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Spin dynamics of La2Cu04 and the two-dimensional Heisenberg model
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The spin-lattice relaxation rate 1/T& and the spin-echo decay rate 1/T2G for the two-dimensional Heisenberg
model are calculated using quantum Monte Carlo and maximum-entropy analytic continuation. The results are
compared with recent experiments on La2Cu04, as well as predictions based on the nonlinear cr model.

The Cu02 planes of the undoped high-T, cuprates are
good physical realizations of the two-dimensional (2D) anti-
ferromagnetic Heisenberg model. The mapping of this lat-
tice model onto the nonlinear o model (NLaM) in 2+1 di-
mensions has led to detailed predictions for various
experimentally measurable quantities. For T(600 K
(above the 3D ordering temperature) the correlation length of
La2Cu04 grows exponentially as the temperature is
lowered. The behavior is in close agreement with quantum
Monte Carlo results for the 2D Heisenberg model with a
nearest-neighbor coupling J=1500 K, and corresponds to
the NLo.M in the low-temperature "renormalized classical"
(RC) regime. It was recently suggested ' ' ' that the high-
temperature behavior of the cuprates corresponds to the
"quantum critical" (QC) regime of the NLoM, where the
leading temperature dependence of the inverse correlation
length is linear. Experimental evidence supporting this sce-
nario has been provided by Imai et al. , who measured the
spin-lattice relaxation rate 1/T, and the Gaussian component
of the spin-echo decay rate 1/T2G at temperatures as high as
T=900 K. ' In particular, it was found that 1/T, and the
ratio TiT/T2G were both temperature independent at high
temperatures, as predicted for the QC regime. These experi-
ments were recently repeated by Matsumura et al." Their
results for 1/T, are almost identical to the earlier ones, but
for 1/T2G the temperature dependence obtained is different at

high temperature, causing TT, /T2G to be temperature de-
pendent, in disagreement with the QC scenario. In addition
to this discrepancy, an open question is the reason for the
absence of the minimum in 1/Ti at T=750 K, theoretically
predicted by Chakravarty and Orbach. ' In order to settle
these questions we have calculated both 1/Ti and I//T2G for
the 2D Heisenberg model using quantum Monte Carlo simu-
lation and the maximum-entropy analytic continuation
method. ' ' This enables us to compare directly the spin

dynamics of the Heisenberg model and La2Cu04, as well as
to assess rigorously the accuracy of the predictions based on
the NLo.M. Lower temperatures can be reached than with
high-temperature series expansions ' and calculations on
small clusters, and the approximations necessary with these
methods can be avoided.

Overall our results are in good agreement with the experi-
ments on LaqCu04. However, 1/T2G for the 2D Heisenberg
model decreases faster than the rate reported by Imai et al.
above 750 K. The temperature dependence is —T for
0.45(T/J(1, in disagreement with the QC prediction

-T '. For 1/T, our results are in good agreement with the
experiments. We find that while 1/T, exhibits a minimum for
a local contact hyperfine coupling of the type used by
Chakravarty and Orbach, this minimum is absent when the
experimentally known on-site and near-neighbor interaction
is used.

The spin-lattice relaxation rate and the spin-echo decay
rate for a given nucleus provide information on the spin sus-
ceptibility through the direct and transferred hyperfine cou-
plings of the nuclear spin to surrounding electronic spins.
Here we consider the standard 2D Heisenberg Hamiltonian

H=Jg gS;S;

where S; is a spin--,' operator, and 8 runs over the nearest
neighbors of site i. For a Cu nuclear spin Io at site 0, the
coupling to the electronic spins S; is given by the hyperfine
Hamiltonian' '

H=Ai(IpSp+IpSp) +AIIIpSp+B Ip ' Sp. (2)

The constants A&, A~~, and B are known from Knight shift
measurements.

With the external field in the direction n, the NMR spin-
lattice relaxation rate is given by

'

1 1= yX X lAq I S(q tott)
u' q

(3)

+ 88 S2o. (4)

where n' denotes the two axes perpendicular to u, and
I

A is the Fourier transform of the n' component of the
q

hyperfine coupling. The dynamic structure factor S(q, co) is
related to the imaginary part of the spin susceptibility;
S(q, to) =y"(q, to)/(I —e P ). Since the resonance fre-
quency to~ is small compared to J, 1/Ti effectively mea-
sures S(q, co~0), averaged with the hyperfine form factor

t

lA
l

. In terms of the inverse Fourier transform
S „= (Smx n+y, ~coOof S(q, to), 1/Ti with the external
field perpendicular to the Cu02 planes is given by

1)
2= 2(Ai + 4B )Spp+ 16A BStip+ 16B Sit(Ttl ~
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This is the rate measured in the experiments by Imai et al.
and Matsumura et al. S „(ca) can be obtained from the
imaginary-time correlation function
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C „(r) = (S' -,~ „-(~)So(0 )),

where S'„-(r)=e' S'„-e ', by inverting the relation

1
C „(r)=—

~
daiS(mx+ny ~a)e

7T J oo

(5)

