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Melting line with quantum correction in a melt-textured YBa2Cusoq g sample
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The irreversibility line for a high quality melt textured YBa2Cu30& & sample was determined in
two orientations of the field H relative to the sample c axis. In both orientations we obtain good fits
using a melting equation with quantum correction to describe the Abrikosov-lattice melting. The
angular-scaling rule for uniaxially anisotropic materials is verified, giving additional support for the
melting hypothesis. Our results are similar to those found in the literature for very clean untwinned
samples. We suggest that the Abrikosov-lattice melting is weakly afFected by quenched disorder, at
least in the relatively low fields (H ( 50 kOe) and high temperatures (T/T, ) 0.8) probed in this
work.

The existence of an irreversibility line (IL) that sepa-
rates a magnetically irreversible from a reversible state in
the H x T plane is a very well-documented experimental
fact for the high-T superconductors. However, the phys-
ical interpretation for the IL has aroused some issues. In
order to describe the IL, simple power laws of the type
H (T) = Hp(1 —T/T, ) have been suggested, where Ho
is a model-dependent fitting parameter. The exponent
n = 3/2 is predicted by a quasi —de Almeida —Thouless
behavior as well as by the giant flux creep model. 2

The exponent n = 4/3 is expected from a vortex-glass
formation, ' as well as from Tinkham's giant flux creep
model. An exponent which is dependent on the pinning
strength can be found in a collective flux creep model.
In a more general approach the IL is identified with a
depinning line, whose solution comes from an equation
describing the constant difFusivity Do(H, T) of the flux
lines. Finally, the interpretation of the IL as the melting
transition line of the Abrikosov lattice has received
enough confirmation, and nowadays the melting hypoth-
esis seems to be a well-established matter. The basic
idea is that the Abrikosov lattice becomes unstable and
melts, when the mean displacement amplitude of the flux
lines, g(u2), reaches an appreciable fraction of the lattice
parameter ap. This latter condition is usually expressed
in terms of the Lindemann criterion g(u2) = cL,ao, with
the Lindemann number cL, varying between 0.1 and 0.3.

Recently, Blatter and Ivlev discussed the relevance
of quantum fluctuations (g(u2)v ) that, combined with
thermal fluctuations (g(u2)ti, ),io produce an effective
mean displacement amplitude of the flux lines which may
correct the melting line position in some cases. For in-
stance, thermal fluctuations are known to be dominant
in the strongly anisotropic Bi-Sr-Ca-Cu-0 compounds,
making quantum corrections vanishingly small. How-
ever, in the less anisotropic YBa2CusOq g (YBCO) com-
pound the correction due to quantum fluctuations be-
comes important, as has been discussed by Schilling et
al. and Blatter and Ivlev, using data from single-
crystalline samples.

In this work we present results that provide further
confirmation for the relevance of adding quantum correc-
tion in the calculation of the melting line for YBCO.

Our study was done in a melt-textured YBCO sample,
in contrast with the very clean single crystals analyzed
before. ' Hence, we conclude that the occurrence of
quenched disorder (pinning centers) in the melt-textured
sample has little influence on the relative weight of quan-
tum and thermal fluctuations that are required to inter-
pret the IL as a melting line. We measured the IL in
two angular directions (n = 0', 60') of the field H with
respect to the c axis of the textured sample, and found
that these results obey the anisotropy-induced angular
dependence predicted for the melting line.

The melt-textured YBCO sample studied here was ob-
tained by the partial-melt-growth method. » It was cut
into a parallelepiped having dimensions 2.7 x 2.5 x 1.1
mm and contains long crystalline grains, well aligned
with the c-axis direction. Figure 1 presents the x-ray
diffractogram for the c-axis-oriented geometry, showing
essentially the occurrence of (OOE) peaks. A rocking curve
for the (005) peak was also measured and shows an an-
gular spread around 2' for the grain orientations along
the c direction.

dc magnetization measurements M(T) were made us-
ing a commercial superconducting quantum interference
device (SQUID) magnetometer (Quantum Design, model
MPMS5). The magnetic transition of the sample mea-
sured under H = 5 Oe gives T = 91.0 K at the tran-
sition onset and AT = 1.3 K between 10% and 90% of
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FIG. 1. X-ray difFraction pattern in the c-axis-oriented ge-
ometry for the melt-textured YBCO sample.
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(1-t) ~ (1-b)
4(~Z —1) + 1 = ecL) (1)

