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Equivalent phenomena for commensurate vortex states and zero field
in a modulated sine-Gordon system
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The presence of periodic columnar defects in large Josephson junctions leads to striking commensurability
effects when a magnetic field is applied parallel to the defects. Through the measurement of dynamic and static
phenomena involving Auxons in the junction, we confirm recent theoretical predictions that the properties of
junctions with periodic defects at commensurate fields are identical to those of defect-free junctions at zero
field if the critical current density j, and penetration depth XJ are rescaled to obtain field-dependent effective
parameters j, and XJ. We demonstrate the role of these effective parameters in describing the structure of
current-voltage characteristics at commensurate fields and of the field-dependent critical current I,(H).

With the advent of high-temperature superconductivity,
there has been a resurgence of interest in the properties of
magnetic fluxons in superconductors. Since flux motion in-
duces dissipation, the pinning of fluxons is of particular im-
portance for the application of high-T, materials. To this end,
there is much to be learned by studying systems in which
pinning is well controlled.

In a previous work, ' we described flux pinning effects in
large Josephson junctions with artificial defects created in the
barrier using lithographic techniques. The effect of the de-
fects on the inherently nonlinear behavior of large junctions
has already attracted considerable interest. Such devices
may also serve as models for testing some of the numerous
theoretical predictions concerning flux pinning in 1+1
dimensions.

Recently, Balents and Simon (BS) predicted that in large
Josephson junctions with periodic defects, the presence of a
one-dimensional fluxon lattice commensurate with the de-
fects leads to behavior equivalent to that of a defect-free
junction near zero field. They demonstrate this by transform-
ing a "modulated" sine-Gordon equation which describes
the commensurate situation into the usual sine-Gordon equa-
tion for a uniform junction near zero field. From this map-
ping, they obtain field-dependent effective critical current
densities j, and penetration depths XJ which govern the junc-
tion properties near commensurate fields. In this paper, we
report detailed confirmation of predictions arising from the
BS mapping.

Josephson tunnel junctions are formed by two supercon-
ducting electrodes coupled through an insulating barrier. The
junction carries a supercurrent density

j(r) =j,(r) siny(r),

where 4'o=hc/2e is the flux quantum, and the magnetic
thickness A=2k+d ()i. is the electrode penetration depth
and d is the barrier thickness). The behavior of y is given
by the modified sine-Gordon equation:

Bz y(x)
z

= siny(x).
Bx

(4)

Referred to as the stationary sine-Gordon equation, E . (4)
has solutions consisting of Jacobian elliptic functions. ' For
a field applied perpendicular to the junction width W [see
Fig. 1(a)], strong screening (XJ((W) results in localized
2m phase windings (solitons) corresponding to isolated
Josephson fluxons of width -2XJ. For weak screening
()iJ))W), a uniform winding (yo-'x) gives a sinusoidal
current [Eq. (1)]and a constant field [Eq. (2)] in the junction.

In our junctions with periodic columnar defects, the criti-
cal current density j,(r) is reduced to zero at the defects;
otherwise, j,(r) =j, b„,. If defects are oriented along L~~y,
then j,(r)~j,(x), and we can define a critical current per
unit width i,(x)=Lj,(x). Outside the defects, i, b„,

Lj, b,„,. Equatio—n (4) may then be generalized to a
"modulated" sine-Gordon (SG) equation:

By By 1 By PBy 1
2 gy2 -2 gt2 -2

g~ ) 2
J

where P= o.o/C arises from the quasiparticle conductance
pro and capacitance C per unit area of the junction. The
fluxon velocity c=c/lr'2mCA, and the Josephson penetra-
tion depth XJ= lr(cC&o)/(Sm Aj,).

If B~~y, then By/By =0 [Eq. (2)].To find time-independent
solutions of Eq. (3), we then solve

By 2m A 8y
Bx 40 ~ '

8y
8

2mA
8, ,

0
(2)

where j,(r) is the critical current density, y(r) is the gauge-
invariant phase difference across the barrier, and r=(x,y) is
in the barrier plane. A magnetic field in the barrier induces
phase winding:

B y(x)
XJ(x) 2

= cl'(x)slny(x) = ( t).x
Bx

The function cr(x) =i,(x)/i, b„, vanishes where defects are
present and is unity elsewhere.

