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An approach for nuclear quadrupole spin relaxation by anharmonic lattice vibrations of quadrupole
nuclei situated at molecular or ion groups is presented. The temperature dependence at constant crystal-

line configuration is analyzed. This approach takes advantage of the existence of tightly bound mole-

cules or molecular groups. Fluctuations causing relaxation are considered as collective vibrations of the

whole lattice. Anharmonicity is explicitly included by involving cubic and quartic terms of the lattice vi-

brations Hamiltonian. The spectral densities of the spin-lattice Hamiltonian are expressed in terms of
the phonon spectral densities and the temperature Green-function perturbation formalism is used for
calculating the lower-order contributions. Three kinds of processes are found to contribute mainly to
the spin-lattice relaxation time (T, ), namely, anharmonic Raman (AR), first-order Raman (1R), and a
third mechanism originated in the self-energy effects on the two-particle spectral density. The AR and

1R processes yield a quadratic temperature dependence of T, while the third mechanism gives a cubic
temperature dependence. This last term, being characteristic of molecular crystals, represents a sort of
mixing of the AR and 1R mechanisms, and its influence strongly depends on the crystal symmetry.

I. INTRODUC'I'IQN

One of the most important mechanisms contributing to
nuclear spin-lattice relaxation in molecular crystals is the
one driven by the Auctuations of the interaction of the
nuclear quadrupole with the electric-field gradient exist-
ing at the nuclei site. Commonly, at intermediate tem-
peratures the coupling between nuclear transitions and
the normal lattice vibrations constitutes the dominant
mechanism. '

Pure NQR measurements of the spin-lattice relaxation
time, Tj, as a function of temperature and pressure give
information about the Quctuational spectrum associated
with vibrations of the molecules in molecular crystals.
However, at the present status of the theory, it is not pos-
sible to relate directly the experimental T& data with the
dynamical properties of the lattice because the dynamic
nature of molecular vibrations is included in an averaged
way, as in a mean-field approach. For example, processes
with a local character cannot be distinguished from
those related with intermolecular correlations.

At the present there are two kinds of approaches for
T& in crystals due to thermal vibrations. They were con-
ceived for very different kinds of crystals and represent
two well-distinct limits. One of them deals with ionic
crystals in which the resonant nuclei lie on monoatomic-
like sites. NQR spin-lattice relaxation in these crystals is
described by Van Kranendonk's model: the quadrupole
interaction depends, in principle, on the instantaneous
displacements of all atoms of the crystal. The com-
ponents of the EFG tensor are expanded in terms of the
lattice phonons and the spectral densities of the spin-
lattice interaction Hamiltonian are calculated by means
of the Green-function formalism. This theory yields a
quadratic temperature dependence for T& for above the
Debye temperature which generally verifies in this kind
of crystal, for high temperatures.

The other approach refers to molecular crystals where
the resonant nuclei belong to a molecular group or ion
whose atoms are tightly bound by covalents bonds, while
the intermolecular forces are less intense. The shapes
and sizes of the molecules forming molecular crystals are
nearly the same of the gaseous state. Because of the com-
plexity of the lattice dynamics of molecular crystals, the
spin-lattice relaxation has been described by a rather
different approach based on a molecular viewpoint. '

Models of this kind are based on the assumption that the
main contribution to the EFG fluctuations comes from
the motions of the molecule bearing the resonant nucleus.
This decisive hypothesis was first formulated by Bayer
for nuclear relaxation in molecular crystals and all the
later descriptions for the temperature dependence of T,
and the NQR frequency rely on this basic assumption.
Such models assume that the molecule makes transitions
among discrete torsional oscillation levels, but the nature
of the interactions producing the molecular transitions is
not analyzed. Instead, T, is calculated in terms of an
average lifetime of the molecular torsional states, through
a stochastic model of uncoupled harmonic oscillators. '

The general temperature dependence so obtained may be
expressed as T, ' = A T with k =2.

A theoretical review of the existent models for relaxa-
tion in molecular crystals becomes necessary in order to
account for a great volume of experimental data showing
noticeable discrepancies of the temperature dependence
with respect to the predicted behavior. Besides, a more
detailed knowledge about the role that anharmonic in-
teractions play in the spin-lattice relaxation phenomena
would be helpful whenever molecular order becomes an
important feature.

There exist too many examples in which departures
from the quadratic power law are observed. In many
cases the data follow a T law, A, being even greater than
three. ' It is impossible to account for such a behavior
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starting from the semiclassical available models. In other
cases, the rate of the decrease of T& with temperature
shows a monotonous enhancement even in a logarithmic
plot (see, for example, Refs. 10 and ll). In some cases
this behavior is ascribed to anharmonicity of the rnolecu-
lar motions, but it is not clear how to include it in the
model. " Departures of the experimental data from the
quadratic temperature law are also frequently ascribed to
relaxation mechanisms other than vibrations, such as
thermally activated processes or pretransition effects. '

Their inhuence in the relaxation rates is usually con-
sidered as independent from vibrations. Even if such an
assumption holds, it might not be accurate to represent
the vibrational mechanism with a power law with a con-
stant value for the exponent (A, ), because this tempera-
ture dependence was deduced by disregarding the anhar-
monic intermolecular correlations.

In the limit of molecular crystal, the direct intermolec-
ular contribution to the fluctuation spectrum can be
neglected when compared with the intramolecular one.
This assumption is meaningful because the most impor-
tant contribution to the EFG value generally comes from
the molecule bearing the resonant nucleus. For example,
the field gradient at the chlorine nucleus in both sodium
chlorate and potassium chlorate is due primarily to the
electron distribution at the chlorate ion, and is almost
unaffected by changes in molar volume. A calculus of the
EFG at the chlorine site in sodium chlorate' shows that
the intermolecular contribution is not greater than one-
hundredth of the intrarnolecular contribution. In this ex-
ample the lattice sums calculated with a point charge
model converge when atoms within a 50-A sphere are
considered. In the p-chloronitrobenzene crystal a cal-
culus of the external contribution to the EFG at the
chlorine sites was made by assuming the molecular
charge distribution as dipoles. ' In this case the lattice
sum converges within a sphere of three-unit-cell radius,
yielding a value for the intermolecular contribution of
only 2% of the intramolecular one.

