## Core-level binding energies of Ba, Sr, Ca, and Y for high- $T_c$ superconductors and related oxides: A measure of hole concentration

M. Nagoshi\*

Applied Technology Research Center, NKK Corporation, Kawasaki 210, Japan

Y. Syono and M. Tachiki

Institute for Materials Research, Tohoku University, Sendai 980, Japan

Y. Fukuda

Research Institute for Electronics, Shizuoka University, Hamamatsu 432, Japan (Received 11 July 1994)

We find a universal relationship between core-level binding energies of the Ba  $3d_{5/2}$ , Sr  $3d_{5/2}$ , Ca  $2p_{3/2}$ , and Y  $3d_{5/2}$  levels and  $T_c$  among several hole-type high- $T_c$  and related oxides (the Y, Bi, and Pb systems) with two Cu-O<sub>2</sub> planes in a unit structure. The binding-energy dependence of  $T_c$  is very similar to the hole-concentration dependence of  $T_c$ . This suggests that the local electronic states around Ba, Sr, Ca, and Y should be common and the core-level binding energies of these elements can be a measure of the hole concentration for these oxides.

Since the early stage of photoemission studies on high- $T_c$  superconductors, there has been a considerable controversy about explaining the binding-energy shifts of the alkaline-earth core levels. For YBa<sub>2</sub>Cu<sub>3</sub>O<sub>v</sub>, it has been reported that the Ba core levels have lower binding energy by more than 1 eV for the superconducting orthorhombic phase than for the nonsuperconducting tetragonal phase.<sup>1-7</sup> The binding energies of Sr and Ca core levels, as well as those of other core levels, have been found to increase monotonically with the increase of Y concentration for  $Bi_2Sr_2Ca_{1-x}Y_xCu_2O_v$ .<sup>8-10</sup> In order to explain these binding-energy shifts, several models have been proposed. They include changes of the chemical potential,<sup>7, fo</sup> the covalent bonding between alkaline earth and oxygen<sup>2,3</sup> the initial-state electronic potential,<sup>4-6</sup> and the final-state screening.<sup>1</sup> The important thing is that the mechanisms proposed in the above models all concern the local electronic structures around the alkalineearth ions which are located close to the Cu-O<sub>2</sub> plane. We would like to stress, therefore, that the binding energy of the alkaline-earth core levels is a key to a better understanding of the electronic structures of the high- $T_c$  superconductors and related oxides. Here we report that there exists a universal relationship between the binding energies of Ba, Sr, Ca, and Y core levels and  $T_c$  among more than 15 sets of x-ray photoelectron spectroscopy (XPS) data measured by ourselves as well as other investigators for several cuprates with two Cu-O<sub>2</sub> planes in a unit structure. This relationship between the core-level binding energy and  $T_C$  is discussed in terms of the hole concentrations.

Polycrystalline cuprates,  $YBa_2Cu_3O_y < (y \sim 6.5 \text{ and } 7)$ ,  $YBa_2Cu_4O_8$ ,<sup>11</sup>  $PrBa_2Cu_3O_y$ ,  $Bi_2Sr_2CaCu_2O_y$ (y was controlled by annealing in vacuum<sup>12</sup>),  $Bi_2Sr_2Ca_{1-x}Y_xCu_2O_y$  ( $0 \le x \le 1$ ),  $IBi_2Sr_2Ca_{1-x}Y_xCu_2O_y$ ( $0 \le x \le 1$ ),<sup>13</sup>  $Pb_2Sr_2YCu_3O_y$  (y = 8 and 9.47), and  $PbBaSrY_{1-x}Ca_xCu_3O_y$  (x = 0 and 0.2, y = 7 and 8.40),<sup>14</sup> were synthesized using methods described in Refs. 11-14. The onset of  $T_c$  was determined from the temperature dependence of the diamagnetic response measured by ac susceptometers. Core-level spectra were recorded by an SSX-100 spectrometer (Surface Science Instrument) with a monochromatized Al  $K\alpha$  x-ray with a spot size of 300  $\mu$ m on the sample surfaces. The binding-energy scale was referred to Au  $4f_{7/2}$ =83.96 eV ( $\pm 0.05$  eV) and the total energy resolution was 0.46 eV as determined from the Fermi-edge broadening for pure Ni metal. Clean surfaces of the cuprates were obtained by scraping with a diamond file in vacuum lower than  $2 \times 10^{-7}$  Pa.