In a recent paper, we presented a model based on the
premise that since i,(x) =0 wherever defects are present,
Josephson currents are prevented from crossing the junction
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a, and the modulated SG equation [Eq. (5)] near a commen-
surate field reduces to XJ[8 r/(x)/Bx ]=sinr/(x), which is
identical to Eq. (4) for a uniform junction with a small ef-
fective field H~ and an effective kJ ..
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FIG. 1. (a) Overlap junction of width W with columnar defects
embedded in barrier extending across length L. I-V characteristics
exhibit (b) zero field steps (ZFS) at H=O and (c) n = 1 commen-
surate field steps (CFS) at H= 12.0 Oe.

f W/2

I=L i,(x)sin[ y(x) + yp]dx
J —wt2

'

with respect to y0. If we coarse grain by averaging over the
microscopic current configuration, we obtain an effective
uniform critical current density j,(n) =I,(n)/LW given by

j,(n)

jc,bare

sinn m.

Wd1—
a

n= 0,

(7)

where wd and a are the defect width and spacing. Since
XJ~/1/j„j, (n) has an associated effective penetration
depth kz(n) given by

XJ(n)/KJ b„,= jj, b„,/j, (n) (8)

Balents and Simon (BS) recently introduced the effective
parameters j,(n) and kJ(n) in a transformation of the modu-
lated SG equation [Eq. (5)]. They change variables to
z/(x) = y(x) —(27rnx/a), which amounts to replacing HY by
an effective field HY=H~ (n4p/Aa). They a—lso express
the critical current profile n(x) in Eq. (5) as the Fourier sum
X —pn s(2cmo/a) nxAssuming a (.XJ and H&AXJ(& I p

(which imply a fairly uniform field near a commensurate
value), z/ will vary slowly on the scale of the defect spacing

there. In the simplest version of the model, we assume a
linear y(x). For a uniform junction, this gives a sinusoidal
i(x) with every positive half-wavelength balanced by a nega-
tive half-wavelength leaving no net current crossing the
junction. " However, if periodic defects are present and

i(x) =n(x)siny(x) is commensurate with the defects, then
each defect can block negative current, leaving net positive
current crossing the junction. We used this "current block-
ing" model to compute' the critical current I,(n) for com-
mensurate fields of n fluxons per defect by maximizing the
total current

Upon calculating the Fourier coefficients n„, one obtains
the same X~(n) found using the current-blocking model [Eqs.
(7) and (8)]. The BS transformation is also equally valid
when applied to the dynamic SG equation [Eq. (3)] for a
junction with defects since the time-dependent terms are
unchanged. Therefore, it predicts that the behavior of a
junction with columnar defects near a commensurate field is
identical to that of a junction without defects near zero field
ifj,(n) and X~(n) replace j, b„, and kJ

Dynamic Properties. To study dynamic properties of junc-
tions with defects, we fabricated Nb/A10 /Nb junctions with
L =50 p, m and W=200 p, m [Fig. 1(a)] in an overlap geom-
etry (i.e., L —XJ(&W). Photolithographically defined, peri-
odic SiO defects of width wd = 2.9 p, m, spacing a = 10
p, m, and thickness td-500 A extended over the 50 p, m
length. At 4.2 K, the zero-field critical current I,(0)-23.0
mA yields j,(0)-300 A/cm and Xz(0)-24 p, m.

Since fluxon motion in the junction induces a voltage
across it, dynamic properties can be probed by measuring
I-V characteristics. With H=O, one finds the data shown in
Fig. 1(b).' While sweeping I from zero, V= 0 until

!I!)I,(0). The sweep towards zero exhibits steps, and full
plateaus are obtained by reversing the sweep direction while
on a given step. These voltage plateaus at zero field, known
as zero field steps (ZFS), result'" from a solution of the SG
equation [Eq. (3)] corresponding to the free propagation and
edge reflection of current-induced Auxons. Each round trip
excursion of a fluxon across the junction in a time
At = 2W/c induces a phase winding b, y= 4m and a conse-
quent voltage plateau at V~ = (4'p/2') (b, y/6 t) . If m fluxons
are present, a plateau is found at mV~. For the plateaus in
Fig. 1(b), the —70 p,V plateau spacing yields a velocity
c-c/40, where c is the speed of light. By performing IV-
measurements at the n = 1 commensurate field (12.0 Oe), we
obtained the data in Fig. 1(c).Again, we find plateaus with a
-70 p, V spacing, as anticipated by the BS mapping since it
does not change c. We first reported these commensurate
field steps (CFS) in Ref. 1.