(6)
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/ 0.69g J,(x;) (7)

Here C „(7.) is computed using a quantum Monte Carlo
technique, and the inversion of (6) is carried out with the
maximum-entropy method. ' '

The rate 1/TzG is related to the interactions between the
nuclear spins. The coupling (2) induces an indirect nuclear
spin-spin interaction, which dominates the direct dipole-
dipole interactions. For the external magnetic field applied
perpendicular to the Cu02 planes, Pennington and Slichter
derived the following expression for 1/TzG.
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FIG. 1. Monte Carlo results for 1/TzG (solid circles) and experi-
mental results by Imai et al. (Ref. 10) (open squares) and Mat-
sumura et al. (Ref. 11) (open circles). The solid line in the main

figure is of the form —T . Inset: Same as the main figure with the

QC prediction by Chubukov et al. (Ref. 26) (solid curve) and in-

cluding the temperature dependence of the spin-wave velocity (Ref.
18) (dashed curve).

J,(x;) =A IIF,(x;) +8g F,(x;i e), (8)

with

F,(x;) = 2&IIX(x;)—+8K X(x,+e),
)

(9)

where X(x;) is the static response at separation r =x;, given
by the Kubo formula

Here J,(x;) is the z component of the induced interaction at
distance x, , given by

tained with J= 1580 K and 8 = 3.4X 10 eV (= 37 kOe/
p,ii), both consistent with other estimates. ' ' The Monte
Carlo results with these parameters are shown in Fig. 1,
along with the experimental data. Although the overall
agreement is good, a notable feature is that for T~750 K the
data of Imai et al. are flatter than both the Monte Carlo
results and those of Matsumura et al. This fatness cannot
be reproduced for the Heisenberg model with any reasonable
values of J and B and, if correct, must be associated with
physics not described by this model alone. On the other
hand, the data of Matsumura et al. are well reproduced at
high temperatures. Figure 1 also shows the theoretical form
derived by Chubukov et al. for the QC regime, which for
the hyperfine coupling used here becomes

t p
X(x,) = d ~(S', ( r)So(0))Jo

T2G
=0.49 4(T) X 10 s'

The factor 0.69 in (7) is the natural abundance of the Cu
isotope.

We have used a recently improved variant of the Hand-
scomb quantum Monte Carlo technique to calculate the
necessary correlation functions. Unlike standard methods,
this technique is free from the systematical errors associated
with the Trotter breakup. For the analytic continuation of the
imaginary-time data necessary to obtain 1/T, , we have
implemented the so-called "classic" maximum-entropy pro-
cedure as described in a recent unpublished work by Jarrell
and Gubernatis. '" We have studied systems of N=64X64
spins with periodic boundary conditions, at temperatures
T/J = 0.25 —1.0. At these temperatures the correlation length
is smaller than the lattice size, and there are virtually no
finite-size effects.

The calculation of 1/TzG is straightforward, as it involves
only the static susceptibility (10). We use the relation
A

~~

= —4B, experimentally known to hold quite
accurately. ' We are then left with J and B as fitting pa-
rameters, that can be checked against other experiments. The
best agreement with the experimental data for 1/TzG is ob-

where the QC correlation length is given by '

g= c/(1.04T) (QC regime), (12)

and the spin-wave velocity c=1.68. As noted by Chu-
bukov et al. , the overall magnitude of 1/TzG at high tem-
perature is well reproduced with this formula, but the slope is
not. Actually, the Monte Carlo results for 1/TzG in the regime
0.45~T(1 are well described by a T behavior, a quite
significant deviation from (11).Elstner et al. ' recently sug-
gested that the leading lattice corrections to the NLo.M can
be taken into account via a temperature-dependent spin-wave
velocity. The velocity calculated from Monte Carlo results
for the static structure factor and the static susceptibility
agrees well with the high-temperature series expansion re-
sults by Elstner et al. ,

' and when used in Eq. (12) slightly
improves the agreement with the Monte Carlo results for
1/TzG at high temperatures.

We now turn to the calculation of 1/Ti, which is more

complicated as it relies on a numerical analytic continuation
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FIG. 2. Maximum-entropy results for Soo vs T (solid circles)
compared to the RC form (13) and the high-temperature form de-
rived in Ref. 12 (solid curves). The dashed curve is the QC form
(15).