An estimation of the contribution to the Cl spin-
lattice relaxation due to the motion of the sodium neigh-
boring atoms in NaC103 was reported by Weber. ' He
argues that the fluctuating EFG responsible for the
chlorine relaxation arises principally from the charge
motion within the chlorate ion. By using the Van
Kranendonk theory he concludes that the contribution
coming from the six-nearest-neighboring ions is several
orders of magnitude smaller than the intramolecular con-
tribution. All the arguments enumerated above induce us
to think that a model which disregards the direct inter-
molecular contributions to T& would apply to a wide
class of molecular crystals where the resonant nucleus is
tightly bound to the molecular group.

Under these assumptions the time dependence of the
EFG at the nucleus site can be written in terms of the
Euler angles describing the orientation of the principal
EFG axes, the value of its z-z component, V„and the
asymmetry g. ' The intramolecular charge distribution
defines the coordinate axis where the EFG tensor can be
diagonalized and it is assumed that the principal term
"follows" the atomic motions. If the direct intermolecu-

lar Auctuations were important, this description would
not be correct any more, and the instantaneous displace-
ments of all atoms should be considered, as in the theory
for monoatomic-like crystals.

The present work focuses on the NQR spin-lattice re-
laxation for nuclear spin I =

—,
' in the limit of molecular

crystals. The collective character of the molecular
motions is explicitly included through the formalism for
lattice dynamics of molecular crystals. ' ' By describing
quantum mechanically both the spin system and the lat-
tice, we include in an explicit way the intermolecular
correlations due to the anharrnonicity of the crystalline
field of forces. It is at this point that the present work
goes a step further with respect to the previous models
for spin-lattice relaxation in molecular crystals.

Anharmonicity was explicitly included by involving
cubic and quartic terms of the lattice vibrations Hamil-
tonian. The spectral densities of the spin-lattice Hamil-
tonian were expressed in terms of the phonon spectral
densities. By using the Green-function formalism the
contributions to T, ' from the anharmonic-Raman (AR)
and first-order-Raman (1R) processes were calculated.
They both contribute with quadratic terms to the temper-
ature dependence. We found that the lower-order contri-
bution to the spectral density related to nuclear spin tran-
sitions with hm =1, S'&, originate in the coupling be-
tween these transitions and three phonon processes. This
coupling (AR) being driven by the cubic terms of the vi-
brational Hamiltonian cannot be represented by a single
correlation time. On the other hand, the first-order con-
tribution to JY2 (hm =2) comes from the coupling with
harmonic processes of two phonons (1R) and it admits
the definition of a global lattice correlation time. The
second-order contribution to 8'2 arises from the self-
energy effects on the two-particle spectral densities.
These processes, which can be thought of as interactions
between the AR and 1R contributions, yield a cubic tem-
perature dependence and could account for some depar-
tures of data from the semiclassical models. Summariz-
ing, our analysis showed that the Auctuation spectra re-
lated with 8', have a different character than the one re-
lated with 8'2.

For the sake of simplicity we first analyzed in detail the
case of a symmetric EFG tensor, q=0. The conse-
quences of including a parameter gAO were evaluated in
a separate section. We found that the inclusion of the
EFG asymmetry does not produce relevant differences
with the case of g =0.

II. SPIN-LATTICE RELAXATION

In this work we study the nuclear spin relaxation by
lattice vibrations of quadrupole nuclei situated at molecu-
lar or ion groups. In these cases, relaxation is mainly
driven by the Auctuations in the quadrupolar interaction
resulting from the motions of the molecular group bear-
ing the resonant nucleus. As discussed in the Introduc-
tion, we neglect the fluctuations of the quadrupole in-
teraction corning directly from the motions of the neigh-
boring groups. We instead focus the description in the
collective nature of the molecular motions.
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The Hamiltonian for the interaction of an electric
quadrupole moment of a nucleus with the electric-field
gradient, EFG, at the nucleus site is'

2

~g y ( 1) F2, —MQ2, M
M= —2

where Q2 M denote crystal frame spin operators. For
spin I =—',

where D&~ are the second rank Wigner matrix ele-
ments' and 0 represents the time-dependent Euler an-
gles of the transformation: a, P, and 8. These angles cor-
respond to rotations about the space-fixed axes z, y, and
z, respectively. [In writing Eq. (4) we have assumed that
rigid and intramolecular motions are uncorrelated. Oth-
erwise a first step transforming from the bond frame to
the molecular frame would be necessary. ] The second-
rank Wigner matrices take the following general form:

Q2 ()
= ( 3I, —I I ), Q2 + i

= —(I+I, +I,I~ ),
(2)

D(2) (iz y g) —e
—™e—iNpd(2) (g)

F() =eq/2, F~, =0, F~2 =2)eq/(2&6) . (3)

The crystal frame is chosen so that it coincides with the
molecular bond frame when the molecule is at the equi-
librium position.

The coupling of the nuclear spin system with the lat-
tice originates in the time fluctuations of the quadrupole
Hamiltonian. The time dependence of the quadrupole in-
teraction energy may be obtained by transforming the
EFG tensor from the bond fixed frame to the crystal
frame according to

2

FM X DNM(+)FN
N= —2

e
Q2, +2-

2V6
and F2' M are the elements of the electric-field gradient
in the crystal frame. The EFG at the nucleus is mainly
due to the electrons in the bond, and fluctuates in orien-
tation in the spin-fixed axis system (crystal frame) due to
molecular tumbling. When expressed in the bond fixed
principal frame, the EFG elements can be specified by its
asymmetry parameter, g, and q, the component of the
EFG tensor along the z" axis'

with N and 3f =0,+1,+2.
We assume that the probabilities of occupation of the

spin states, P„(t), satisfy a master equation

dI'„ =g [P W „P„W„—] . (6)

The probabilities per unit time, 8', of a transition
from state m at t =0 to state m' at time t involved in Eq.
(6) are time independent; these quantities can be obtained
from a perturbative expansion of the density matrix up to
second order:

G (t)=(&g (t)&g ) .

The brackets in the last equation indicate the statistical
ensemble average. The o6'-diagonal matrix elements of
the quadrupole Hamiltonian in the crystal frame &g
are

W = J G ~ (t)e g dt,mm @2 m m

G ~ being the correlation function of the quadrupolar
Hamiltonian

(m+1~&g ~m ) =eQ/12(2m+1)[( —', +m)( —5+m)]'~ F'+, ,

(m+2~&g~m ) =eQ/24[( —,'+m)( —,'+m)( ,'+m)( ', +—m)]' F—'+2 .

