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We describe in detail and extend our recent algorithm for tight-binding total-energy calculations and
tight-binding molecular dynamics, which scales quadratically with the size of the system for small sys-
tems and linearly for big systems. It is intrinsically parallel and gives an excellent performance on paral-
lel computers. The central quantity in this algorithm is the localized orbitals. We show in the context of
various examples, that our localized-orbital algorithm is not only fast, but gives us also a better physical
understanding than conventional extended orbitals and more Aexibility in treating complicated
geometries. The algorithm can also efticiently handle metallic systems and does not lead to unphysical
distortions of the electronic density of states around the Fermi level.

I. INTRODUCTION

The tight-binding (TB) method is a widely used
electronic-structure method and has proven its usefulness
for a wide range of systems ranging from transition met-
als to covalent materials. When a suitable repulsive po-
tential is added, the TB method can also be used for
tight-binding molecular-dynamics (TBMD) simulations.
The main advantage of the TB method is that it is
significantly faster than ab initio density-functional calcu-
lations and Car-Parrinello molecular-dynamics simula-
tions but still gives accurate enough results in many
cases. There are, however, situations where one needs a
huge number of time steps in a molecular-dynamics simu-
lation, or where one wants to treat very big systems. In
these cases, computer time, even with the TB method,
can become a problem if one uses traditional algorithms
such as standard diag onalization techniques or Car-
Parrinello-type fictitious Lagrangian dynamics. The first
case poses a problem because traditional algorithms are
usually implemented only for serial machines. It is,
therefore, not possible to take advantage of powerful
parallel machines to speed up a single time step in the
molecular-dynamics simulation. The fact that there are
few parallel implementations is related to the difficulty in
parallelizing traditional algorithms. The second case is
difficult to handle with standard techniques because they
have a scaling of the computational effort, which is cubic
with respect to the number of atoms; therefore, the com-
puter time grows much faster than the size of the system.
This problem of the cubic scaling has been recognized by
the computational-physics community and several propo-
sals have recently been put forward to overcome this
bottleneck.

In this paper, we will describe in detail a recent algo-
rithm and extend it to metallic systems. The algorithm
is extremely easy to implement on parallel computers and

gives a speedup that is nearly proportional to the number
of processors. Therefore, it can significantly reduce the
computational time required for one time step in TBMD
simulation for systems of any size. In addition, for large
systems it scales linearly with the number of atoms for
both insulators and metals. For large systems, it is faster
than the traditional techniques even on a serial computer.
Our approach is based on a projection rather than on
minimization. It allows us to attack complicated prob-
lems in physically very intuitive way. It is also free of nu-
merically cumbersome local minima, which are found in
restricted minimization schemes.

Since the tight-binding method is not highly accurate,
it is not necessary to calculate quantities with very high
precision. In this paper, we adjust all numerical parame-
ters such that we obtain a precision of 10 meV in the to-
tal energy per atom. In this way, the error from the algo-
rithm is certainly always smaller than the error from the
tight-binding method itself. As is well known, energy
differences are always much more precise than the total
energy itself.

II. THE ALGORITHM TO CALCULATE
THE FERMI MATRIX

The central object in this algorithm is the finite-
temperature density or Fermi matrix. All other quanti-
ties such as energies, charges, and forces can be formulat-
ed in terms of the Fermi matrix and its calculation takes
most of the CPU time. The Fermi matrix F„T is given
by

H —p
kT

where f [t(e; —p)l(kT)] is the Fermi-Dirac distribution.
The Hamiltonian matrix H is of dimension m Xm and
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FIG. 3. The convergence of the band-structure energy for a
crystalline system of 4000 Al atoms on a double logarithmic
scale (base 10). Harrison's (Ref. 7) universal tight-binding pa-
rameters were used. The numerically observed convergence is
actually slightly faster than the expected quadratic convergence.
A polynomial of 110' is necessary to obtain the target accuracy
of 10 meV per atom.

mial p„T(H), which is expanded in Chebyshev polynomi-
als Tj,

pl

p„T(H)= + g cJTi (H) . .
2

(4)