Table I summarizes the binding energy of Sr  $3d_{5/2}$ , Ba  $3d_{5/2}$ , Ca  $2p_{3/2}$ , and Y  $3d_{5/2}$  measured in this work (TW) and in the literature. To make more accurate comparison, the following corrections were carried out for the latter data. (i) The binding-energy scale was changed to Au  $4f_{7/2}$ =83.4 eV or Ag  $3d_{5/2}$ =368.2 eV for the data for which the binding-energy reference was mentioned. (ii) The binding energies of Sr  $3d_{5/2}$  and Ca  $2p_{3/2}$  were determined as the center of the peaks, although it was reported that these core levels consist of two components corresponding to different sites in the crystal structure.<sup>21</sup> (iii) The  $T_c$  value measured by the magnetic method was used if both magnetic and resistive measurements were performed.

Figure 1 shows  $T_c$  as a function of the binding energies of Ba  $3d_{5/2}$  (a), Sr  $3d_{5/2}$  (b), Ca  $2p_{3/2}$  (c), and Y  $3d_{5/2}$  (d) for the materials listed in Table I. We find clearly a good relationship between  $T_c$  and the binding energy for each level with deviations less than  $\pm 0.1$  eV. These curves divide the binding energy into two regions; the lowbinding-energy region for superconductors and the higher-binding energy is located at about 778.3 eV for Ba  $3d_{5/2}$ , 132.2 eV for Sr  $3d_{5/2}$ , 345.3 eV for Ca  $2p_{3/2}$ , and 156.2 eV for Y  $3d_{5/2}$ . The curves of Sr  $3d_{5/2}$  and Ca  $2p_{3/2}$  seem to have a binding energy corresponding to the