It can be seen from Eq. (6) that for I =
—,, the spin-lattice relaxation time satisfies the following relation in terms of the

transition probabilities per unit time:

T i
' =2( Wi + W2 ),

where we defined

~1 ~3/2, 1/2 & ~2 ~3/2, —1/2

for nuclear transitions with Am =1 and hm =2, respectively.
Finally, by use of Eqs. (7)—(9) the following expressions for the transition rates can be obtained:

'2
e

J )2 ~ 2 (Fcr( t )Fere )e (2 dtJ J (12)

with j= 1 or 2; and inserting Eqs. (3) and (4) we write these functions in terms of the Wigner matrices of second rank.
After considering the EFG parameters q and r) as time independent we obtain [considering q and 2) as time-dependent
yield corrections of higher order than those of Eq. (13)]

(F"[Q(t))F"*)=Fbo ( [DO .[Q(t)]+glv'6D 2 [Q(t)]+rI/&6D2 [Q(t)] j [D() (0)+g/v 6D* 2 (0)
+2)/&6D2, (Q)]) . (13)
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The angular orientation of the principal term depends
on the instantaneous configuration of the molecular
group. The lattice dynamics of a molecular crystal is
more conveniently described in terms of molecular coor-
dinates rather than in terms of atomic displacements be-
cause in this way it is possible to take advantage of the
existence of tightly bound molecular groups (iona or mol-
ecules). When the intramolecular interactions are
suKciently strong as compared with the crystalline ones,
it is meaningful to separate the dynamical problem into
two well-distinct parts: one relative to the external and
one to the internal vibrations. This assumption is known
as the rigid-body approximation. External motions are
the rigid-body translations of molecules and the rotations
around the principal axes of inertia. The internal
motions instead involve distortions of the molecule and
are mainly governed by the intramolecular forces; the in-
teractions with other molecular groups are only small
perturbations. The internal frequencies are generally in-
dependent of the wave vector; in contrast, the external
motions exhibit important anharmonicity and dispersion.

The spatial configuration of the molecular groups can
be described, to first order in the amplitudes of the
molecular motions, by uncoupled molecular coordinates
corresponding to rigid translations and rotations and
internal distortions. ' We find it useful to expand the
Wigner matrices in terms of these coordinates as a first
step in writing the EFG tensor in terms of collective
coordinates of the lattice. At this stage we have intro-
duced the lattice dynamics into the description of the
temperature dependence of the spin-lattice relaxation
time.

For small values, the Euler angles can be written as
linear functions of the molecular coordinates q, :

for j =1,2. In this case the argument Q in the Wigner
matrices represent the azimuthal and the polar Euler an-
gles P and 8. For small 8, '

Do i(8 P)=dpi(8)e ~ — (8 8 /6)e
2

D (8 P)=d (8)e '~= (8 +8 /3)e
(17)

After introducing the dependence of these matrices on
the molecular coordinates they can be expanded in series
of Iq, ]:

Doi(8[q, ),0[q, J)=X 01 88
BO Bq,

q,

aDpi

~qs' e, y=p

Then, according to Eqs. (14), (17), and (18),

Doi(8Iq, ] Aq. ])
v'6

g a, q, —g a, a, .a, -q, q, .q,-+
$ $$$

(19)

K, (t)= —,'Fp ga, a, (q, (t)q,' )+k, +O(q )
$$

=3Ft [k, +ki]+O(q ), (20)

where k
&

contains terms having the following structure:

After replacing Eq. (19) into Eq. (16), the correlation
function Ki(t) becomes

8=+ a,q„8=+b,q„a=+c,q, , (14)

where a, =[88/Bq, ] o represents the sensibility of 8
S

due to the sth molecular displacement q„a similar
definition holds for b, and c, .

The Wigner matrices can be assumed to depend on the
molecular coordinates through their dependence on the
Euler angles. Generally we can write

FM'=FM'[4[q, ] 8[q, J, r[q, 1] (15)

A. The case of g=o

When g =0 the time correlation functions associated to
nuclear transitions with Am =1 and hm =2 from Eq.
(13) reduce to

K.(t)=—(F"[Q(t)]F'"(Q))
=Fo (Dpj [Q(t)]Dpj(Q) ) (16)

where the symbols [q, J represent the sets of molecular
coordinates producing the time dependence of the Euler
angles. In the case of small amplitude angles we
represent these functions by their Taylor expansions in
terms of [q, J around the molecular equilibrium positions,

[q, =0]. In first place we consider the case of i) =0.

pa, a, a,-a, (q, (t)q,*q,'q, - )
I$I

and Is ( stands for the set of molecular coordinate
indexes [ss's "s"']. In Appendix B we show that the con-
tribution of k, to the relaxation rate is negligible com-
pared with the one arising from the first term of Eq. (20).

Similarly, the correlation function related to Am =2 is

K2(t)= Fp g a, a, .a, .a,- (q,—(t)q, (t)q,*-q,'- ) +O (q )

I$I

(21)

The crystalline character of the spin-lattice relaxation
is better rejected by introducing lattice normal coordi-
nates because the dynamics of the external molecular
coordinates is governed by intermolecular interactions.
The collective nature of the molecular vibrations becomes
apparent by transforming from the normal molecular
coordinates [q, J to a set of crystalline coordinates Ql,~.
Finally, by introducing the quantum creation and annihi-
lation operators into the description

AI,J
——(a qj +ai,~ )

a general expression for the molecular coordinates can be
obtained, '
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q, =MR/2L g v(s~kj)cok ' Ak. e (23)
kj

where v (s~kj) are the eigenvectors of the dynamical matrix and Ro is the equilibrium position vector of the resonant nu-

cleus.
By replacing Eq. (23) into Eqs. (20) and (21) the time correlation functions become

X =-'Fb'
1 2 0

K =—'I'
2 8 0

a, a, v (s~kj)v'(s'~k'j')(cokjcokj )
' ( Akj(t) A k j ),

ss' kj, k'j'
2

2L
v (s~kj)v ( s'~k'j') v*( s" ~kj) v'(s"'~ kj')

IsI kjk'j'kjk'j'

Xa,a, .a, a, -( Ak-. (t)Ak, —., (t) A kj A k j. )(cokjcok j cok cok, ,-.)—.