The Chebyshev matrix polynomials satisfy the recursion
relations

TQ(H) =I,
T, (H) =H,
T +, (H) =2HT . (H) —

T~ ,(H), .

it(' &=Hip, &,

it/+' &=2Hit/ &
—it/

where I is the identity matrix. The lczth column of the
matrix T~ (H) denoted by i.t/ & can, therefore, be calculat-
ed by the same recursion

elements n, ff is equal to the number of interacting orbit-
als on the neighboring atoms. In the case of diamond,
there are four nearest neighbors with four orbitals each;
thus, the Hamiltonian has 16 off-diagonal elements.

It is immediately seen that the calculation of one se-
quence of columns it/ (H) &,j =0, . . . , n i is completely
independent from the calculation of another sequence
it/ .(H) &, j=0, . . . , n i T. his is the reason why the al-
gorithm is intrinsically parallel and, therefore, well suited
for parallel computers.

As has been described, the algorithm scales quadrati-
cally with the number of atoms in the system. If there
are I orbitals in the system, the effort required to calcu-
late the full m Xm density matrix is evidently propor-
tional to m n ~n, ff.

By taking advantage of the decay properties of the Fer-
mi matrix, one can, however, obtain a linearly scaling
scheme. As has been known for a long time, Wannier
functions decay exponentially in insulators, the decay
constant being proportional to Vg. The Wannier func-
tions are just an alternative set of functions spanning the
space of all the occupied one-particle electron wave func-
tions. Now at zero temperature, the Fermi matrix is a
projection operator cutting out all the components be-
longing to eigenfunctions above the Fermi level and leav-
ing only the components below the Fermi level. As ar-
gued by Vanderbilt, the vector FiyI &, which is one
column of the Fermi matrix, has to be a linear combina-
tion of the Wannier functions and should decay exponen-
tially. Numerical testing shows indeed that for an insula-
tor the off-diagonal elements decay exponentially (Fig. 4).

Because of these relations we will, from now on, call a
column of the Fermi matrix ifl & a localized orbital.
This rapid decay of the localized orbitals allows us to in-
troduce a certain cutoff radius r&„outside of which the
amplitude of the localized orbital is negligible. The
volume, where the localized orbital is not negligible, will
be called the localization region. Coming back to the
Fermi matrix, this means that we can consider the Fermi
matrix to be a sparse matrix with m&„off-diagonal ele-
ments, where m~„ is the number of orbitals in the locali-
zation region. The numerical effort to calculate the Fer-
mi matrix is, therefore, proportional to mm&„n„&n, z. In-

where i@i & denotes a unit vector whose only nonzero
element is the element corresponding to the Lowdin or-
bital la. Once the vectors it( & are calculated, one just
has to form the linear combinations according to Eq. (4)
to obtain the corresponding column of the Fermi matrix.
Denoting this column by i fi &, this can be written as

lf,.&=~i~,.&= „p,( )Hi~,.&

n
&

'it,' &++ c, it/ &.
j=l
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FIG. 5. Convergence of relevant quantities on a logarithmic
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sphere for a carbon system. The full discs show the conver-
gence of the absolute total energy in eV for a perfectly ordered
diamond structure; the open discs show the same quantity for a
slightly randomly disordered crystal; the squares show the rela-
tive error of the forces for the same disordered crystal; the dot-
ted line shows the number of atoms in the localization region as
a function of its radius.

U
p

is a suitable repulsive potential. The contribution
from the classical potential U„ is easy to calculate and
we wi11, therefore, concentrate on the sum over the eigen-
values, which is also ca11ed the band-structure energy.

The band-structure energy can be expressed as

F-„=Tr[HF]=g &rp,.lHFlq, .&=g&Hrp, .l f,.& . (II)
la la

&=Tr[F]=&&q r. lFIiq f. & =g &q f.lfr. & .

