonon three-vertex is not
connected to a three-vertex on the same electron arm
(upper or lower) of a response diagram. Because no un-
connected electron-phonon three-vertex can occur inside
the elastic scattering T„z„.&.(co), an electron line between
two T matrices, which has one unconnected electron-
phonon three-vertex on it, is distinguishable from inter-
nal electron lines of the T matrix. There is in this case no
collapse of two T matrices into one. Including the full
number of elastic and phonon scattering events means
that in the diagram response equation of Fig. 2, every
electron line may have zero or one T„&„,&,(co) on it. For
example, the third diagram in Fig. 2 with four electron
lines is replaced by 16 diagrams to include every com-
bination of zero or one T matrix on each of the four elec-
tron lines.

In the theoretical development of Ref. 2, it was shown
that on each pair of upper and lower electron lines above
and below each other on any response diagram, the four
diagrams with zero, one, one, and two T matrices on this
pair just result in the same electron pair with no T ma-
trices, multiplied by the electron transmission probability
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T„through the mesoscopic system, given by

T„=1 —2m g p„(0)p„(0)i
T „„„(co)i

pp I In", kF

X [1—cos8(kF, kz')] . (12)

where appropriate, we obtain the following equation for
the current propagator that now replaces Eq. (4) above:

T ~ —T ~(0)g

+ T.&'„'[ 2—i (e'vF„) 'T„1m'~„„]N„„„.(13)

T„is not strongly dependent on co near co=0 (except
when there are special resonances near co=0) and we
denote T„(ro) near co=0 by T„,which characterizes
T„(E„i,).

Performing all the additions of T matrices to the
response diagrams of Fig. 2 and then substituting T„

(Here sgnk sgnk" is implicit in X .)
By the same procedure that was used to obtain I (x) for

phonon scattering only in Eq. (11) above, we solve Eq.
(13) and then obtain the current flow when both
electron-phonon scattering and elastic electron reflection
are present:

I(x)= —„gf de T„J dx'exp[ —x —x'~T„.21 mX"„,, (co)/A' v„]E,(x') .
F 0 Bco

(14)

Equation (14) replaces Eq. (11) above. Summation within
the exponent over the repeated index n' is implicit.

The noteworthy feature of Eq. (14) is that effects of
phonon scattering on the current through a mesoscopic
system are scaled by the transmission probability only to
second and higher powers, in contrast to the effect of
elastic scattering alone which is first order in the
transmission probability. The inelastic scattering time
here can be much longer than for a bulk system. It
should be noted that, even with vF„(x)for x =0 in the
mesoscopic system much smaller than the v~„(x=+~ )

in a bulk 2DES or bulk metal, the factor T„in Eq. (14)
means that in the mesoscopic system the inelastic scatter-
ing length l;„„(x=0)=iiiv~„(x=0)/+„,2 lm&'„'„,T„,is not
too much smaller than the l;„,~(x =+~ ) of the bulk sys-
tem or is even larger (except right at one of the steps in
Fig. 1). That is because here T„.is zero for all but a few
of the X,'h' ) 10' transmission channels that would occur
at x =+oo in a bulk system. The electrons in I(x) near
x =0 traversing the mesoscopic system are affected by
phonons in a rather large range l;„„(x=0) that certainly
will include some region of a bulk 2DES or bulk metal.
In the Hamiltonian of Eq. (1), the phonon mode not
specified in the third and fourth terms may in general in-
clude all the bulk-mode phonons as well as any localized
phonon modes occurring at the mesoscopic system. Fi-
nally, it should be noted that for x very far from the
mesoscopic system, so that x' for the localized electric
field does not fall in the x' range from x —l;„„(x)to
x+l;„,i(x), the T„allchange and in fact there become
X,'h' ) 10 channels with T„WO. [The theory for a
homogeneous electric field E~5(qo) must be used for x far
from the nanostructure, and in this case the x' integra-
tion in Eq. (14) becomes equal to l;„,i.]

When I-E is not too long, we can expand the exponen-
tial in Eq. (14) as 1 —~x —x'~/l;„,1(co)+ . The first
zeroth-order term in I /l;„,i(co), with the x' integral over
E(x') just the voltage drop b, V, is the current corre-
sponding to the Landauer conductance

2e
X T.f(&.k)k=o.

h

We can approximate E„(x')as constant in the range—Lz/2 &x' (Lz/2 and zero outside that range, so that
E=AV/LF within that range. In this case the term of
order l;„,~(co) in Eq. (14) and using Eq. (3) is exactly the
same as b, G in Eq. (34) below that which was obtained in
the semiclassical method.