(24)

B. Calculation of $Y&

To progress in the calculation of 8', and 8'2 of Eq.
(12) in terms of the phonon spectral densities, we have to
perform the Fourier transform of K, and K2 for an
anharmonic lattice. To do this we use the temperature
Green function (TGF) formalism. ' This perturbative
formalism constitutes a very general method which cov-
ers not only cases of low anharmonicity, but also situa-
tions of large amplitudes of atomic vibrations. This pro-
cedure allows the calculation of the temperature depen-
dence of the successive orders in a perturbative parame-
ter.

The spectral density of K& contains one-phonon spec-
tral densities. This function can be calculated by using
their known relation with the TGF

fk '( ):—VI(Ak (t)Ak' )]
(25)

where

2 A
lim ImGkj(i co„),—PA'co 0

where V stands for Fourier transform and Gkj is the one-
phonon TGF. This function is defined on the imaginary
axis of the complex plane for discrete frequency values
w =ico„=i2mn/Pfi . with an n integer. To obtain the
spectral density it is necessary to make an analytic pro-
longation over the whole complex plane w =co+tv and
then to take the limit for real values (v~O).

In order to take into account the lower-order contribu-
tions to Ti due to the anharmonicity of the crystalline
potential, we consider the lattice vibrations Hamiltonian
up to the quartic term in the phonon operators'

&„;b=&0+&3+%4, (26)

&o=gficok (nk. + —,'),
kj

J J& J2
B3 k k k Ak Ak Ak (27)

J J& J2 J3
&4—g g B4 k k k k AkAkj Akj Akj

For ordering the successive contributions to the spectral densities, it is convenient to define a perturbative parameter
as the quotient between the root mean square of the angular displacement and the nearest-neighbor distance,

e= V( g ) /~ The order of magnitude of the anharmonic coefficients B3 and B4 in terms of' e are

g B3-eA'cok,
klk2

B4 e Acok .
klk2k3

(28)

The perturbative approximation of the TGF consistent with the Hamiltonian of Eq. (26) is

Gkjj (lan ) —5j gk. (l&n )+gkj(l& )Snkjj (l&n )gkj(l&n )+

where gk (i co„) is the Fourier transform of the harmonic propagator

(29)
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1 1
gkj(l&n ) =

Ph' conj +i to„
L

COkj l CO„
(30)

2cokj
Gz~ (i co.„)=

pA[mqj (t m—„) ] 2tokj—S~JJ (i co„)
(31)

It can be seen from Eqs. (25) and (31) that for frequen-
cies co =&ok the one-phonon spectral densities are

(32)

n(co) being the Bose occupation number at frequency co.

The quantities 6k and I"k are defined as follows:

lim S„,,(tv+iv) = —PA'[bj, j(to) —il ~, (~)],
v~O

(33)

they coincide with the phonon frequency shifts and band-
widths, respective1y, when they are evaluated at frequen-
cies co=cok . In the low-frequency limit, co«cokj, the

and Szjj'(ice„) is the self-energy matrix (see Appendix A).
The lowest-order correction to the spectral density due to
the anharmonic terms of the potential may be obtained
by keeping only the diagonal terms of the self-energy ma-
trix. This approximation is equivalent to representing
the crystal vibrations by a set of noninteracting particles
of moment k and polarization j, with finite lifetimes and
shifted energies. Within this approximation the TGF has
the following exact expression:

FIG. 1. Lower-order diagrams occurring in the expansion of
the phonon self-energy.

one-phonon spectral densities become

I'~, (~)
fz~j(tv)=8[n (to)+ I] (34)

Cgl j
Here I'& (co) can be interpreted as the width of the
response function at frequency co.

As can be seen from Eq. (32) the response function is
peaked around harmonic vibrational frequencies. In the
limit of a harmonic lattice it would be composed by 5
functions centered at the phonon frequencies associated
with the first term of Eq. (29). Then the only possibility
that energy exchange could occur would be through the
lattice transitions with energies corresponding to the
NQR frequency (direct processes). In molecular crystals
the phonons which produce the time variation of the
EFG are those involving rotational motions and they
have very high frequencies compared with co&. By this
reason the direct mechanism is negligible, and, as we shall
see, the first contribution to 8'& comes from three-
phonon processes.

The lower-order contributions (e ) to the spectral den-
sity from the anharmonic terms should be those related
with the propagator diagrams like Fig. 1.

It can be shown' that only Eq. 1(b) contributes to
I & (co) in Eq. (34). These terms are associated with the
cubic coeKcients of the vibrational Hamiltonian, and
their contribution to the width of the response function is

I „.(tv&)= g l83(kk&kz)l .b(k, +k +k)

X [(n, +nz +1)[ (5ot, +co&
—tv&) —5(co&+co&+co&)]

+ ( n, n2 ) [5(co,—to2+ cog
—) —5( —co, +co2+ cog ) ] J .

Finally, after inserting Eqs. (35) and (34) into Eq. (12), W, takes the following expression:

97TCOg
W', = g gv(slkj)v*(s'lkj)coq a, a, .

ss' kj

(35)

X g l83(kj, k,j&,k2j2)l b(k, +kz+k)(nj, nz . )[n—(co&)+1]
1 2

X [5(co& —
co&

—co&)—5(tot, —
co&

—co&)]+O(e ) . (36)

This is a contribution which arises exclusively due to
the anharmonicity of the lattice. The thermal bath can
dissipate the energy coming from the nuclear spin system
at frequency m& by means of the three phonon processes.
As can be seen from Eq. (36) this mechanism is driven by
the cubic terms of the lattice Hamiltonian. These spin-
lattice processes contributing to 8'& are known as anhar-

monic Raman and can be summarized with schemes like
Fig. 2 (see, e.g., Ref. 23).

A nuclear quantum is annihilated with a three-phonon
process. The dashed line represents a virtual phonon of
momentum k. This short lifetime excitation of the lattice
soon dissipates its energy in a three-phonon collision.
The solid lines represent lattice phonons of momentum k,
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spin transition

of energy fuuq

FIG. 2. Diagram representing the spin-phonon mechanisms
involved in the anharmonic Raman processes.

and kz. The intermediate state does not need to conserve
energy. The density of these processes is expected to be
higher than the direct mechanism because here phonons
of all frequencies can participate.