0163-1829/95/51(14)/9352(4)/\$06.00

<u>51</u> 9352

| Material <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $T_c$ Binding energy (eV) |                                         |                      |                    |                 |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------|----------------------|--------------------|-----------------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ( <i>K</i> )              | Ba $3d_{5/2}$                           | Sr 3d <sub>5/2</sub> | Ca $2p_{3/2}$      | $Y \; 3d_{5/2}$ |     |
| $YBa_2Cu_2O_{u_1}$ (ortho.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90                        | 777.95                                  |                      |                    | 156.03          | тw  |
| $YBa_2Cu_2O_{}$ (tetra.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                         | 779.28                                  |                      |                    | 156.52          | TW  |
| YBa <sub>2</sub> Cu <sub>4</sub> O <sub>8</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80                        | 777.95                                  |                      |                    | 156.05          | TW  |
| $PrBa_{2}Cu_{2}O_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                         | 778.72                                  |                      |                    | 10000           | TW  |
| $YBa_2Cu_2O$ (ortho.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90                        | 777.9°                                  |                      |                    | 156.2°          | 15  |
| $YBa_2Cu_2O$ (ortho.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 92                        | 778.3°                                  |                      |                    | 156.3°          | 16  |
| $YBa_2Cu_3O_3$ (ortho.) f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80                        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                      |                    | 156.2           | 17  |
| $YBa_{2}Cu_{3}O_{3}$ (ortho.) f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 84                        | 777 7                                   |                      |                    | 155.8           | 18  |
| <b>YBa</b> <sub>2</sub> Cu <sub>3</sub> Cu <sub>3</sub> Cu <sub>3</sub> Cu <sub>3</sub> Cu <sub>3</sub> Cu <sub>3</sub> Cu <sub>4</sub> Cu <sub>4</sub> Cu <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 04<br>91                  | 777 4                                   |                      |                    | 155.0           | 10  |
| $YBa_{2}Cu_{3}Cu_{3}O_{3}$ (ortho.) f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 88                        | 777 6°                                  |                      |                    | 155.8°          | 5   |
| $YBa_{2}Cu_{3}O_{y}$ (orthol) $f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                         | 778.6°                                  |                      |                    | 155.0<br>156.4° | 5   |
| $YB_{2}Cu_{3}O_{y}$ (tetra.) $f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and                       | 770.0                                   |                      |                    | 150.4           | 6   |
| $YBa_2Cu_3O_y$ (orthol) s<br>$YBa_2Cu_3O_y$ (tetra.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                         | 779.5                                   |                      |                    |                 | 6   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ū                         | 115.5                                   |                      |                    |                 | Ū   |
| $Bi_2Sr_2CaCu_2O_y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74                        |                                         | 131.76               | 344.96             |                 | тw  |
| $Bi_2Sr_2CaCu_2O_y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 78                        |                                         | 131.75               | 344.97             |                 | TW  |
| $Bi_2Sr_2Ca_{0.9}Y_{0.1}Cu_2O_{\nu}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 86                        |                                         | 131.80               | 345.03             |                 | TW  |
| $Bi_2Sr_2Ca_{0.8}Y_{0.2}Cu_2O_v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 88                        |                                         | 131.84               | 345.06             |                 | TW  |
| $Bi_2Sr_2Ca_{0.6}Y_{0.4}Cu_2O_v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83                        |                                         | 132.07               | 345.18             |                 | ΤW  |
| $Bi_2Sr_2Ca_{0.4}Y_{0.6}Cu_2O_{\nu}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                         |                                         | 132.17               | 345.28             |                 | ΤW  |
| Bi <sub>2</sub> Sr <sub>2</sub> YCu <sub>2</sub> O <sub>v</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                         |                                         | 132.72               |                    |                 | TW  |
| $Bi_2Sr_2CaCu_2O_{\nu}$ (AV 500 °C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87                        |                                         | 131.90               | 345.11             |                 | TW  |
| $Bi_2Sr_2CaCu_2O_{\nu}$ (AV 550 °C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 86                        |                                         | 132.03               | 345.18             |                 | TW  |
| $Bi_2Sr_2CaCu_2O_{\nu}$ (AV 600 °C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79                        |                                         | 132.06               | 345.22             |                 | TW  |
| IBi <sub>2</sub> Sr <sub>2</sub> CaCu <sub>2</sub> Ó <sub>v</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65                        |                                         | 131.66               | 344.98             |                 | TW  |
| $IBi_2Sr_2Ca_{0.8}Y_{0.2}Cu_2O_{\mu}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84                        |                                         | 131.91               | 345.20             |                 | ΤW  |
| $IBi_2Sr_2Ca_0 SY_0 SCu_2O_u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 77                        |                                         | 132.10               | 345.31             |                 | TW  |
| $IBi_2Sr_2Ca_0 Y_0 Cu_2O_u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                         |                                         | 132.34               | 345.66             |                 | TW  |
| $IBi_2Sr_2CaCu_2O_{\nu}$ (500 °C in O <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79                        |                                         | 131.99               | 345.20             |                 | TW  |
| Bi <sub>2</sub> Sr <sub>2</sub> CaCu <sub>2</sub> O <sub>y</sub> 's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85                        |                                         | 131.8 <sup>c</sup>   | 345.1 <sup>c</sup> |                 | 20  |
| $Bi_2Sr_2CaCu_2O_{\mu}s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80                        |                                         | 132.1                | 345.4              |                 | 21  |
| $Bi_2Sr_2CaCu_2O_{y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 85                        |                                         | 132.2 <sup>c</sup>   | 345.3°             |                 | 22  |
| $Bi_2Sr_2CaCu_2O_{y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 82                        |                                         | 131.65               | 345.1              |                 | 23  |
| $Bi_2Sr_2CaCu_2O_{\mu}s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90                        |                                         | 131.7°               |                    |                 | 24  |
| $Bi_2Sr_2CaCu_2O_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80                        |                                         | 131.9                | 345.2              |                 | 9   |
| $Bi_2Sr_2Ca_0 sY_0 sCu_2O_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27                        |                                         | 132.3                | 345.1              |                 | 9   |
| $Bi_2Sr_2Ca_0 Y_0 Cu_2O_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                         |                                         | 132.5                | 345.6              |                 | 9   |
| $Bi_2Sr_2YCu_2O_{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                         |                                         | 132.7                |                    |                 | 9   |
| $Bi_2Sr_2CaCu_2O_{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80                        |                                         | 131.8°               | 345.1°             |                 | 25  |
| $Bi_2Sr_2NdCu_2O_{u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                         |                                         | 132.3 <sup>c</sup>   |                    |                 | 25  |
| $Bi_2Sr_2CaCu_2O_{y}f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85                        |                                         | 132.0                | 345.3              |                 | 26  |
| Bi <sub>2</sub> Sr <sub>2</sub> CaCu <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85                        |                                         | 131.7                |                    |                 | 27  |
| Bi <sub>2</sub> Sr <sub>2</sub> CaCu <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 86                        |                                         |                      | 345.1              |                 | 28  |
| $Bi_2Sr_2CaCu_2O$ f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85                        |                                         | 132.0°               | 345.2 <sup>c</sup> |                 | 29  |
| $Bi_2Sr_2CaCu_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80                        |                                         | 131.7                | 344.9              |                 | 10  |
| $Bi_2Sr_2Ca_2 Cu_2Oy$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27                        |                                         | 132.2                | 345.3              |                 | 10  |
| $Bi_2Sr_2Ca_0.5r_0.5ca_2cy$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                         |                                         | 132.5                | 345.5              |                 | 10  |
| $Bi_2Sr_2YCu_2O_y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                         |                                         | 132.6                | 2.0.0              |                 | 10  |
| TlSr <sub>2</sub> CaCu <sub>2</sub> O <sub>y</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77                        |                                         | 132.2                | 348.3              |                 | 30  |
| PbBaSrYo Cao CuoO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35                        | 778.32                                  | 132.23               | 345.28             | 156.21          | тw  |
| <b>PbBaSrYCu_O</b> (quenched)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                         | 778 32                                  | 132.51               | 2.0.20             | 156 46          | тw  |
| PhBaSrVCu.O (O annealed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ñ                         | 778 38                                  | 132.51               |                    | 156 38          | TW/ |
| Ph.Sr. VCu.O (quenched)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n<br>n                    | 110.00                                  | 132.72               |                    | 156 38          | т W |
| $\frac{1}{2} \sum_{j=1}^{2} \sum_{j=1}^$ | 0                         |                                         | 122.40               |                    | 156.50          | 1 W |