The equivalence of the two expressions for the band-
structure energy in Eqs. (7) and (8) follows readily from
the fact that the trace is invariant under the unitary
transformation from the 4, representation to the cp& rep-
resentation, and that the Fermi matrix is diagonal in the
basis set of the eigenfunctions +, . With this form, the en-

ergy can be decomposed in a physically intuitive way into
the contributions from each atom a given by
gf&Hrpi fl &. The energy of each atom depends only
on the localized orbitals centered on this atom.

In an analogy to the band-structure energy, the total
number of electrons is given by

III. BAND-STRUCTURE ENERGY, OCCUPANCY,
AND FARCES

Let us now derive the physically interesting quantities.
Within the TBMD scheme, the total energy E«, of a
given system is expressed as

Pa pE„,=g +g e f + U„,p,
l

(7)

where the first term is the kinetic energy of the ions and

stead of carrying out the recursions of Eq. (5) over the
whole volume of the system, they are done in the localiza-
tion region only. Rejecting boundary conditions are
used at the surface of the localization sphere. If the
volume of the system is larger than the localization
volume, only I increases with the number of atoms in
the system; the method is, therefore, linear. The conver-
gence of the total energy and the forces as a function of
the size of the localization region in an insulator is shown
in Fig. 5. To obtain total 'energies with an error of 10
meV and two correct digits in the forces, a localization
radius of 6.5 A is required.

In a metal the localized orbitals decay algebraically.
This slow decay can be traced back to the discontinuity
of the Fermi distribution at zero temperature. As we
have seen, we can replace the sharp Fermi distribution by
a smooth version without introducing large errors. The
localized orbitals calculated from such a smoothed out
electronic weight distribution show again an exponential
decay proportional to &b,e (Fig. 4). This artificial decay
is usually much slower than in the case of an insulator,
since Ae is rather small. Unless one goes to very large
systems, the localization region will never be smaller than
the volume of the system and one will observe a quadratic
scaling rather than a linear one.

One diagonal element of the Fermi matrix &yr F yf
gives the occupancy of the orbital col . The sum

gf &rpf ~ff & gives the charge associated with atom a.
Again it is only the set of orbitals centered on atom 0.
that determines its charge. It is useful that the local
charge can easily be calculated since some versions of the
tight-binding method require local-charge neutrality.

The force acting on an atom is again a sum of a contri-
bution arising from a classical repulsive energy, which is
trivial, and the band-structure energy. The second con-
tribution is also called the Hellman-Feynman force f&, it
is the derivative of Eb, with respect to the atomic dis-
placements R&

ff3= Tr [p„T(H)+Hp„' T(H)]
aII
BRp

la 1'a'

where p„' z- is the derivative of p T. The matrix p' r(H)
can be calculated analogously to the matrix p„T(H). In
the nearest-neighbor tight-binding method, the hopping
matrix elements between neighboring atoms are scaled
with the interatomic distance according to the Harrison
rule. The matrix elements &yr. ~r)Hlr)Rf3~y«&, there-
fore, vanish unless either a equals P and a' is a nearest
neighbor of /3, or a' equals P and a is a nearest neighbor
of /3. Introducing an index y, which runs over all the
nearest neighbors of P, and using the symmetry of the
matrices, we obtain
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IV. DENSITY OF STATES AND ITS MOMENTS

.::.'he density of states can be reconstructed from its mo-
ments M, where

=» g &q, lg ) &q, l

t)H
i )

y I, 1' p

where lgip) = [p„,T(H)+Hp„' T(H) ]ipII3) is another kind
of localized orbital, which is, however, identical to

~ fif3
in the case o ah f an insulator at zero temperature. T is

nds onl onmeans that the force acting on atom P depends on y on
the amplitudes of the localized orbitals ~glori) centered on

S 11 the dependence of the band-structure
r u on the atomic positions enteis throug t e sca-

here are no Pu-ing of the Hamiltonian matrix elements, ther
lay forces in this scheme.

theAs we saw, t e a gori, th 1 orithm allows us to calculate t e
orce as the exact derivative of the approximate energy.