The sum over k in Eq. (36) includes all values of k asso-
ciated to rotational motions of the molecule. As a closed
expression for the dispersion relations of the optic pho-
nons is not available, the sum cannot be solved analytical-
ly. Generally it can be assumed that eigenvectors and
eigenfrequencies are smooth functions of k. The depen-

I

(nz~ —nz 1 )[n(co&}+1]=(nj, . n& —)n(co&)

dence of the B3 coeKcients on k is determined by the in-

termolecular anharmonic constants of force. In order to
represent all the dynamics by a unique parameter (corre-
lation time), as the semiclassical models do, one should
try to perform the sums over k, and k2 independently
from the value of k but this step would be meaningless in
the case of anharmonic molecular crystals, because of the
k dependence of B3 and the momentum-conservation
condition. Then, we see that it might not always be right
to describe T, ( T}in terms of a unique correlation time of
the molecular torsional oscillations. '

Equation (36) for W, explicitly refiects the molecular
order in the crystal. Any process capable of altering the
molecular order in the lattice could affect this contribu-
tion to the spectral density.

The temperature dependence at constant crystalline
configuration of 8'& comes mainly from the mean occu-
pation numbers in Eq. (36). At high temperatures
(A'co~ &&ks T)

4k'
COg COi

2

Therefore, at order e, 8'& has a quadratic temperature dependence at constant crystalline configuration.

(37)

C. Calculation of 8'2

In order to obtain 8'2 one has to calculate the spectral density of the two-phonon correlation function involved in

Eq. (24):

f I JI,.J
=—7[(( A q-. ( t) A ~,—., ( t ) A gj. A g J' ) I .

Here we also use the TGF to calculate the two-phonon propagator which is defined as '

G' (t) = (T, Aq-. (t) Aq, —., (t) A qi A I*,.j'U(P, O) )„„„.

(38)

(39)

T, is the time-ordering operator and the subscript conec indicates that only the connected diagrams have to be in-

cluded in the calculation. The operator U(P, O) has the following form:

U(P, O) =1+g, J dt, H,„,(t, ) . I dt„H,„,(t„),1 lnt 1
0

(40)

G„" (t0) =(T qA-. (t) Aq, —., (t) ) ( TEA q ' )

+&TA , (t}A„;&-(—T.A„,(t)A;, -).—.

+ (TA-,—.(t) A„.,') (TA-,;., (t) A„, ) . (41)

The first term of the second member in Eq. (41) is an

where H;„, symbolizes the anharmonic terms of the vibra-
tional Hamiltonian in the interaction representation. We
study the inhuence of the anharmonicity on 8'2 by point-
ing out the effects that the phonon self-energy has on the
two-particle spectral densities. To do this we calculate
the lower-order terms of the renormalized two-phonon
spectral densities and then compare it with the harmonic
term.

By making n =0 in Eqs. (39) and (40) and using the
pairing theorem we obtain

equal-time contribution and corresponds to the station-
ary part of the spin-lattice Hamiltonian. This term gives
no contribution to the spin-lattice relaxation time. The
two following terms give equal contributions, therefore
we calculate one of them and duplicate the result. Then
we have to follow the same steps as in the calculation of
8'&. obtaining the discrete Fourier transform of the
two-particle propagators, making an analytic prolonga-
tion over the whole complex plane and taking the limit
for v~O of the imaginary part of the Green function.

Let us call Gz „, , (ical) to the discrete Fourier trans-
form of the second term of Eq. (41). Starting from the
discrete Fourier transform of the one-phonon propaga-
tors and using the periodicity of the two-phonon propa-
gators we get

Gg~ gj'(tee( ) = g . Gqq (tco„)Gq J, (tee(. —tee„) . (42)
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Phonon lifetime (anharmonicity) eff'ects can be taken into account by considering the "exact" expression for the one-
phonon Green functions. At this step we use the same degree of approximation for the one-phonon Green functions
shown in Eq. (29). By replacing Eq. (29) in Eq. (42) and keeping up to the linear terms in 4 we find

Gkjk'j'(~~l) rf [gkj( ~n )gk'j'( ~l ~~n )+gkj(~~n )~kjj(~~n )gkj(~~n )gk'j'(~~I ~n )

+gkj(Eco„)gk j'(Ecoi tco„)elk» . (E co~ E co„)g k& (Eco~ Eco„)+ ' ' ]

The renormalized two-particle propagator can be
represented by a diagram like Fig. 3. The double arrows
symbolize the propagation of two particles in a dissipa-
tive medium, interacting with the field produced by the
other particles. Any correlation among them is neglect-
ed. In the two following sections we calculate the spec-
tral densities associated with the two-particle harmonic
propagators [called "first-order Raman processes" (Ref.
2)] and with the crossed terms involving the self-energy
matrix (hereafter "interaction processes").

l. First-order Raman processes

First we analyze the contribution to 8'2 from the first
term of Eq. (43):

Gk k (cco()=g gk (ico„)gk j (scot )co„—) .

This series can be summed by means of contour integrals
and the result is

nj, +nj, +I
Gk k (tco~)—

cokj +cok'j'+ I col

ni ng~

COi J COg ~+ l CO(

ni, +n~. +1
coi . +coi ~ ~ l ct)I

nj ng

COj ~y COi J + E CO)

The harmonic two-phonon spectral density associated to this Green function can be obtained starting from a similar
relation than Eq. (25) adapted for two particles. Then, by making use of Eqs. (12) and (24), a straightforward calcula-
tion leads to the 1R contribution:

fVP = g g u(s~kj)u(s'~kj)u(s" ~k'j')u(s'"~ kj')[1 +n(co&)](nk —nk )(cokjcok j. ) 'a, a, a, a, ...
641.

X [5(cok
&

cok& cog ) 5(cokj cok
&

cog ) ) (46)

The processes governing this contribution can be
represented with diagrams like Fig. 4.

A quantum of energy %co& from a nuclear spin transi-
tion of hm =+2 is annihilated in a two-phonon process
which creates a phonon of frequency ~& and destroys a
phonon of frequency co& '. The frequencies must verify
the relation co&

—co&. '=+co&. Unlike 8'& no virtual pho-
non states are present here; this is a completely harmonic
mechanism.