TABLE I.  $T_c$  and binding energies of Ba  $3d_{5/2}$ , Sr  $3d_{5/2}$ , Ca  $2p_{3/2}$ , and Y  $3d_{5/2}$  for high- $T_c$  superconductors and related oxides.

<sup>a</sup>s: single crystal, f: thin film, AV: annealed in vacuum. <sup>b</sup>TW: this work.

=

<sup>c</sup>The binding-energy scale was not calibrated. <sup>d</sup> $T_c$  was assumed to be 90 K for orthorhombic YBa<sub>2</sub>Cu<sub>3</sub>O<sub>y</sub>.

maximum  $T_c$  at about 131.9 and 345.1 eV, respectively. These characteristics of the binding-energy dependence of  $T_c$  are very similar to those of the hole-concentration dependence of  $T_c$ ; the latter is well known for high- $T_c$  cuprates.<sup>31</sup> This indicates that the binding-energy shifts of Ba  $3d_{5/2}$ , Sr  $3d_{5/2}$ , Ca  $2p_{3/2}$ , and Y  $3d_{5/2}$  levels are closely related to the change of the hole concentration in the Cu-O<sub>2</sub> plane; the higher the hole concentration the lower the binding energy. We should mention here that a normal metallic compound,  $Tl_{0.5}Pb_{0.5}Sr_2CuO_5$  with an overdoping state,<sup>32</sup> showed a lower binding energy of Sr  $3d_{5/2}$ (131.40 eV) than the materials listed in Table I. This would relate to the above suggestion, although this compound is not a cuprate with two Cu-O<sub>2</sub> planes in a unit structure.