This guarantees that the forces vanish a e q
configuration. t a so ea s. I 1 1 d to a highly accurate conserva-
tion of the total energy in a MD simulation (Fig. 6 . ta-
tistical quantities ath t depend on the Iluctuations o the

e calcu-such as the specific heat can, therefore, be ca cu-energy suc as e
ner conserva-lated. The small deviations from exact energy c

tion arise mainly when atoms ente r or leave the localiza-
f d 6.5 A between two time steps. n

the case of a metal, the total energy is only conserve

For a sufficiently large system, the c emica po
h ld of course not vary unless ot er er yer thermodynamic

re chan ed
d a constant chemical potential implies a constantan a con

number of electrons. In a finite system. ..ow
number of electrons fluctuate around the average neutral-

1 (Fi . 6). In an insulator at sufficiently tempera-
r of electrons areture, both total energy and the number of e e

conserved to very high precision.
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For reasons of numerical stabili y,
' '

pt it is referable not to
nts withuse the moments themselves but, instead, moments

respect to well-behaved polynomials such as the Legendre
ol nomials I, . We will assume in the following that the

Hamiltonian matrix was scaled in suc a way a ah a wa that all ei-
genvalues are in t e in ervath

'
terval [

—1 1]. The numerically
stable moments are then

I =gL (c, ) .

Let us now expand the density of states D(e m Legendre
polynomials:

D(e)=gd L,(E) .

The expansion coefficients d are then given yb

d = D(e)L, (e)de .
2 —1

(14)

Using the properties of the trace and the eefinition of the
density of states, we obtain

1

Tr[L (H)]=QL, (e, )=f D(e)L (e)de . (15)

This means that the moments M are the expansion
nts of the density of states and they can be calcu-coe cien s o

lated b taking the trace of the Legendre po yn
the Hamiltonian matrix. The approximate eq 'ge ualsi nin

by the integral only in the limit of an infinitely large sys-
tem. Since we are,S however interested in very large sys-
tems, the approximation is very good.

ith hi h values of vThe trace over matrices L,(H) wi ig
ives the short-wavelength details of the band structure.gives t e s or -w

These matrices are much less diagona yonall dominant than
the Fermi matrix, unless one conside g yrshu e s stems, it is

ible to cut them off at a radius smaller than thenot possible to cu em
. In a eriodicd' f the system. This is not surprising. n pra ius 0 e
of the band-crystal, the Fourier coefficients E(R o

structure E(k) are given by

E(R)=f W(r)WH(r —R)dr,
4

where R is a lattice vector and 8' a Wannier function.
therefore, short-High Fourier coefficients an, th

wavelength detai s o e'1 f th band structure are determine
~ ~ ~

by the long-range ai ot 1 f the Wannier function. Zeroing
the Wannier functions outside a ccertain radius corre-
sponds to zeroing igh' h Fourier coefficients of the ban

b ofstructure. etai s oD '1 f the density of states are, thereby, o
course also lost.

C talline systems have van Hove singularities in e
density of states. These singularities are difficu t t p-ttoa-
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proximate by a polynomial such as in Eq. (13). In this
case, other methods such as the recursion' method,
which also reconstruct the density of states from its mo-
ments, give certainly better results. For large noncrystal-
line systems the method works, however, very well. For
a smooth density of states, the exact coefficients d, decay
for increasing v. The numerical coeKcients start, howev-
er, increasing again from a certain point because the ap-
proximate equality in Eq. (15) does not hold any more.
This point is the optimal point to truncate the numerical
expansion in Eq. (13). The density of states during one
time step of a MD simulation of liquid carbon is shown in
Fig. 7.