1 —b

where t = T/T, and b = B/H, 2, with H, 2 (t)
H, 2 (0) (1 —t). In the above Eq. (1) appears the

the maximum shielding. Each point M(T) corresponds
to an average over two scans in a length of 3 cm. We
employed in this work a magnetic and thermal history
similar to that reported by Schilling et al. , aiming at
the IL determination through conventional M vs T mea-
surements. First, a remanent magnetization curve M,
was obtained (Fig. 2) by cooling the sample from 100 K
(normal state) to 10 K under an applied field H = 50
kOe. Then, a measuring field H was set and the sample
warmed up to 70 K, from which the M„(T) curve was
measured by slowly increasing the sample temperature in
steps AT =0.4 K. Following, a field-cooled curve MFG(T)
was obtained by cooling the sample from 100 K to 70
K, in a measuring field H. From that point the MFG(T)
curve was measured by slowly increasing the sample tem-
perature in steps AT =0.4 K, like before. For each chosen
field H, the curves M„(T) and MFG(T) merge at an ir-
reversibility temperature T;(H) as shown in the inset of
Fig. 2 for H = 30 kOe. A practical criterion was applied
to define T, (H) where the difFerence AM = M„—MFG
becomes less than the standard deviation of the mea-
surements. The upper critical field H, 2

——H(T~2) is as-
sociated with the temperature T,2 (see the inset of Fig.
2) where the linear extrapolation of the reversible region
meets the normal base line of the magnetization curve. It
can be noted that our data did not show a consistent fea-
ture like a break in the slope of the magnetization curve
at a temperature T* & T, , as reported by Schilling et al.
in their study with YBCO single crystals.

As shown by Houghton et al. the melting line due to
thermal Buctuations, for H parallel to the c axis of an
anisotropic material, is

Ginzburg number NG; = 16~ K (kaT, ) /OIIH~2(0)
1.p6 x 1p—' T2K'H, 2(0), where K is the Ginzburg-Landau
factor, 40 is the Aux quantum, and k~ the Boltzmann
constant. The sample anisotropy is described by the ef-

fective mass ratio e = gm s/m„whose value is e = 1/5
for YBCO

Equation (1) does not admit a closed form solution for
the melting line B(T); therefore it has to be solved in
a self-consistent way when Gtting the experimental data.
However, close to T, and taking up to linear terms in y b

for the expansion of Eq. (1), one gets

cue' r1 —'tl'
B(T) = Pt~H" (0) ~Gi ( t )

where (1—t)/t appears as the natural variable, instead
of the commonly used form (1 —t). The numerical con-

stant is Pth ——(27r/[4(~2 —1) + 1]) = 5.6.
Figure 3 shows the best fits to our IL data (H [[ c),

for the complete thermal equation [Eq. (1)] and for its
simplified form [Eq. (2)], both using the Lindemann
number cl, = 0.20. Equation (1) gives a reasonable fit
(dotted line) only for H ( 20 kOe while the quadratic
form, Eq. (2), fits only very close to T, (dashed line),
for H & 10 kOe. Figure 3 also shows the H, 2 line,
fitted by the linear form H,2(T) = H,2(0)(1 —T/T')
with H, 2(0) = 1.72 x 10 Oe and the extrapolated crit-
ical temperature T* = 90.6 K. These figures produce
a slope dH, 2/dT —1.9 x 10 Oe/K which is compa-
rable to the commonly quoted values for high quality
YBCO crystals. ' A T~ = 91.8 K was employed in
all three melting equation forms fitted to the IL data
(Fig. 3). This latter T, value is fairly close to the mea-
sured value of 91.0 K. Using these quoted figures and
the Ginzburg-Landau factor K = 80, which is repre-
sentative for YBCO, ' we get the Ginzburg number

NG; = 5.3 x 10 . This NG; number is about six orders
of magnitude larger than what is found in conventional
superconductors, thus stressing the relevance of thermal
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FIG. 2. Typical magnetization. curves M, and MFC
(see text) of the melt-textured YBCO sample. Two angles
n = 0, 60' between the applied field H and the c-axis direc-
tion were employed. The inset displays a magnified view of
the reversible region for o. = 60 where the temperatures T,.

and T,q (see text) are indicated.

