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Phase diagrams of the diluted and random-bond Ising model
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The quenched-bond disordered Ising model is studied by means of the mean-field renormalization-

group approach. Besides dilution and ferromagnetic random bond, the probability distribution function
also includes two extra competing random bonds vrhich can be ferromagnetic or antiferrornagnetic, de-

pending on the sign of some competing parameters. The critical temperature against ferromagnetic
bond concentration phase diagrams are analyzed for several values of the theoretical parameters.

The mean-field renormalized-group method (MFRG)
was proposed by Indekeu, Maritan, and Stella' in order
to calculate critical properties of lattice spin systems.
This method was applied by Droz, Maritan, and Stella
to the study of dilute, random fields and the symmetric
random-bond Ising model. The asymmetric random-
bond Ising model has been treated by Lyra and
Coutinho using a phenomenological competition param-
eter a. For a=1 they obtained the syrnrnetric phase dia-
gram and asymmetric ones with reentrants in the fer-
romagnetic or antiferromagnetic boundaries depending
on the a value. More recently, Rosales Rivera, Perez
Alcazar, and Plascak have studied a diluted and
random-bond Ising model with a probability distribution
for the coupling constant between the pair of nearest-
neighbor spins which includes the concentration p, x, and
q for the ferromagnetic, antiferrornagnetic, and diluted
bonds, respectively. For q =0, the results are identical to
those obtained by Lyra and Coutinho in the Ising limit
and for x =0 the equation for the diluted model studied
by Droz, Maritan, and Stella are recovered. These stud-
ies were applied to the magnetic properties of the Fe-
Mn-Al disordered alloys considering only one type of fer-
romagnetic or antiferromagnetic bond.

In this paper we study the phase diagrams of a diluted
and random-bond Ising model by extending that pro-
posed by Rosales Rivera, Perez Alcazar, and Plascak to
that case in which all the possible bonds in a ternary
magnetic system with two magnetic atoms and one dilut-
ed atom are considered.

The present model is defined by the Hamiltonian

0=—g K;-o;0 (1)
(~,j)

where K; is the reduced random bond between nearest-
neighbor spins (i,j ) and cr; =+1. The probability distri-
bution for each bond K; is given by

P(K J ) =p5(K 1
—K }+x5(KJ+aK )

+y5(K; +yK)+q5(KJ),

z=(z —1)[p(1+tanh K, )+x(l+tanh aK, )

+y(1+tanh yK, )+q], (4)

for the spin-glass boundary, with z being the coordination

where p is the concentration of ferromagnetic bonds
(K )0), x and y are, respectively, the concentration of
bonds aK and yK (a and y being the competition param-
eters), q is the concentration of diluted bonds, and
p+x+y+q =1.

For a and/or y positive the expected phase diagram of
the above model presents paramagnetic (P), ferromagnet-
ic (F), antiferromagnetic (AF), and spin-glass (SG) phases.
The mean magnetization [(o ) ] and the staggered mag-
netization [(0.) ], are the ordered parameters for the fer-
romagnetic and antiferromagnetic phases, respectively,
and associated with the spin-glass quenched disorder
phase we have the Edwards-Anderson order parameter
defined as [(cr ) ], where the angular brackets stand for
the thermal average and the square brackets for the
configurational average. In order to get the phase dia-
grarn we employ here the MFRG procedure' by using the
simplest choice for the clusters namely, the one- and
two-spin clusters. The critical lines are then obtained by
evaluating, for each cluster, these order parameters (as-
surning appropriated boundary conditions for the corre-
sponding phase) and renormalizing them according to the
MFRG method. This model, in some limiting cases
(which will be shortly discussed below}, has been previ-
ously treated by means of the MFRG approach ' and it
has been shown that, with one- and two-spin clusters, the
results are equivalent to the Bethe-Peierls approximation.

By following the same procedure outlined in Refs. 3
and 4 we obtain for the present model

z = (z —1 )[p ( 1+tanhK, ) +x ( 1 + tanhaK, )

+y(1+ tanhyK, )+q ],
which gives the ferromagnetic (upper sign) and the anti-
ferromagnetic (lower sign} phase boundaries, and
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number of the lattice and K, the reduced critical cou-
pling. The above equations are a simple generalization of
Eqs. (11)and (12) of Ref. 4 for the probability distribution
given by (2).