The method allows us again to zoom into the local den-
sity of states of each atom a, whose moments are given
by

Recently another method' was proposed where the
density of states was constructed through its polynomial
moments. In this work, Chebychev polynomials were
used instead of the Legendre polynomials used here. For
Chebychev polynomials, Eq. (15) does not hold and one
has to resort to more complicated integration schemes to
determine the expansion coefficients of the density of
states. In principle, one can also calculate the band-
structure energy by integration over the density of states
as it is given by the polynomial expansion. This ap-
proach' is, however, much less accurate and gives very
unreliable forces. The reason for this is that the change
of a single level leads to a slight modification of the whole
density of states, which leads to spurious forces. The pre-
ferred method for forces (as described in the previous sec-
tions) is, therefore, to do a polynomial expression of the
Fermi matrix instead of the density of states. Since the
polynomial expansion of the Fermi matrix does not de-
pend on the atomic positions, there are no spurious con-
tributions to the forces.

V. PERFORMANCE EVALUATION

%'hereas the CPU time required to do a TB calculation
with standard diagonalization depends only on the num-
ber of atoms in the systems, it depends both on the num-
ber and type of atoms if our algorithm is used. Metals
are slower than insulators because they are usually found
in closed-packed structures with many nearest neighbors,
the localization volume is much larger, and a higher-
order degree polynomial is required. The timing results
for our target precision are shown in Fig. 8.

It is seen that the algorithm is faster for any reasonable
number of carbon atoms. The timing curve shows first a
quadratic behavior, which goes over into a linear one as
the size of '.he system becomes larger than the localiza-
tion volume. A localization radius of 6.5 A and a polyno-
mial of degree 40 was used. In the case of the metal, the
transition from quadratic to linear behavior occurs much
later because of the larger localization volume of 12 A.
Because of the higher-degree polynomial (n~& =110) and
the 12 nearest neighbors, the algorithm is, however,
slower than traditional diagonalization for systems con-
taining less than 180 atoms. By requiring a lower pre-
cision and especially a smaller localization volume, the
timings can, of course, be significantly reduced in both
cases. Because of the intrinsic parallelism of the algo-
rithm, nearly linear speedup can be obtained with the
method on parallel computers. "

VI. LOCALIZED ORBITALS
FOR VARIOUS PROBI.EMS

A. Crystalline materials

Standard methods are completely adequate for crystals
with small elementary cells and the following discussion
is, therefore, mainly intended to foster a better under-
standing of the localized-orbital (LO) method. Let us
consider a simple crystal with one atom per elementary
cell. To calculate the electronic structure of the bulk ma-
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FIG. 7. The electronic density of states of a sample of 1000
carbon atoms in the liquid low-density phase at 5000 K. Legen-
dre polynomials up to degree 77 were used.

FIG. 8. The measured execution times for systems containing
between 32 and 2744 atoms on a double logarithmic scale
(log, o). The solid line shows the execution time for standard di-
agonalization. The timings obtained with our algorithm are
shown by the dotted line for a system of Al atoms and by the
dashed line for a system of C atoms.
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terial with standard methods, one considers a large
enough periodic volume containing several elementary
cells. Because of Bloch's theorem, solving the
Schrodinger equation for this periodic volume is
equivalent to solving Schrodinger's equation in the small
elementary cell for several k points in the Brillouin zone.
Since one k-point calculation is independent from the
other, the numerical effort grows linearly with the num-
ber of elementary cells in the periodic volume and one
can, therefore, easily approach the bulk behavior corre-
sponding to an infinite periodic volume. Let us now dis-
cuss how to do the same calculation with localized orbit-
als. Because of symmetry, all LO's with the same quan-
tum number l, but centered on different atoms are equal.
It is, therefore, only necessary to calculate one set of LO's
centered on a particular atom. The other atoms just have
to backscatter the tails of this set of LO's. As one in-
creases the localization volume of this set of LO's, one
approaches the bulk behavior. Increasing the localiza-
tion volume corresponds, therefore, to adding more k
points in the classical approach. With our approach, the
numerical effort increases linearly with the localization
volume and one can, therefore, again easily obtain the
limiting bulk behavior. This leads us to an important
conclusion. The localization volume is the volume where
a system starts to show bulklike behavior. The last state-
ment remains true in noncrystalline systems such as
amorphous systems. For pure electronic-structure calcu-
lations, it does not make sense to calculate systems larger
than the localization volume and one will not be able to
take advantage of the linear scaling. Because our algo-
rithm shows quadratic behavior for systems smaller than
the localization volume and because it is parallelizable, it
is already advantageous to use it for smaller systems.