The quantum-linear-response theory expresses the
current flow entirely in terms of its relation to the
effective transport electric field, in the coo~0 limit of a
time-dependent quantum mechanics arising from a time-
dependent vector or scalar potential in a perturbation
term Hz that must be added to H of Eq. (1) above, in or-
der to change from zero current to a current-flow state of
the system. In this, even in the coo~0 limit the time
dependence is essential, without which no current-flow
state can occur in quantum mechanics. In the single-qo
response of a bulk metal in the coo~0 limit, " only
current flow occurs if lim 0(qovF/coo)((1, whereas

0

only density response occurs if lim 0(qovF/coo)»1.
0

What occurs in the Landauer conductance? In this case
the dominant term in the response is proportional to
5(coo+ qovF„)(neglecting phonons) and in the limit coo~0
both density and current response occur. In the limit
coo —+0, the density response has infinite wavelength and
is of different sign at k+„&0than at kF„(0. This com-
bined with

~ qo ~

vF„=coo relating space and time means
that within the quantum-mechanical mesoscopic system
itself, the quasichemical potentials for positive-velocity
and negative-velocity current carriers are not equilibriat-
ed with each other but are separated by electron charge
times the electrical voltage drop across the system
p+ —p =eh, V. (This is not an arbitrary construction in
Ref. 8, but a necessary result in the time-dependent quan-
tum mechanics. ) This condition is used for the semiclas-
sical derivation of AG in the following section.

III. SEMICLASSICAL PERTURBATIVE METHOD

Let us assume that there is a partition at x =0, at the
midpoint of the conductor of total length I. . Let us
denote by f (f & ) the electron distribution function
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unaffected by the phonons for k )0 (k &0). We have for
x&0

aaf [f] ay af"'
Bx Bx BAk

(22)

f„''(k)= f' '(E„k+eV/2—p), k &0 .

f„''(k)= r„(E„„)l'f''(E„„+eV/2—p)

+ It„(E„k)If (E„i, eV/2 p—), k) 0—.

(18)

(19)

f„''(k)=f '(s„k—eV/2 —p, ), k )0

f„''(k)=lr„(E„g)lf' '(s„k —ev/2 —p)

+ t„(E„k)lf'"'(E„i,+eV/2 —p), k &0 . (17)

Here f„''(k) is the Fermi distribution function f(E„t,) in
Sec. II above. The energy c.„kcan be taken here as

E„t,=E„p+A'k /2m .

Here we will not take c„&relative to the Fermi level as
was done in Sec. II. r„and t„are the reflection and
transmission amplitudes, respectively. They satisfy the
relation

lr. I'+ It. l'=&. +T.=1,
where R„and T„are the reAection and transmission
probabilities in the nth channel. As the scattering poten-
tial here depends only on x, there is no n-mode mixing.
For x &0

where M [f] is the electron-phonon collision term (see
below) while P(x) is the electrostatic potential assumed to
be independent of time. The effect of the time depen-
dence of P( xt), in the limit where the field frequency
coo~0, has been included in the two different quasichemi-
cal potentials for k & 0 and k &0, according to the deriva-
tion of p) —p &

=e 5V in Ref. 8. Since a time-
independent P(x) does not in itself cause any current
flow, we can regard P(x) as expressed in the x-dependent
phase factor of each wave function as was derived in Ref.
8 for the linear-response limit, resulting in the two
different quasi-Fermi levels for k )0 and k & 0. P(x) here
must not contribute at all to b,f.