The ZFS can be collapsed to a single curve if the voltage
scale for a given plateau is rescaled by the number of Auxons
m giving rise to it. ' From the BS mapping, we expect an
equivalent voltage scaling for the CFS. This is verified by
Fig. 2(a), where the ZFS and CFS from Fig. 1 are plotted
after rescaling each plateau by the appropriate m. However,
the mapping yields an even stronger prediction that the dy-
namics at commensurate fields should be identical to zero
field dynamics up to a rescaling of the current density. We
carry out this final rescaling of the CFS current axis using
the measured ratio I,(0)/I, (1)=j,(0)/j, (1)= 1.89 to obtain
the collapse of all the field steps to a single curve in Fig.
2(b).

Static properties. At the nth commensurate field, as I is
swept from zero, the phase y has static solutions with V
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FIG. 2. (a) Collapse of ZFS and n=1 CFS after appropriate
voltage rescaling of each step. (b) Collapse of all steps after CFS
current axis rescaling by j,(0)/j, (1).
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FIG. 3. 1,(H) for (a) sample 1 and (b) sample 2 with insets
showing defect orientation. Left-hand inset of (a) shows small peak
near Cso /2 per defect. (c) Normalized peak heights with prediction
from text. (d) Collected slope data for sample 1; linear fit (dashed
line) is constrained to unity at n =0.

~By/c/t=0 until III)I,(n). To substantiate the predicted role
of j,(n) and )sJ(n) in determining the static properties of
junctions with defects, we have studied large junctions for
which L, W)~IiJ(n) over the range of field used. Sample di-
mensions were L =1000 p, m and 8'=200 p, m, and the SiO
defects had width ~d=2.8 p, m, spacing a=10 p, m, and
thickness td-500 A. We describe results for two samples
with defects oriented as shown by insets in Figs. 3(a) and
3(b). )i~(0)-50 p, m for both samples. I, was determined us-

ing computer-controlled I sweeps and a 0.5 p, V threshold.
Data taken on sample 1 are shown in Fig. 3(a). The zero

field peak decays linearly with H due to the interference of
the applied transport current with screening current I,~H
induced to maintain zero field in the junction interior. The

extrapolation of this decay to zero defines a critical field
H„~= (2&Iso)/(m AX&) analogous to the lower critical field
H, &

of type II superconductors. We find similar peaks at
commensurate fields with n = 1, 2, 4, 5 and 7 flux quanta per
defect. (The n=3 and n=6 peaks are suppressed because at
these fields, each defect contains almost exactly an integral
number of fluxons and will therefore always block nearly
equal amounts of positive and negative current. ') The struc-
ture between the peaks arises from edge pinning. " In Fig.
3(b), data for sample 2 show peaks similar to those for
sample 1, although their detailed shape is different mainly
due to the change in the orientation of the screening currents
relative to the transport current.

For junctions with L && P J, the critical current is
I,=L Wj, . If L&&X.J, then current crosses the junction only
within a distance -2XJ from each of the two edges where
the electrodes overlap, and I,=4)~iWj, (the equality is
exact ). Near commensurate fields in a junction with periodic
defects, the relevant screening length is Isj(n). If L(&X~(n),
the normalized peak heights are given by
I,(ng/I, (0)=j,(n)/j, (0). However, for peaks satisfying
L&&)s&(n), we must use both effective parameters to find

I,(n) 4Z, (n) Wj, (n)

I,(0) 4XJ(0)Wj (0)

J', (n)

j,(o)
(10)

where Eq. (8) gives the second equality. In Fig. 3(c), the
normalized peak height data for sample 1 (circles) and
sample 2 (triangles) agree well with values (diamonds) pre-
dicted by Eq. (10).