B. Annihilation of two screw dislocations in silicon

Localized-orbital methods can demonstrate their su-
periority for large and complicated systems without an
easy crystalline structure. A system we consider in this
class of problems are two screw dislocations in silicon.
Arias and Joannopoulos' recently reported ab initio
density-functional calculations for this system in a super-
cell containing 324 atoms. This system size is currently
near the limit of what can be done with state of the art ab
initio techniques, whereas it is only a moderate-size calcu-
lation with the our TB method. As shown in Table I the
tight-binding scheme gives very similar results for the
energy of the dislocations at different separations. Since
the computational workload is much smaller, larger cells
can be used to test the convergence with respect to the
number of k points. The TB model also predicts, in
agreement with ab initio results, that a pair of screw an-
tiscrew dislocations along the 110 axis will annihilate if

0

their separation is 3.3 A.
Arias and Joannopoulos' clearly elucidated, all the

physical properties: We will, therefore, concentrate on
the numerical advantages, which localized orbitals offer
in dealing with the atomic relaxations leading to the an-
nihilation of the dislocation pair.

In a conventional calculation, one has to calculate all

TABLE I. Energies for a screw antiscrew pair at different
separations as predicted by ab initio results (Ref. 12) for a 324-
atom cell at the k point 4, 0, 0, and by a 648- and 1296-atom TB
calculation at the gamma point. All the energies are not
corrected for stress and Madelung contributions.

3.3 A 9.9 A 16.5 A 23.1 A

ab initio
TB 648
TB 1296

4.36
3.77
3.88

7.70
6.72
6.93

10.76
8.73
9.00

13.32
10.63
10.91

C. Molecular-dynamics simulations

As was already pointed out, this algorithm conserves
the total energy in a MD simulation since the force given
by Eq. (10) is the exact derivative of the approximate en-
ergy. This opens the possibility of microcanonical simu-
lations. The microcanonical ensemble is not only the
only thermodynamic ensemble that is well defined for
finite systems, but it is also the easiest to implement. The
force expression Eq. (10) assumes a constant chemical po-
tential and the smooth electronic weight distribution cor-
responds to a finite electronic temperature. In this con-
text, we do not attribute any physical meaning to a finite
electronic temperature. In order to derive meaningful
statistical quantities from a finite electronic temperature,
the electronic density of states would need to represent
the real properties of the system under consideration.
This is, however, not the case with the present TB param-
etrizations. In addition, the broadening parameter Ae of

the extended eigenorbitals to obtain the force acting on
any single atom. This is clearly unnecessary if one wants
to know only the forces acting on a subset of atoms. In
this example, only atoms close to the dislocation pair will
be displaced; for the atoms further away, the forces are
not needed. In the localized-orbital method, the force
acting on a certain atom depends only on the set of local-
ized orbitals centered on itself [Eq. (10)]. It is, therefore,
enough to calculate the localized orbitals belonging to
those dynamic atoms, which will be significantly dis-
placed. In addition, the relaxations can be done in a
physically intuitive sequence of inward outward sweeps.
In the first step of each sweep, one relaxes the atoms be-
ing close to the dislocation pair; in the second step, one
relaxes the atoms somewhat further away and so on. In
this way one obtains the final relaxed configuration much
faster, since the force acting on the atoms, which are not
nearest neighbors, is much larger in any step. The role of
the static atoms far away from the vacancy, which are
not displaced, is just to provide the correct scattering to
the tails of the localized orbitals centered on the dynamic
atoms and to indicate thereby, that the whole process
takes place in a crystalline environment. Within a very
simple-minded steepest-descent approach, we could in
this way reduce the number of localized-orbital calcula-
tions required for the observation of the annihilation of
the two dislocations from 300000 to 200000 for a 648-
atom system.
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the error-function weight distribution can be chosen rath-
er high (in the eV range), which would correspond to un-

physically high temperatures of some 10000 K. The
unique purpose of a finite electronic temperature is to sta-
bilize the simulations. The same trick is also frequently
used in density-functional calculations. ' Instead of a
finite electronic temperature, we will in the following,
therefore, rather speak of a broadening.