In the spirit of the method of successive approxima-
tions one should insert into the collision term the distri-
bution function in the zeroth approximation, Eqs.
(16)—(19). We observe that because of the identity
Ir„l +It„l=1, the function 1 —f(k) satisfies the same
boundary relations given by Eqs. (18) and (19) as does
f (k). For the model considered in this section, the dis-
tribution functions of the zeroth approximation are
coordinate-independent within the intervals L, /2—
&x &0 and 0&x &L„/2. The solutions of the resulting
differential equations with regard to the boundary condi-
tions

The total current is given by

I= g f F„'I,'v„„dk+f F„'k 'u„„dk
2mB„.o

(20)

~f lx=+t. yp=0

are for k & 0, x & 0 and k & 0, x & 0 respectively,

(23)

where F' ' and I'' ' are the total electron distribution
functions for k & 0 and k & 0, respectively, including the
phonon contributions. Neglecting the latter, i.e., in the
zeroth approximation in the electron-phonon coupling
constant, and expanding in powers of eV/kii T, using the
f„''(k) of Eqs. (16)—(19) results in the Landauer formula
of Eq. (1S) above.

Now we embark on calculation of the phonon-induced
correction to the current AI. For this we need to calcu-
late the corrections to the distribution functions Af'
and hf' '. They should satisfy the following boundary
conditions:

~f.'I = p=lt. (e„k)'~f„'I = —p

+ Ir. (s.g)l'af. 'I =+p,

I.
bf(x)= x+

2

[o)—M[f"']+—' fv v [r ~ Bx Batik

(24)

where

& = [b'+'&(s„i, E„i,—A'cu~ )+b' —'5(e„k E„k+6.'—cu ],
(26)

Here I is the electron trajectory.
The collision term reads (we omit the superscript 0 on

the f ' ' distribution functions)

M[f.(k)]=& f f
n'

(25)

=L.„hz=0

(21)
with

b' '=[f'(1 f)(N + ,'+ ,') f(1 f'—)(N +—,'+——,'—] .——

Now, to calculate Af we will use the method of succes-
sive approximations in the electron-phonon coupling.
b,f, being of the first approximation in the electron-
phonon coupling constant squared, satisfies the equation

KZ q (28)

d + 1 is the dimension of the system.
For simplicity, only scattering by three-dimensional ex-

tended acoustic phonons will be considered where as be-
fore
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We assume that the phonons are in equilibrium and
therefore N is the Bose function.

We integrate in Eq. (26) over the three components of
the phonon wave vector. q~ indicates the two transverse
wave-vector components. The third component is given
by

q„=+(k—k') .

Xf' '(E„.k e—V/2 p—)N exp
~n'k' P

b'+'= —2sinh f' '(e +eV/2 —p)
eV p

nk

(29)

Therefore the integration is equivalent to the integration
over the electron wave vector k' because of the conserva-
tion of quasimomentum.

We see that as in the case where the reAection
coefficients for the electron waves vanish (see Ref. 3), de-
tailed balance guarantees a vanishing collision term for
the equilibrium distribution functions and constant tern-
perature and chemical potential. This means that the
electron distribution functions give a nonvanishing con-
tribution in the collision term if and only if k and k' are
of opposite sign so that their quasichemical potentials are
different. One can trace in this way the origin of one fac-
tor It„I in the expression for b, G '- c below). In other
words, in this case too only those phonons contribute to
hG that backscatter electrons.

Making use of the identities satisfied by the Fermi and
Bose functions

b '= —2sinh f' (e —eV/2 —p)
eV F

2k~ T nk

Xf' '(E„.k +eV/2 p)N —exp
~n'k' P

k, T

(30)

bI= — g f It„&(e)Iv„bf„I„odk

whereas for k'&0 and k &0 we have the same expres-
sions but with eVreplaced by —eV.

One can check using properties of Fermi and Bose
functions that the term linear in x in the equation for the
current vanishes. Indeed the current, because of the
charge conservation, should be coordinate independent.
Then to calculate EI it is sufhcient to consider its value at
x =0.

1 f(E„k—p—) =exp
&nk P f(e.k —V»

B + J I &„(E)I'v„bf„'I„=+odk (31)

N + 1=e px(fico~/k~T)N

and taking into consideration conservation laws imposed
by the 6 functions, we get for k )0 and k' (0

Now one can also trace the origin of the second factor
It„I

in the equation for the current Isee Eqs. (34) and (35)
below].