The role of kz(n) is also evident in the commensurate
peak slopes determined by I,(n)/H„J(n) where H„J(n)
= [2~Iso]/[vr Alij(n)] is an effective critical field for
each commensurability peak. (Just as screening maintains
zero field in the junction interior when H is near zero, it also
maintains a commensurate field in the junction when H is
near this field. ) From Eq. (10), I,(n) ~j,(n) A.J(n),
I,(n) H/, i(Jn) sxj, (n))iJ(n) is a constant [Eq. (8)], and so
the peak slopes should be independent of n. (For L(&X&(n),
slopes should be proportional to [j,(n)] .) In Fig. 3(d), we
show data from sample 1 for left-hand and right-hand slopes
of the commensurate peaks normalized by the corresponding
slope from the zero field peak; data are included for H)0
and H(0. A least-squares linear fit (dashed line) with the
n=0 point constrained to unity shows that the normalized
slopes are on average independent of n, as predicted.

The BS mapping assumes HY is small (i.e., H is nearly
commensurate), but it is not easy to theoretically estimate the
range of its validity. We previously reported' I-V curves
taken as the field is changed from a commensurate value and
demonstrated that their evolution is equivalent to that found
near zero field for changes at least as large as H„J(n). This
suggests the mapping is valid for at least the field range
beneath each peak.

Thus far, we have assumed a uniform H and phase wind-

ing y(x) =(kx+ yo), where k=(2vrAH)/4o. However, to
first order, i(x)~sinkx will induce a sinusoidal modulation
of H yielding y(x) = (kx+ b sinkx+ yo), where b refiects the
modulation strength and can be determined using measured
parameters for the Jacobian elliptic solution for y(x) (for
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sample 1, b-0.008). Expanding sin(kx+bsinkx+yo), we
can generalize Eq. (6) to nonintegral fields:

I" ic,bare 2 '7TPPSXj,(H) = dx '
cr cos sin(kx+ yo)

J gr]2 L a

b
+ —sin(2kx+ yo)+O(b )

where we have Fourier expanded i,(x)=i, b„,cr(x) Ma. xi-
mizing Eq. (11) for H= Iti/o2Aa (i.e., tzio/2 per defect)
gives ctib/2, indicating finite subharmonic structure arising
from the term of order b. (Structure at other fractional fields

p/q scales with bq '.) We must consider that since KJ(1/2)
~[j,(1/2)] 't exceeds the sample length L, we should use
L instead of XJ(1/2) in computing I,(1/2) tsee Eq. (10) and
preceding discussion]. Using the measured value of
I,(0) =26.1 mA, we estimate I,(1/2)-0.2 mA, which is of
the order of the small peak near H =6.0 Oe [left inset of Fig.
3(a)].

The various phenomena we have presented may also oc-
cur for nonperiodic defect configurations. In the limit of an
infinite sample, it is apparent from Eq. (11) [where a periodic
cr(x) had wave vectors q=2mm/a] that I,(H) will be en-
hanced at any field H= (q@o)/(2mA) for which the Fourier
component nq has finite weight, and it is plausible that com-
mensurate field dynamic behavior would be found as well.

We also expect that effects similar to those reported here
should occur in any system described by the SG equation
[Eq. (3)] with a modulated potential. Possible candidates in-
clude materials which exhibit commensurate charge density
waves.

In summary, we have confirmed the theoretical prediction
that the properties of large Josephson junctions with periodic
defects near commensurate fields are identical to those of
defect-free junctions near zero field up to the replacement of
j, and XJ by field-dependent effective parameters j,(n) and

kJ(n) Th. is was demonstrated by dynamic measurements of
ZFS and CFS, all of which can be collapsed to a single curve
after a rescaling dictated by the theory. The static behavior
probed through measurements of I,(H) shows that if both
effective parameters are considered, normalized commensu-
rate peak heights and slopes can be accurately calculated. In
particular, these findings verify the predicted role of an ef-
fective penetration depth in governing junction screening
properties when periodic defects are present.
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