Ordinary TBMD simulations are usually done for a
fixed number of electrons and without broadening, even
though it would be possible to do them also at constant
chemical potential with broadening. In the fixed number
case without broadening, the forces are given by
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where the chemical potential is adjusted in such a way as
to give charge neutrality.

In the case of an insulator, the two settings (constant
chemical potential with broadening, constant electron
number without broadening) give almost identical results.
As long as the chemical potential is in the gap and the
broadening is suKciently small, the number of electrons
is constant since no levels can cross the gap and the
valence-band levels are nearly fully occupied while the
conduction levels are nearly empty. In the case of a me-
tallic system, the two settings give rise to noteworthy
differences. In the following, we will point out two quan-
tities that are different in the two settings; namely, the
electronic density of states near the chemical potential
and the amplitude of fluctuations. In the following dis-
cussion, we will use the term chemical potential not only
in connection with the true Fermi distribution, but also
in connection with our complementary error-function
electronic weight distribution, which was used for all cal-
culations presented.

The conditions of constant electron number without
broadening lead to a distortion of the density of states
near the chemical potential and favor a large splitting be-
tween the highest occupied molecular orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO) states.
The density of states for the two settings is shown in Fig.
9. For the constant electron number with no broadening
setting, one sees a huge peak just below the chemical po-
tential, which cannot be seen in the other setting and
which seems unphysical. The HOMO-LUMO splitting is
shown in Fig. 10. From the smoothed electronic density
of states (see Figs. 7 and 9), one would expect for a disor-
dered 64-atom system a HOMO-LUMO splitting of
roughly 0.13 eV. This is actually roughly the splitting
observed under constant chemical potential and broaden-
ing conditions. Under constant-electron-number no-
broadening conditions, one finds however a splitting,
which is roughly three times bigger than the expected
one. These conditions, therefore, tend to make out of a
metalhc system a small-gap Jahn-Teller insulator: It is,
therefore, to be expected that the metallic aspect is better
described by the first setting. It is also noted that only in
the constant chemical potential with broadening scheme
can one observe crossings or avoided crossings of levels at

FIG. 9. The electronic density of states of a 64-atom carbon
system averaged over 10000 time steps for a simulation at the
constant-potential with broadening (solid line) and the
constant-electron-number setting without broadening (dashed
line). The average chemical potential is indicated by dotted
vertical line.

the chemical potential. One might speculate that a simu-
lation that prohibits eigenvalue crossings cannot explore
the whole phase space.

In the thermodynamic limit of very large metallic sys-
tems and for sufficiently low small broadening, the two
settings approach the same limiting behavior. In the first
setting, the fluctuations of the chemical potential become
negligible; whereas in the second setting, the fluctuations
of the electron number tends to zero and the conditions
of constant chemical potential and constant electron
number thus become identical. For small systems, the
two settings are, however, different: Therefore, it does
not make sense to compare forces or statistical quantities
obtained with the two settings for small systems. The
essential question is which setting approaches the limit-
ing thermodynamic behavior faster. Unfortunately, it is
not possible to answer this question by real calculations,
since the numerical effort for the classical diagonalization
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FIG. 10. The HOMO-LUMO splitting during a MD simula-
tion for liquid C. The solid line shows the result at fixed chemi-
cal potential and finite electronic temperature; the dashed line
shows the result for a fixed number of electrons without
broadening. The starting configuration for the run was obtained
under the first set of conditions.
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would be prohibitive. It seems, however, reasonable to
assume that the setting that dampens out fluctuations fas-
ter will more rapidly approach the thermodynamic limit.
Let us now compare the fluctuations of the chemical po-
tential and the fluctuations of the number of electrons in
the two settings. Since we cannot directly compare these
two quantities, we will translate the fluctuation of one
quantity into a corresponding fluctuation of the other
quantity. We choose to translate the fluctuation of the
number of electrons in a fixed-chemical-potential simula-
tion into a chemical-potential fluctuation. This is easily
done by adjusting the chemical potential in molecular-
dynamics simulation, where the forces are calculated un-
der the assumption of constant chemical potential and
with broadening at each step in such a way as to obtain
overall charge neutrality. The result is shown in Fig. 11.
It is clearly seen that the broadening leads to a consider-
able dampening of the fluctuations of the chemical poten-
tial.