It is noted that the correlations between the core-level binding energies of Ba, Sr, Ca, and Y and the  $T_c$  shown in Fig. 1 seem to be better if the data are limited to those in which the binding-energy scale was calibrated (closed and open circles). This would indicate that binding-energy calibration is important when we compare photo-electron spectra measured by different groups.

The chemical shift of the core levels is expressed, in general, by the sum of the changes in (i) the chemical potential, (ii) the valence charges of the ion concerned, (iii) the covalency, (iv) the Madelung potential, and (v) the final-state screening.<sup>33</sup> The valence-band spectra measured by ultraviolet photoelectron spectroscopy (UPS) were reported to shift to the higher-binding-energy side with electron doping for  $Bi_2Sr_2CaCu_2O_y$  (Ref. 34) and  $Bi_2Sr_2Ca_{1-x}Y_xCu_2O_y$ .<sup>10</sup> These shifts have been attributed to the chemical-potential shift. The amount of the shift reported, however, usually ranges form one-fifth to one-third of the core-level shifts (less than 0.2 eV), especially for the high-doping phases. We measured the shift of the 1.2 eV band (attributed to the Cu-O<sub>2</sub> planes<sup>35,36</sup>) for Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>v</sub> with oxygen loss using UPS and found that the shift is less than 0.1 eV while the corelevel shift measured by XPS is about 0.4 eV for Ca  $2p_{3/2}$ . It is our opinion that the chemical-potential shift certainly contributes to the core-level shifts but is not the main cause of the shifts. Electron-energy-loss spectroscopy<sup>37</sup> and x-ray absorption spectroscopy<sup>38</sup> have shown that the holes are doped mainly into the Cu-O<sub>2</sub> planes; thus it is reasonable to neglect the changes in the valence charge of the alkaline-earth and Y ions. The covalency including *d* shells and the final-state screening would not account for the core-level shifts, from the discussion in Ref. 5.

It is reported that the lattice constants along a and baxes decrease with the hole concentration in the  $Cu-O_2$ plane,<sup>39</sup> which has been interpreted by the contraction of the Cu-O bond on the planes due to hole doping. The bond length between the alkaline earth (and Y) and oxygen would be controlled by the Cu-O bond length because these bonds are located next to the Cu-O<sub>2</sub> planes; the bond length decreases with increase of the hole concentration. The contraction of the alkaline-earth (Y)-oxygen bond leads to an increase of the Madelung potential at the alkaline-earth (Y) ions and therefore results in a decrease of the binding energy of the core levels. The covalency of the bond increases with the decrease in the bond length,<sup>40</sup> which possibly contributes to the decrease of the binding energy. From the above discussion we can relate the binding-energy shifts of the alkaline-earth (Y) core levels to the change of the hole concentration in the Cu-O<sub>2</sub> plane via the bond length. Our results have shown that this relationship is common among several cuprates (mainly the Y, Bi, and Pb systems) with two Cu-O<sub>2</sub> planes in a unit structure for each alkaline-earth (Y) core level. This suggests the presence of a common local electronic structure around each alkaline earth (Y) which is located close to the Cu-O<sub>2</sub> plane among these cuprates. This also suggests that the binding energies of the alkaline-earth (Y) core levels can be a common measure of the hole concentrations for these cuprates.



FIG. 1. Relationship between  $T_c$  and binding energy of Ba  $3d_{5/2}$  (a), Sr  $3d_{5/2}$  (b), Ca  $2p_{3/2}$  (c), and Y  $3d_{5/2}$  (d) for high- $T_c$  and related oxides with two Cu-O<sub>2</sub> planes in a unit structure (listed in Table I). Closed circles denote the data measured in this work, open circles the published data for which the binding-energy scale was calibrated, and crosses the published data for which the binding-energy scale was not calibrated.