As for 8'„ the temperature dependence at a constant
crystalline configuration of 8'z is quadratic within the
high-temperature range. But in this case the relaxation is
driven by harmonic fluctuations. The energy exchange
between the nuclear spin system and the lattice is reso-
nant. The relevance of these energy exchange processes
is determined by the two-phonon density of states.

Generally it can be assumed that both the eigenvectors
and eigenfrequencies in Eq. (46) are smooth functions of

the wave vector. Then it would be possible to average the
k dependence of 8'z over the entire reciprocal space.
Besides, if the low-frequency torsional motions are those
giving the main contribution to 8'z then we can write

2 '2
~1R [1+n (cog ) ]~', (47)(%cog) g

s ~s

where we defined the quantity ~', having units of time,
as

(n„n„)[5(co„.' —co„—cog
—)

—5(cok —co„'—cog )] .

Consequently, it is possible to describe the contribution
to the spin-lattice relaxation from the IR processes in
terms of a single characteristic time, representing the

FICx. 3. Renormalized two-phonon propagator expansion
(see text).

FICx. 4. Diagram representing the first-order Raman spin-
phonon processes. No virtual phonons are involved.
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harmonic Quctuations of the lattice. Naturally, this re-
sult coincides with the semiclassical model, ' where the
spin-lattice relaxation is described through a stochastic
process representing all the fiuctuations of the crystalhne
mean field. The relative value of W& and 8'z depends
on the value that ~' takes. Except in the cases where
the transition probabilities can be measured separately, it
is not possible to know which of these mechanisms is
dominant. As we will show elsewhere, it would be possi-
ble to get some knowledge about the relative importance
of the collective processes through uniaxial stress experi-
ments.

Z. Interaction processes

Up to now the study of the nuclear spin-lattice relaxa-
tion in molecular crystals in terms of vibrational Auctua-
tions by making a quantum approach for describing the
lattice allowed us to realize that nuclear transitions with
Am =+1 and 4m =+2 are coupled with difFerent kinds
of processes which could be of similar magnitude. Both
AR and 1R processes give a quadratic temperature
dependence in an intermediate-temperature range. This
dependence is similar to that found in Ref. 2. In that

work higher-order contributions due to the phonon self-
energy efFects over the two-particle spectral densities
were neglected. However such terms would represent a
sort of interaction between the two processes described
above and this mechanism could become significant for
molecular crystals as we show. Let us call this kind of re-
laxation mechanism interaction processes. This contribu-
tion represents the first-order correction to the harmonic
two-particle propagator due to phonon self-energy.

Now we analyze the contribution coming from the
cross products of Eq. (43) following a procedure similar
to that employed in obtaining the former contributions.
As we have seen above, two terms, Figs. 1(a) and 1(b),
contribute in 0 (e ) to the self-energy matrix. Figure 1(a)
is related to the quartic terms of the vibrational Harnil-
tonian and does not contribute to the excitation lifetime,
giving no correction to the two-particle spectral densities.
On the other hand, Fig. 1(b) is related to the cubic
coeKcients of the crystal Hamiltonian and gives the next
nonzero contribution to the spectral density. This term is
of O(e ) relative to W' . Some aspects of this calculus
are depicted in Appendix A.

The obtained result for the transition rate associated to
the interaction mechanism, 8'z"', in the limit of high tem-
perature is

97Th)
Wz"'= ks T g g u(s~kj)u (s'~kj)u (s" kj'')u (s"'~k'j')[1+n (co&)]a(,)32L

I s I kjk'j'

X g ~B,(k'j', kg, , k2J2)~ b(k, +k~+k )(co~ coq, )

klk2

Elk +11k + 1 7lk 7lk
1 2 1 2X 5(co& —

col, +co& ) +
2coz.( W —

co& )~ 2coz

(nl, +n„+1)
+5( W —coq+cog )

coq(co~ + W)(col, —W)~

(nq —nq )
+ [5(M —co&+co& )

—5(M +co&+co& )]
coq(coq +M)(coq. —M) p

(49)

where M—:col,
—co&, W=cok +co~, and 5(a+b)

2 1 2 1

=5(a+6)+5(a b). The subscript I' m—eans taking the
principal part.

The integration over k selects the phonons with
nonzero projection over the rotational motions and sub-
ject to momentum and energy conservation for each fixed
value of k„k2, and k'. The resulting functions of cok

present poles at mk. =+8', +M allowing the possibility of
8'z"' to take an appreciable value when the integration
over k&, k2, and k' is carried out. While developing the
last equation we neglected terms proportional to
[2coz(W+col, )] '. They are small compared with the
others shown in Eq. (49), since their denominators always
take large values. As can be seen in Eq (49) the sp. ectral

density associated with this mechanism may increase to
some extent due to the great number of phonons that can
participate in the interaction mechanism. The phonons
labeled with k&, k2 only have to satisfy conservation of en-

ergy and momentum, so the restriction of having a rota, -
tional character is released. Therefore, the density of
states accessible to the nuclear spin relaxation may be-
come markedly increased by this kind of mechanism.
The processes contributing to 8'z"' can be represented by
diagrams like Fig. 5.

As in the AR process, here the dashed lines represent
virtual phonons. It can be interpreted as if one of the two
phonons of the 1R mechanism is now provided by a
three-phonon collision that is driven by the cubic terms
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spin transition
oZ energy ~q

k2

FIG. 5. Diagrams which depict the interaction mechanisms
associated with the T terms of Eq. (49).

of the vibrational Hamiltonian. This means that the
anharmonic fluctuations could enhance the intensity of
the spin-lattice coupling provided by the 1R processes,
subject to the degree of anharmonicity and the symmetry
of the lattice.

It can be seen from Eq. (49) that Wz"', being of 0 (e T)
relative to 8'z, has a cubic temperature dependence in
the high-temperature regime. Then the temperature
dependence of T& at constant crystalline configuration
can be summarized as

Ti i(T)= QT2+BT3,

where the quadratic term contains the 1R and AR pro-
cesses and the cubic one arises from the interaction of
those mechanisms.

At a rough estimation, e T-0.3 at room temperature.
Therefore, the cubic mechanism could become evident as
a departure of T, data from the usual law T, ~ T
Furthermore, the cubic term could become the leading
contribution whenever the density of the interaction pro-
cesses are large enough. It can be seen from Eq. (50) that
even if B is 2 orders of magnitude less than A, a plot of
lnT& vs lnT is still a straight line of slope three.