These two observations suggest, therefore, that a
constant-chemical-potential setting with broadening is
better suited for molecular-dynamics simulations of me-
tallic liquids because it gives a better electronic density of
states and reduces the statistical fluctuations.

Let us finally still give some indications how to choose
reliable parameters for a liquid-carbon simulation. The
first important finding is that the value of Ae can be as
high in the metallic liquid as for solid diamond, namely 2
eV. Even though the system is metallic, its localized or-
bitals decay exponentially and this decay is independent
of the value of Ae as long as it is smaller than 2 eV. The
exponential localization is, thus, not an artifact of the
smooth Fermi distributions as it was the case for Al.
This numerically helpful behavior can probably best be
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FIG. 11. The variations of the chemical potential during a
MD simulation for liquid C. The solid curve shows the result if
the forces are calculated at constant chemical potential with
broadening but the chemical potential is nevertheless adjusted
between the time steps such as to obtain charge neutrality. The
dotted line shows the chemical potential calculated with
broadening during a run where the forces are calculated at con-
stant number without broadening. The full and dotted line
would be nearly identical if the density of states were the same
in the two settings. The dashed line shows the zero-temperature
chemical potential (HOMO-LUMO midpoint) for a constant-
number simulation without broadening.
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FIG. 12. The pair-correlation function for a 1000-atom sam-
ple of low-density liquid C at 5000 K as obtained with different

0
parameters. First set: De=1, r&„=7.5 A; second set: De=2,

0 0rj„=7.5 A; third set: De=1, r&„=5.5 A. The three curves are
nearly indistinguishable.

VII. CONCLUSIONS

We described and analyzed in detail our algorithm for
TB electronic-structure calculations and MD simulations.
The algorithm is not only very efficient for both large in-
sulating and metallic systems, but gives also a physically
very intuitive approach to quantities such as energies and
forces. In the case of metals, the smooth Fermi distribu-
tion leads to an artificial but numerica11y useful exponen-
tial localization of the localized orbitals. Even though
the numerical workload is still considerable for large me-
tallic systems such as defects and dislocations in metals,
this algorithm allows us to study those systems. We have
also demonstrated that it is preferable to use fixed-
chemical-potential conditions with level broadening for
MD simulations of metallic systems. For fixed-
chemical-potential simulations, we obtain perfect energy
conservation under any circumstances.

explained by the fact that even though the overall elec-
tronic density of liquid C looks metallic, the local density
of states shows gaplike features. A value of Ae larger
than 2 eV leads, however, to an even stronger but now
artificial exponential localization. Another important re-
quirement is, according to our experience, that the fluc-
tuations of the number of electrons on the Fermi surface,
i.e., in the energy interval [e—he; @+he] are small com-
pared to the number itself. The ratio of the number of
electrons on the Fermi surface to the number in the Fer-
mi sea enters in the force expression and becomes visible
in the quantities such as the correlation function. In Fig.
12, we show the pair-correlation function as obtained
with three sets of parameters for a 1000-atom system.
For this large system, the number of electrons on the Fer-
mi surface is roughly 400. We see that changing Ae from
2 to 1 eV has no visible effect as well as reducing the lo-
calization radius from 7.5 to 5.5 A. Reducing the locali-
zation radius from 7.5 to 5.5 A gives, however, a
significant increase in the computational speed. The re-
sults are in good agreement with short-range data from
other TB simulations' and Car-Parrinello ' simula-
tions.
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