It was pointed out before the discovery of the high- $T_c$ superconductors that the core-level binding energies for Ba oxides are lower than those for the pure metals.<sup>41</sup> When we compare the threshold binding energy between the superconducting and the semiconducting states with that for the metals [Ba  $3d_{5/2}$  780.4 eV,<sup>4</sup> Sr  $3d_{5/2}$  134.0 eV,<sup>4</sup> Ca  $2p_{3/2}$  346.3 eV,<sup>42</sup> and Y  $3d_{5/2}$  156.0 eV (Ref. 42)], the absolute value of the negative shift from the metal is in the order of Ba  $3d_{5/2}$  (2.1 eV) > Sr  $3d_{5/2}$  (1.8 eV) > Ca  $2p_{3/2}$  (1.0 eV) > Y  $3d_{5/2}$  (0.2 eV, a positive shift). The widths of the binding-energy regions corresponding to the superconductors are also in the same order: Ba  $3d_{5/2}$  (~0.9 eV)>Sr  $3d_{5/2}$  (~0.6 eV)>Ca  $2p_{3/2}$  (~0.4 eV)  $\ge$  Y  $3d_{5/2}$  (~0.4 eV). These results can be explained by the difference in the ionic radii of the alkaline earths and Y. The ionic radii of the alkaline earths and Y are in the order of  $Ba^{2+}$  (1.42 Å) >  $Sr^{2+}$  (1.25 Å) >  $Ca^{2+}$  $(1.12 \text{ Å}) > \text{Y}^{3+}$  (1.02 Å) for coordination number 8.<sup>43</sup> Since Ba ions (Ba-O bonds) need to be contracted most among these ions in the superconductors, the increase of the Madelung potential would be the largest for the Ba

- \*Present address: Kokan Keisoku K. K., 1-1, Minamiwatarida, Kawasaki 210, Japan.
- <sup>1</sup>K. Jacobi *et al.*, Phys. Rev. B **36**, 3079 (1987).
- <sup>2</sup>I.-S. Yang et al., Phys. Rev. B 41, 8921 (1990).
- <sup>3</sup>I.-S. Yang et al., Phys. Rev. B 43, 10544 (1991).
- <sup>4</sup>R. P. Vasquez, J. Electron Spectrosc. Relat. Phenom. 56, 217 (1991).
- <sup>5</sup>R. P. Vasquez *et al.*, J. Electron. Spectrosc. Relat. Phenom. **57**, 317 (1991).
- <sup>6</sup>F. Parmigiani et al., Phys. Rev. B 43, 3695 (1991).
- <sup>7</sup>D. M. Hill et al., Surf. Sci. 225, 63 (1990).
- <sup>8</sup>Y. Shichi et al., Phys. Rev. B 42, 939 (1990).
- <sup>9</sup>R. Itti et al., Phys. Rev. B 43, 6249 (1991).
- <sup>10</sup>M. A. van Veenendaal et al., Phys. Rev. B 47, 446 (1993).
- <sup>11</sup>N. Yamada et al., Physica C 185-189, 809 (1991).
- <sup>12</sup>M. Nagoshi et al., Phys. Rev. B 43, 10445 (1991).
- <sup>13</sup>Y. Muraoka et al., Physica C 204, 65 (1992).
- <sup>14</sup>A. Tokiwa et al., Physica C 168, 285 (1990).
- <sup>15</sup>P. Steiner et al., Z. Phys. B 67, 19 (1987).
- <sup>16</sup>H. M. Meyer III et al., Phys. Rev. B 38, 6500 (1988).
- <sup>17</sup>J. Halbritter et al., Z. Phys. B 73, 277 (1988).
- <sup>18</sup>R. P. Vasquez et al., J. Appl. Phys. 66, 4866 (1989).
- <sup>19</sup>D. E. Fowler *et al.*, J. Electron Spectrosc. Relat. Phenom. 52, 323 (1990).
- <sup>20</sup>H. M. Meyer III *et al.*, Phys. Rev. B **38**, 7144 (1988); D. M. Hill *et al.*, *ibid.* **38**, 11 331 (1988).
- <sup>21</sup>S. Kohiki et al., Phys. Rev. B 38, 8868 (1988).
- <sup>22</sup>P. Steiner et al., Physica C 156, 213 (1988).
- <sup>23</sup>F. U. Hillebrecht et al., Phys. Rev. B 39, 236 (1989).
- <sup>24</sup>A. Fujimori et al., Phys. Rev. B 39, 2255 (1989).

ion, which leads to the largest binding-energy shift with a minus sign for Ba core levels.