Making use of Eqs. (29) and (30) we have

where

d2

, y f"«f' «' f ', l&n'Ie"' ' n &I'I~. (e., ) 'It. (E. k )I'B,
(2~%) „„o—~ (2m )

(32)

B=
I f(E„k+eV/2)f(c„.k eV/2), +f—(E„k eV/2)f (e„«+—eV/2)]

eV
X sinh

2k~ T exp
&n'k' P &nk P

5(c,„k—E„l,—A'co )+exp „5(E„„.—E„„+%co)T BT
(33)

This is still a non-Ohmic approximation for the
current. The non-Ohmic equation is valid as far as the
phonons can be considered to be in equilibrium or, in
other words, X is the Bose function. To go to the Ohm-
ic approximation one should expand Eq. (33) in powers of
eV/2k~ T retaining the first term. One gets it by replac-
ing sinh(e V/2k~ T ) with e V/2k~ T and dropping
eV/2k~T from the arguments of the Fermi functions.
Further simplification can be reached by an interchange
of the integration variables k and k' in the second term.
As a result one gets the following equation for the change
of the conductance AG due to the phonon scattering:

2h GOL d "q~
b,G= " g I I(n'Ie " 'In &I'c„.„,

(2m )
(34)

where

q

Xf' '(s.k)[i —f' '(E. k)1

X5(E„.k
—E„k—A'rvq ) . (35)

Go is the unit of conductance 2e /h. Here we made use
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of the following identities that are direct consequences of
the time-reversal symmetry:

COq
—

CO
q

n 8 n = n
(36)

The result stating that one gets in the integrand of Eq.
(35) the

~ t„(s„z) ~ ~

t„'(s„.k. )
~

factor is the same as the T„
and T„.factors obtained in Sec. II by direct quantum-
mechanical calculation, where T„(co=E„k) (with E„zrela-
tive to the Fermi level) was taken as T„=T„(0)for co

near zero. However, the formulations of the problems
are much different.

IV. NUMERICAL RESULTS

„V(x)

FIG. 3. Schematic diagram of the model nanostructure with
a rectangular potential barrier of height Uo at the midpoint on
the current path.

For illustration of the combined effects of electron-
phonon scattering and elastic reAection of electrons, we
take a model quantum wire shown schematically in Fig.

IE=L =1 pm, I =1000 A, and L, =100 A
We take a capacitorlike transport electric field that is
constant in x in the length Lz, zero for other x, and in-
dependent of y and z. The quantum wire is a square-well
confining potential in L and L, with infinite-potential
walls. With small filling factor in the quantum wire,
X,I, «100, only the lowest n, level in the L, quantiza-
tion is occupied. We vary the filling factor or Fermi level
measured from that lowest n, level so that n levels 1,2,3
are successively populated with increasing E~. (This is
analogous to changing a gate voltage. ) It is most con-
venient to express this in terms of A,z=h+2m'E~ so
that at zero temperature the channel n =1,2, 3, . . . is
just occupied when I/A, ~ just exceeds 1,2, 3, . . . in units
of 1/2L . The x current-liow direction is taken to have a
quasicontinuous k spectrum. We take material parame-
ters appropriate for GaAs: m =0.067m, in an isotropic
model, the velocity of sound is u, =5.22 X 10 cm/sec, the

E„~UO . (37)

Here c.„=c„k—c.„oand as before, in Sec. III, we have in
F

s„k taken the energy as quadratic in k. T„(s„=O)=0
whereas T„(E„)approaches unity when E„becomes many
times larger than Uo. This general form will roughly
characterize a wide variety of reflections in actual nano-
structures. For the numerical results to follow we have
in some cases taken a =30 A and UO= 14 meV (=E„oat
n =5) and in other cases we have taken Uo =0.

In Fig. 1 the Landauer conductance G of Eq. (15) is
shown when there is no phonon scattering and no
reAection of electrons T„=1for Uo =0. The change here
of the conductance from a staircase function of filling fac-
tor 1/A, ~ when temperature is low T ((10K to a smooth
function when temperature is high T))10 K occurs en-
tirely because of temperature smearing of the Fermi oc-
cupation number f(s„j,) in Eq. (15) above. In Fig. 4 we
introduce phonon scattering according to Eqs. (34) and
(35), but there is no electron reliection Uo =0 with
T„=1(~t„~=1) in Eq. (35). The change in conduction
AG in Fig. 4 due to phonon scattering is always an order
of magnitude or more smaller than the Landauer conduc-
tion 6 in Fig. 1, even at temperatures as large as 80 K.
[The peaks of b, G near integer values of 1/A~ would be
decreased, not increased, if terms in ImX of Eq. (3) were
included beyond the noncrossing approximation. ]

Figure 5 shows the change bG= —~b, G~ from Lan-
dauer conduction G for this model nanostructure when
there is both phonon scattering and electron reAection
(for U0=14 meV). That is compared with b, G for the
case when there is only phonon scattering (for UO=O).

acoustic mode deformation potential is Z =7.0 meV, and
the mass density is p=5. 36 g/cm . We include only
model longitudinal acoustic phonons with isotropic and
linear dispersion. Because I;„,&

is much larger than L,
bulk-mode phonons are important for all nanostructures
and particularly important for nanostructures that are
defined by electrode voltages.