It can be easily shown that Eqs. (3) and (4) recover the
results already obtained in previous MFRG studies (with
the same cluster size) in the following special cases: (i)
Bond diluted Ising model (x =y =0), where the reduced
critical temperature T, (p)=K, (p) ' goes to zero at the
critical ferromagnetic bond concentration p, =1/(z —1);
(ii) symmetric random-bond Ising model (for example,
q =0, and a =y = 1), where the phase diagram in the
T, (p) Xp plane is symmetric and the spin-glass boundary
is independent of p; (iii) asymmetric random-bond Ising
model (for example, q=y=O and a%1). Here, depend-
ing on the values of a, reentrants appear in the ferromag-
netic or antiferromagnetic phase boundaries; and (iv) di-
luted and random-bond Ising model (y=0), where the
main effect of dilution is to reduce the antiferromagnetic
and spin-glass critical temperatures. In this particular
case the model has also been proposed to simulate some
magnetic properties of the Fe-Mn-Al alloys in the disor-
dered phase. The more general definition of the proba-
bility distribution given by Eq. (2) could then be seen as
an attempt to include (besides the dilution) three different
exchange interactions that appear, for instance, in ter-
nary alloys composed of ions A, B, and C, where C is
nonmagnetic and the couplings come from the interac-
tions of A-A, A-B, and B-B ions.

Before treating the more general model let us first ana-
lyze some limiting cases of the probability distribution (2)
(in particular, for y =0). Figure 1 shows the phase dia-
gram in the [T,(p)/T, (1)]Xp plane with

T,(p)=K, (p) and T, (1)=2/ln[z/(z —2)], for z =g,
a=y= 1, y=0.0, and different values of q (this is the

symmetric diluted and random-bond Ising model). In
these diagrams the maximum concentration of ferromag-
netic bonds, p, is given by p =1—q(x =0) and they
are symmetric with respect to p /2. The spin-glass tran-
sition temperature is independent of the ferromagnetic
bond concentrations for a fixed q and decreases as q in-
creases. For q ~ q, =(z —2)/(z —1) all ordered phases
disappear. It should be mentioned that wrong results re-
garding the phase diagram and this concentration has
been reported in Ref. 4. The correct q, is the one listed
above which is, moreover, independent of a and y. The
width of the SG phase at T=O is independent of the
value of q, as well as of a and y. When a@1 (keeping
y =0) the corresponding phase diagrams are asymmetric
with reentrants appearing in some phase boundaries (for
further details, see Refs. 3 and 4).

Let us now discuss the global phase diagrams for yAO.
In what follows we will consider y =0. 1 and z =8. Fig-
ure 2 shows the phase diagrams for some selected values
of q in the case a=y=1. 5. In this case reentrants ap-
pear in the AF boundary. Due to the extra concentration
of antiferromagnetic bonds (given by y =0. 1) the phase
diagram is now nonsymmetric with the area of the AF re-
gion being greater than the corresponding area of the F
one. Apart from the asymmetry, for 0&q &q* (not
shown in Fig. 2) the phase diagram is similar to those de-
picted in Fig. 1 where a transition line from F to P phases
is present. As q is increased from 0 this transition line
shrinks and at q=q*=0.44 it disappears once the fer-
romagnetic and spin-glass critical temperatures are equal
at p =p' =1—q* —y =0.46(x =0). For q* &q &q',
such as q =0.600 for which p =0.3, a small region of F
phase still persists and at q =q' =0.657 for which

p
' =0.243, the system just can no longer be ferromagnet-

ically ordered. For q'&q &q, only the AF and SG or-
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FIG. 1. Phase diagram in the T&(p)/T&(1)Xp plane for
different values of q. The phases are denoted by (F) ferromag-
netic; (AF) antiferromagnetic; (SG) spin-glass, and (P) paramag-
netic, and they refer to the q =0 phase diagram. The same pat-
tern, however, applies to the other values of q.

CONCENTRATION p
FIG. 2. The same as Fig. 1. In this case, for q =0.6 a small

region of F phase at low temperatures is present and for q =q'
just the F ordered phase disappears and only AF and SCx or-
dered phases are present. For q*, q, and q' the phase diagrams
go up to p

*=0.46, p =0.30, and p
' =0.243, respectively.



51 BRIEF REPORTS 9331

0.4— e= —y=0.5
1.0

0.8—

0.3—

L

0.4—

r
L

0.1— L

0.2—

0.0
0.0

I

0.1 0.3
I I

0.2

CONCENTRATION p

0.0
0.0 0.2 0.4 0.6 0.8

CONCENTRATION p

1.0

FIG. 3. The same as Fig. 1. In contrast to Fig. 2, in this case,
for q=0. 6 a small region of AF phase at low temperatures is
present and for q =q' just F and SG ordered phases are present
and the AF ordered phase disappears.

dered phase are present and finally, for q & q, the system
is completely disordered. An identical behavior is
achieved concerning the AF phase by taking negative
values of y, as depicted in Fig. 3 for a= —y =0.5 once,
in this case, we have an extra concentration of ferromag-
netic bonds. Similar results are obtained for aA

~ y ~.