FIG. 3. Maximum-entropy results for 1/T, vs T (solid circles)
compared to the experimental results by Imai et al. (Ref. 9) (open
squares) and Matsumura et at. (Ref. 11) (open circles).

y/y g( T F3~2( ]S" ( 0)= (13)c t 27rp, / t 1+T/2mp

where the correlation length is given by '

e c (
i 1

8 2mps i 4mps]

T
e ~ ~ (RC regime). (14)

The spin stiffness p, =0.18, ' and the ordered moment is
Np 0.31. The constant X. has not been calculated rigor-
ously, but an estimate based on fitting the NLo.M scaling
forms to numerical results is XNp=0. 61.' ' The rather poor
agreement with our result for Spp shown in Fig. 2 indicates
that this value is too large. It should be noted, however, that
even the lowest temperatures studied here correspond to the
crossover regime to RC behavior, and perfect agreement
with the RC expression cannot be expected. The high-
temperature form derived in Ref. 12 is also shown in Fig. 2,
and deviates from the Monte Carlo result by 25% at
T/J=1. In the regime 0.4(T/J~0. 6, Sop(rtJ~O) is rather
fiat, as predicted for the QC regime. The expression derived

by Chubukov et al. is

of imaginary-time correlation functions. For the local corre-
lation function Coo(r) the relative statistical errors in our
data are typically as low as 10, and the continuation of
this quantity is relatively stable. For Cip, C», and C2p the
relative errors are typically on the order of 10 and an
accurate determination of 1/Tt using the full extended hyper-
fine coupling (2) is therefore more difficult than with a
strictly local interaction (B=0).

In Fig. 2, the co~0 limit of Spp is graphed versus the
temperature. For a strictly local coupling, this quantity is
proportional to 1/T, . Repeating the analytic continuation
procedure for different subsets of the Monte Carlo data, we
estimate the statistical errors to be a few percent (any bias
due to the maximum entropy procedure itself is of course not
captured this way). A broad minimum around T/J=0. 5 is
observed, in agreement with the prediction by Chakravarty
and Orbach, who deduced this feature by contrasting the
behavior of Son(ru~O) in the RC regime and the high-
temperature limit. The RC expression is

N,'( 3T 1&
Stto (re~0) = R, ,

p, i2mp, )
(15)

where the the 3D classical Heisenberg exponent y=0.03,
and RI is a constant for which Chubukov et al. estimated

R,=0.22 (there are certain complications in estimating

R,). Equation (15) with this value of R, describes the be-
havior in the intermediate temperature regime reasonably
well.

A minimum in 1/T, has not been observed
experimentally. "In Fig. 3 we show results obtained with
the full hyperfine coupling (2), using the same values of J
and B as in the fit to 1/T2c in Fig. 1. For A~ /B we take the
experimental value 0.84. ' The statistical errors are rather
large, as discussed above, but a clear difference from the
temperature dependence of Fig. 2 can be noted, and the
agreement with the results by Imai et al. and Matsumura
et al. " is reasonably good. In particular, 1/T, is temperature
independent at high temperatures and the minimum found
above for Son(to~0) at T=J/2 is absent.

To summarize our results, we note that 1/T2G for the
Heisenberg model agrees well with the experimental results
for La2Cu04 by Imai et al. * and Matsumura et al. for
T(750 K. However, for T)750 K the Heisenberg result
decays considerably faster than the data by Imai et al. , but
fits well the data by Matsumura et al. . The temperature de-
pendence is close to T in a wide temperature regime. For
1/T, our results are also in reasonable agreement with the
experiments and, in particular, are almost temperature inde-
pendent at high temperatures, as predicted for the QC
regime. For the q-integrated dynamic susceptibility
Son(to~0) (i.e., 1/T, with a constant hyperfine coupling
A&=A) we find a clear minimum around T/J= 0.5. This was
predicted by Chakravarty and Orbach, who also speculated
that the crossover between the RC and high-temperature
forms is related to QC behavior. This is confirmed by the
close agreement of our numerical result with the QC
prediction in the regime 0.4~T/J~0. 6, which is also ap-
proximately the regime in which the uniform susceptibility
exhibits QC behavior. ' As a consequence of the behavior of
1/T2G, the ratio Tt T/T2G .'s not constant at high tempera-
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tures, in disagreement with the QC prediction. The tempera-
ture dependence is, however, relatively weak in the regime
600—800 K.

The deviations from QC behavior at very high tempera-
tures are caused by lattice effects, not present for the con-
tinuum NLo.M. Elstner et aI. have argued that the dominant
lattice effects can be absorbed into a temperature-dependent
spin-wave velocity, and that the correlation length of the
Heisenberg model then shows QC behavior above
T/J=0. 6. In the regime 0.4(T/J~0. 6 there is a crossover
to RC behavior. Using the temperature-dependent c(T), the
deviations from the QC predictions found here for I/T2G and
the ratio TTt /T2G can be accounted for to some extent.
However, it should be noted that the uniform susceptibility,
the temperature dependence of which is in remarkable agree-
ment with the QC prediction with a constant c = c(0) for

0.35~T/J~0. 55, ' does not follow the form expected with
c = c(T) He. nce, the use of c(T) in the QC formulas can be
questioned.

Our study reaffirms that effects of the proximity to the
critical point of a quantum phase transition are manifest in

the 2D Heisenberg model. However, the size and location of
the regime where QC behavior can be observed depends
strongly on the quantity considered, and there does not seem
to exist a temperature regime where the QC scaling formulas
can be applied universally.
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