FIG. 3. Magnetic phase diagram of the melt-textured
YBCO sample. The data points define the irreversibility line

(o) and the H, 2 line (o). The solid, dotted, and dashed lines
represent fits of the melting equation, respectively, with quan-
tum correction [Eq. (3)], without quantum correction [Eq.
(1)], and in the approximated quadratic form [Eq. (2)]. A
linear fit of the H 2 line, H~2 —— qH(0)(l —T/T,*), is also
represented by the dot-dashed line.
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fluctuations in the high-T, material.
The combined efFect of thermal and quantum fluctua-

tions lead to the following compact equation for the melt-
ing line, according to Blatter and Ivlev:
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and the suppression parameter

S=24 +cL
Ky NG;

' (5)

B(n, T) = B(0,T)
vs' 'un+ cos'n '

where o. is the angle between the e axis and H. The

where K~ is the Fermi wave vector [K~ = 0.15—0.20 A.

(Ref. 13)] and v is a fittting parameter, which relates a
cutofF frequency 0 with the superconducting gap energy
A, v = hA/A. As pointed by Blatter and Ivlevis only
part of the suppression parameter S appearing in Eq.
(5) can be attributed to the effect of quantum Huctua-
tions, while the larger contribution actually arises from
the suppression of the order parameter 4 close to the
H, 2 line. Indeed, an increase of the magnetic penetra-
tion depth A -+ A/(~4~2) = A/(1 —b) ~ follows from
Ginzburg-Landau theory.

Equation (3) fits very well to our data as shown by the
solid line in Fig. 3, producing cl. = 0.24 and v 4 in
quantitative agreement with the analysis of Blatter and
Ivlev for untwinned single crystals of YBCO. However,
the melting line in our case is shifted to lower tempera-
tures, as would be expected in the presence of quenched
disorder. ' For instance, at H = 50 kOe we have
T, = 75.5 K, instead of T, 81.0 K which was observed
in untwinned single crystals. These results suggest that
the occurrence of quenched disorder in the melt-textured
sample has a negligible influence on the determination of
cI, and v appearing in Eq. (3). This probably means that
the melting of the Abrikosov lattice is weakly afFected by
quenched disorder, at least in the relatively low-Geld and
high-temperature region studied here.

Figure 4 shows the IL shifted to higher temperatures
when the field H makes an angle n = 60' (+2') with
the c-axis direction. The dashed line represents the new
position of the melting line B(n, t) when the effect of
anisotropy is corrected by the scaling rule.

FIG. 4. Magnetic phase diagram of the melt-textured
YBCO sample, showing the effect of anisotropy on the irre-
versibility line for n = 0' (o) and n = 60' (o). The solid line
represents a fit of the melting equation taking into account
thermal and quantum 8uctuations [Eq. (3)] for n = O'. The
dashed line represents that same fit corrected by the angular
scaling rule B(n, T) = B(O, T)/(e sin n + cos n) ~ .

dashed line in Fig. 4 is obtained using e = 1/5, the same
mass anisotropy factor employed in the melting equations
[Eqs. (1)—(3)]. Similar to the conclusion of Beck et al. ,
we believe that the verification of the scaling rule given by
Eq. (6) is a strong point in favor of the melting hypoth-
esis. The manifestation of other phenomena, like a giant
flux creep or a thermal depinning, would be strongly de-
pendent on the sample geometry and nonequilibrium
effects, thus having eventually difFerent angular depen-
dences.

In conclusion, the irreversibility line for a high quality
melt-textured YBCO sample was determined in two ori-
entations of the field H relative to the sample c axis. The
hypothesis based on Abrikosov lattice melting is strongly
corroborated by the good fit to the data (Fig. 3) of the
melting equation with quantum correction, Eq. (3), as
well as by the verification of the angular scaling rule
(Fig. 4) predicted for the melting line, Eq. (6). Al-
though the sample studied here might contain much more
quenched disorder (pinning centers) than a single crys-
tal, we found similar values for the Lindemann constant
(cL, = 0.24) and for other parameters. Thus, we con-
clude that Abrikosov lattice melting is probably weakly
affected by the quenched disorder, at least in the rela-
tively low fields (H ( 50 kOe) and high temperatures
(t ) 0.8) probed in this work.
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