%'e can see from Figs. 2 and 3 that different slopes for
the SG transition line are obtained by changing the value
of a. Indeed, it can be shown from Eq. (4) that this slope
is negative for a & 1, null for a =1 and positive for a & 1,
irrespective to the value of y. This behavior is better
seen in Figs. 4 and 5 for q and y fixed and varying a. For
those values of the parameters the antiferromagnetic crit-

FIG. 5. The same as Fig. 1 for y = —0.5, q =0, y =0. 1 and
different values of a.

ical temperature at p =0 is an increasing function of a (as
a consequence of the enhancing of antiferromagnetic
bonds) while the ferromagnetic critical temperature at
p =p, as well as the SG phase at T=O, is independent
of a. We also note that, in both figures, depending on a,
a reentrant can appear in the ferromagnetic or in the an-
tiferromagnetic boundary. The presence of such reen-
trants can be determined from Eq. (3) by locating the
temperature T~ at which (dp/dT)z. T =0. The solid

R

line in Fig. 6 shows Ta (p)/Tc(1) as a function of a for
the parameters listed in Fig. 4. In this case, for a & 1 the
ferromagnetic line is reentrant, for a=1 it is not reen-
trant, and for a ) 1 the antiferromagnetic line is reentrant
with Tz being a continuous increasing function of a. On
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FIG. 4. The same as Fig. 1 for q and y fixed and different
values of a.

FIG. 6. T&(p) iT&(1) as a function of a for the parameters of
Fig. 4 (solid line) and Fig. 5 (dashed line).
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FIG. 7. The same as Fig. 1 for a=q =0, y =0. 1 and different
values of y.

the other hand, for the parameters of Fig. 5, the fer-
romagnetic line is reentrant for a &0.5 with T„ increas-
ing up to a 6nite value for a=0.5; then for a) 0.5 the
antiferromagnetic line is reentrant beginning at Tz =0
and then increasing continuously with a. In this way, Tz
as a function of u shows a sudden discontinuity at a =0.5
for which the reentrant passes from the F to AF bound-
ary (see the dashed line in Fig. 6).

Finally, in Fig. 7 we have phase diagrams for a=q =0,
y =0. 1 and different values of y, where now x plays the
rule of dilution. In this case, irrespective to the value of
y, we only obtain ferromagnetic and paramagnetic
phases once the concentration of antiferromagnetic bonds
(for y) 0) is not sufficient to stabilize the antiferromag-
netic phase nor to produce the necessary competitive

bonds for stabilizing the spin-glass phase. For y=0 we
recover the simple bond-diluted Ising model with the
known Bethe-Peierls critical concentration p, = I/(z —1)
(p, =0.143). For y (0 we also have a bond-diluted mod-
el but with two different ferromagnetic couplings. For
this reason, the critical concentration is given by p, —y
(p, =0.043) which is independent of y. For y) 0 we

have the diluted and random-bond model where the criti-
cal concentration is now given by p, +y (p, =0.243). So,
a kind of triple crossover is observed in the ground state
when y changes from negative, to zero, and to positive
values. Besides, reentrants are observed in the ferromag-
netic boundary just for values of y in the range 0 & y & 1.
A typical one is shown in Fig. 7 for y =0.3.

In summary, the diluted and random-bond Ising model
given by Eqs. (1) and (2) presents a variety of phase dia-
grams depending on the values of the theoretical parame-
ters defined in Eq. (2) for the probability distribution. Al-
though in the present work we have restricted the
analysis to the special y=0. 1 case, similar phase dia-
grams can also be drawn by considering other values of y.
Applying this model to the magnetic properties of Fe-
Mn-Al disordered alloys gives similar results to that re-
ported by Rosales, Perez Alcazar, and Plascak. Recent-
ly this model was applied by Bohorquez, Zamora, and
Perez Alcazar in the calculation of the magnetic phase
diagram for the (Feo 65Nio 35), „Mn„system and their
reported phase diagram is in good agreement with previ-
ous experimental one reported by Hesse. For this case
the distribution has six types of bonds and these bonds
are related with the atom concentrations.
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