In conclusion, we found a universal relationship between the binding energies of the Ba  $3d_{5/2}$ , Sr  $3d_{5/2}$ , Ca  $2p_{3/2}$ , and Y  $3d_{5/2}$  core levels and  $T_c$  among several cuprates (the Y, Bi, and Pb systems) with two Cu-O<sub>2</sub> planes in a unit structure. This relationship can be understood by the change of the Madelung potential (due to change in bond length) with the change of hole concentration in the Cu-O<sub>2</sub> planes. It was suggested that the local electronic structures around each alkaline earth (Y) located close to the Cu-O<sub>2</sub> planes should be common and that the binding energies of Ba, Sr, Ca, and Y core levels can be a measure of the hole concentration for these cuprates.

We wish to thank A. Tokiwa-Yamamoto, Y. Muraoka, H. Iwasaki, E. Oshima, and N. Yamada for high-quality samples and useful discussions. Three of us (Y.S., M.T., and Y.F.) were supported by a Grant-in-Aid for Science Research from the Ministry of Education, Science, and Culture of Japan.

- <sup>25</sup>K. Tanaka et al., Jpn. J. Appl. Phys. 29, 1658 (1990).
- <sup>26</sup>R. P. Vasquez and R. M. Housley, J. Appl. Phys. **67**, 7141 (1990).
- <sup>27</sup>P. Kulkarni *et al.*, J. Appl. Phys. **67**, 3438 (1990); P. Kulkarni *et al.*, Physica C **168**, 104 (1990).
- <sup>28</sup>G. Dagoury *et al.*, J. Less-Common Met. **164-165**, 1359 (1990).
- <sup>29</sup>R. P. Vasquz and R. M. Housley, Physica C 175, 133 (1991).
- <sup>30</sup>W.-H. Hurng et al., Solid State Commun. 77, 269 (1991).
- <sup>31</sup>J. B. Torrance et al., Phys. Rev. Lett. 61, 1127 (1988).
- <sup>32</sup>E. Oshima et al., Physica C 214, 182 (1993).
- <sup>33</sup>M. Cardona and L. Ley, in *Photoemission in Solids I*, edited by M. Cardona and L. Ley (Springer-Verlag, Berlin, 1978), p. 60.
- <sup>34</sup>Z.-X. Shen *et al.*, Phys. Rev. B **44**, 12 098 (1991).
- <sup>35</sup>F. Minami et al., Phys. Rev. B **39**, 4788 (1989).
- <sup>36</sup>B. O. Wells et al., Phys. Rev. B 40, 5259 (1989).
- <sup>37</sup>N. Nucker et al., Phys. Rev. B **39**, 6619 (1989).
- <sup>38</sup>F. J. Himpsel et al., Phys. Rev. B 38, 11 946 (1988).
- <sup>39</sup>M.-H. Wangbo et al., Physica C 158, 371 (1989).
- <sup>40</sup>I. D. Brown and R. D. Shanon, Acta Crystallogr. Sect. A 29, 266 (1973); I. D. Brown and D. Altermatt, Acta Crystallogr. Sect. B 41, 244 (1985).
- <sup>41</sup>G. K. Wertheim, J. Electron Spectrosc. Relat. Phenom. 34, 309 (1984).
- <sup>42</sup>Handbook of X-ray Photoelectron Spectroscopy, edited by Jill Chastain (Perkin-Elmer Corporation, Minnesota, 1992), p. 213.
- <sup>43</sup>R. D. Shannon and C. T. Prewitt, Acta Crystallogr. Sect. B 25, 925 (1969).