The law T& ~ T verifies in most monoatornic-like
crystals. Van Kranendonk and Walker explained this
quadratic behavior with the 1R and AR processes. They
neglected the contributions coming from the self-energy
e6'ects on the quadratic terms in the local field arguing
the smallness of the spin-lattice coupling. However,
spin-lattice relaxation in molecular crystals usually show
a different behavior. By analyzing Eq. (49) we see that
the density of the four-phonon processes depends on the
number of phonons k, and k2 satisfying k&+k2= k, where
k stands for rotational phonons giving nonzero values of
B3(kj,k,ji,k2j2). If the anharmonic intermolecular in-
teractions were nearly independent of the position, the
cubic term B3(kj,k,j„k2j2) would take small values for
large k. 1n such case, the integration domain over k and
k' in Eq. (49) would be restricted for small k and k', ex-
cluding phonon processes where k, +k2&0. This could
be the case of the monoatomic-like ionic crystals where
the resonant nucleus "sees" a large number of neighbor-
ing atoms placed around with a rather isotropic distribu-
tion, interacting with long-range potentials. In contrast,
in molecular crystals the atomic distribution is markedly
anisotropic and the interactions are of shorter range. A
combination of anharmonicity and anisotropy might
enhance the importance of the term 8'z"', and a contribu-
tion like this one could account for the departures from

the square temperature law, frequently observed in
molecular crystals.

Summarizing, we have calculated the temperature
dependence of the transition probabilities at constant
crystalline configuration D. ue to thermal expansion both
A and B in Eq. (50) depend indirectly on temperature
through their dependence on the eigenfrequencies and the
constants of force. In some cases where significant
thermal expansion occurs, coefficients A and B could be-
come strongly temperature dependent; enhancing the
Ti(T) rate for increasing temperatures (see, for example,

Cl NQR experiments on chloracetamide in Ref. 25).
This fact could be another "ingredient, "besides essential
anharmonicity, to be considered whenever deviations
from the quadratic T, dependence become apparent for
increasing temperatures.

ii (D~2 J [Q(t)]D~2 J(Q)' ) (52)

for j =1,2.
By inserting the definition of the Wigner matrices of

Eq. (5) in the last expressions, and expanding them in the
Euler angles to the same order as done in Eqs. (17) and
(18), one finds that the lower-order corrections to J, and
E2 due to the asymmetry of the EFG contain factors like
t, q, (t)q, . ) for bm =1 and like t, q, (t)q, (t)q,',q,*.) for
Am =2. Other terms of the form

a, a, .a, a, -.(q, (t)q,*.q,*..q,*„,)
Is I

also appear both in K, and K2. The spectral density of a
correlation function like this one can be neglected, as de-
scribed in Appendix B. We can conclude that the in-
clusion of ii%0 does not produce any kind of mixing be-
tween processes related with 8', and those related with
8'2 nor introduces new relaxation processes.

III. CONCLUDING REMARKS

In this work we have investigated the consequences of
introducing the crystalline nature into the description of
the nuclear quadrupole spin-lattice relaxation in molecu-
lar crystals. We can conclude that even if the fIuctua-
tions of the nuclear quadrupole Harniltonian can be as-
cribed only to the molecular motions, it is the dynamics

D. The case of g+0

In order to explore about the inhuence of the asym-
metry of the EFG tensor on T, we have to inquire basi-
cally on two points. In the first place it is necessary to es-
timate the importance of the corrections on 8', and 8'2
that the inclusion of riAO implies. Second, we have to
analyze the nature of those corrections, namely if they
bring some mixing among the various lattice mechanisms
which are present in 8', and 8'2 for g=0.

This section is concerned with the terms of Eq. (13) in-
volving g and g . The typical structure of such terms is

g[(D,, [Q(t)]D*,, (Q) )+ (D „[Q(t)]D,', (II) ) ] (51)

and
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of the motions, imposed by the crystal as a whole, which
defines the nature of the spin-lattice coupling mecha-
nisms.

We described spin-lattice relaxation in terms of two
essentially different and often competing mechanisms:
the pseudoharmonic and the anharmonic processes. The
first involve the nuclear transitions that are directly cou-
pled with harmonic two-phonon transition of the thermal
bath in a resonant process. In this kind of process the
molecule can be thought as an individual entity immersed
in a phonon thermal bath and its dynamics can be de-
scribed by stochastic processes. In contrast, for describ-
ing the anharmonic process it is not possible to keep the
picture of individual molecules and collective processes
must be included into the description. Therefore, in a
general case, it is not meaningful to represent the molecu-
lar dynamics with a single parameter like the mean life-
time of the torsional oscillations, as is done in semiclassi-
cal models.

The anharmonic intermolecular interactions take part
explicitly in the transition rates 8'I and 8'z"' through the
83 coefficients [see Eqs. (36) and (49)]. Then the syinme-
try of the molecule environment plays an important role
in the anharmonic contributions to T j because the cubic
coefficients of the vibrational Hamiltonian reAect explicit-
ly the anisotropy of the crystalline potential. Therefore,
any process altering the molecular ordering could affect
these contributions. On the contrary, the inhuence of the
crystalline order on the first-order Raman processes
comes indirectly through the eigenfrequencies and the

correlation time, as can be seen in Eq. (47).
By using a perturbative approach we identified the

various contributions to the nuclear spin-lattice relaxa-
tion time by their relative magnitude and temperature
dependence. A quadratic temperature dependence of
T, ' arises due to 1R and AR processes. As these pro-
cesses cannot be measured separately in T, (T) experi-
ments, further experimental information would be neces-
sary to know if one of these mechanisms is dominant. Fi-
nally, a third contribution, which we called the interac-
tion process, has shown a cubic temperature dependence,
being of order O(e T) relative to the contribution due to
1R processes. This mechanism could become dominant
subject to the anharmonicity and particular symmetry of
the molecular environment. Contributions like this one
could also account for the departure from the T law,
often observed in molecular crystals.
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APPENDIX A

We analyze here the contribution to the interaction
mechanism coming from linear terms in the self-energy in
Eq. (43). The terms of our interest involve products of
three harmonic propagators and the self-energy like