In an actual nanostructure the quantum wire may or
may not be joined to macroscopic lead wires by regions
that are widening adiabatically slowly on the length scale
of A,z. When the widening is not adiabatically slow, the
few channels N, & that are occupied in the wire will not
have the T„=1 condition for adiabatic widening, but in-
stead T„~1 will occur. To introduce nonzero reAection
of electrons into a model nanostructure, we include in
Fig. 3 a square potential barrier of height Uo at the mid-
point of the quantum wire, between x = —a /2 and a/2.
Uo is constant in y and z and so this barrier will not mix
the channels. The transmission coefficient for this barrier
is

4E„(UO
—

E,„)T„(E„)=
4E„(Uo —s„)+ Uo sinh a +2m ( Uo —E„)/A

O~c„~Uo

4E„(E„—Uo)

4E„(s„—Uo)+ Uo sin a+2m(E„—Uo)/R
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structure. But all such quantum-linear-response theories
say nothing at all about any chemical potential in the
current-flow state of the system. One of the authors has
shown in a separate paper that, within the nanostructure
itself, the quantum mechanics of the current-flow state
mean that quasichemical potentials for current carriers
with positive and negative group velocities satisfy the re-
lation p+ —p =e 6 V, where 6 V is again the line integral
of the transport electric field. (This occurs because ac-
celeration of current by the electric field for one sign of
velocity means increased kinetic energy for that current
species. But current carriers with opposite velocity suffer
deacceleration and reduction of kinetic energy. ) Using
the condition p+ —p =ehV, we have then determined
the combined effects of electron-phonon scattering and
electron reflection on the conductance in a semiclassical
theory using rate equations based on this condition. The
results are the same as those that were obtained in the
Baym-Kadanoff formalism. Thus there are two
equivalent formalisms using (a) a time-dependent trans-
port electric field with coo~0 in a quantum-linear-
response theory and (b) a semiclassical theory using
quasichemical potentials p+ —p =eh V for coo~0 in the
nanostructure itself that were also derived in a quantum
theory. In theory (a), linearization means that the elec-
tric field occurs explicitly but a field-induced change of
the electron Fermi level does not occur. In theory (b)
linearization means exactly the opposite —once the effect
of electric field with line integral eh V has been explicitly
expressed in changed Fermi energies po —+p+ and

po —+p with p+ —p =ehV, no other effect of electric
field enters the linear response. The equivalence of the
two theoretical for malism s, including when electron-
phonon scattering and electron reflection are both
present, is shown in the results here.

The effects of phonon scattering on the electrical con-
ductance of a nanostructure are shown here to be small
even at temperatures as high as 80 K. This indicates that
electron coherence effects may persist to temperature
T&&10 K. Further theoretical study is required on the
coherence effect itself, on, e.g., the Aharonov-Bohm in-
terference effect in electrical conductance when T &)10
K. The smallness of phonon effects in the electrical con-
ductance of a nanostructure at temperatures as high as 80
K occurs because final as well as initial electron states in
the electron-phonon scattering must have nonzero
transmission through the nanostructure. The same effect,
that change of the current flow due to electron-phonon
scattering is proportional to the square of one-electron
transmission probability, is found as well in theory of
tunnel junctions' and has been found before as well in
theory of nanostructures. '

The conductance determined in this study, of order
(kA) ', is the ratio of current flow to electrical voltage
drop, where the latter is equal to the line integral through
the mesoscopic system of the transport electric field. As
discussed by Shockley, in lead-wire experiments the
measured potential difference is a difference of chemical
potentials. The electrical voltage drop occurs at the
nanostructure. But the measured difference of chemical
potentials is equal to the full electrical voltage drop only
when those two chemical potentials are both at distances
from the mesoscopic system which are large compared to
the inelastic scattering length. '
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