Xi (oi) y ggj(i a~/ ) 'gg'j'(i o~l i ~/ )~g'j'j'(i ~$ i aug )gg' '(i oi/

The other term, X2, has the same structure but exchanging both the arguments of the functions and the indexes k and
gl

The self-energy of the last expression comes from Fig. 1(b). It has the following form

gq. .(jco„)= g ~83(k, ki, k~)~ X„18P 2 1

k k COk COk l CO„
1 2 1 2

COk +COk lCO„
1 2

+Sq +1

COk COk + l CO„
1 2

COk COk l CO„
(A2)

Xz ——n k +nk + 1 and Nz =—nk —n k . Let us write the contribution to X, arising from the term of the sel f-energy
I 2 1

that multiplies &~.

g N~Fi, i, (k', k) g 1

n k l COn COk l CO COk + l CO~ l CO„ COk l COI +l CO„

where we defined the function F as

+
COk +lCO„ lCOI k l CO + iCOI

(A3)

2

i, i, ( ', )=g co&
— u(s~kj)u(s'~kj)u(s" ~k'j')u(s"'~k'j')~83(k', k„k2)~ (co&, coi, ~') 'a, a, a,„a, (A4)

Isj

In expressions like Eq. (A3), the sum over index n can be evaluated by contour integration in the complex plane: any
function f (z) having poles at z =i co Wi co„satisties
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g f(ico„)=PA'g(e ~ —1) 'R (icop), (A5)

where R~(ico~ ) is the residue of the function f (ico) at the pole co~

The desired spectral density is obtained by analytic prolongation of functions like Xi (co) over the complex plane and
taking the limit for real values of the frequency, as suggested in Eq. (25). It can be seen that all terms including second-
order poles give a null contribution when the limit for v —+0 is taken. Therefore, we exclude products with two equal
factors.

In order to illustrate the procedure we calculate the contribution to Wz"' from a representative term of Eq. (A3):

Xi=+ Q N Fi, ~ (k' k)g j 1 1 1

k n ~k+~~n ~k'+~~1 ~~n ~k' ~~1+ l&n M +l M) lN„
1 2

(A6)

with M as defined in Eq. (49). After the procedure described above, and using the representation for the Dirac delta:
lim, 0[el(e +x )]=5(x), the last equation gives

5(coi cog cog )
X, = g NeFq q (k', k) N( —k)

k k coi, +co&+cog M+coi, +cog
1 2

5(M +co&+cog )

(Coi +Cog+Cog )(COI Cok Cog )

5( coi cog cog ) 5(M+coi, +cog )—@(—k') @(M)
(2coi, )(M +cok. ) (cok —M)(coi, +M)

(A7)

where

N(k) =(e "—1)

It is worth remarking that cok and cok are the frequen-
cies of vibrational modes having nonzero projection on
the rotational motions, their value is about 10' Hz for all
k, while cok and cok have no restriction. The resonance

1 2

frequencies, co&, are usually between tens and hundreds
of megahertz, therefore co& « &ok. Consequently, any
term having 5(COI,.+coi,+cog) does not contribute to the
result. When calculating all terms of X& and Xz, some of
them cancel for the same reason.

When replacing all the terms having the structure of
Eq. (A7) into Eq. (A3), one obtains factors like

pirtM PA(M —
cog )

coth
2

—coth
2

after expanding this difference to the first order in co& we
notice that it is of order:

2cog kg T
COk ACOk

and it gives the explicit linear temperature dependence
arising in Eq. (49).

A11 terms contributing to 8'z"' have vanishing denomi-
nators. The density of these integrable poles depends on
the dispersion relations. Then, the relative importance of
this contribution to the relaxation rate relies on the par-
ticular features of this distribution in each crystal.

APPENDIX 8

In this appendix we estimate the contribution of the
term ki of Eq. (20) to the correlation function Ki. In
terms of the phonon operators it is

2

g U(~lkj)U'(~'Ik'j')U'(~" lkj)U*(s'"Ik'j')ct, a, u, -~, (~„—(t)~;". ~I*„~~;&(co~,~i„'co„-;~„- )
'"

Isj kj, k'j'

(81)

First we concentrate on the correlation function which involves four phonon operators. It has the same structure of
Eq. (39) but in this case one operator is evaluated at time t and the other three at t =0. By using the pairing theorem
we get

G„n 0 ( t) = 3 ( T2 q-. ( t ) 2 q, —., ) ( T3 fJ 2 i*,j' ) (82)

and then follow the same steps of the calculus of JYz . In order to get the discrete Fourier transform of Eq. (82), we re-
peat the procedure that leads to Eq. (42). The equivalent equation takes the form

Gi Ji,.q'(scot)=Gal (trot) g . Gt'J (tao„) . . (83)

Again Gi, (ico„) are th.e "exact" one-phonon propagators. Notice that Eq. (83) is similar but not equal to Eq. (42).
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By including the lower-order corrections to the harmonic propagators:

Gqlj, ~'(icot)=Gi, (icot) g gi, (ico~ )+gi j(icot) Q gqj'(ico„)Si, (ico„)gi,.j (ico„)+ (B4)

Using the definition of the harmonic propagators in Eq. (30) and the self-energy matrix from Eq. (A3) it can be seen
that the second term of the last equation, in the limit of v~0 (real frequencies), is proportional to 5 functions like
5(coj,—co&). Then this term does not contribute to Eq. (20) because the condition coj, =co& can never be fulfilled. On the
other hand, the first term of Eq. (B4) gives'

Gi, i, - (t cot) Gk—(tcot )(2nz. +1) .

Then let us estimate the magnitude of the spectral density of Eq. (B1)
2

u(s~kj)v'(s'~k'j')v*(s" kj)u'(s"'~k'j')a, a,.a, a, -.8I i,(co)[n(co)+1](2nz. +1)/co& .
Isj kj, k'j'

(B5)

(B6)

By using the definition of 1 z(co) and realizing that the sum over k is independent of the index k, it is possible to re-
late this contribution to 8'&

f, — g gu'(s ~k j')v (s ~k J )a,-a, . coth(fico„. /2k T)W,
fs I

k'j'
(B7)

where (fia a - /coi, .)=10—3

and

coth(A'coi, ./2kii T)= (2k' T/fico), ) =4
Therefore, this term is of the order of one-hundredth of

8', or less. Its temperature dependence is cubic, but it
is small compared with the contribution calculated in Eq.
(36).
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