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Stability limit of the replica-symmetric phase of a simple guadrupolar glass model
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Using the de Almeida and Thouless method the stability limit of the replica-symmetric phase of
the quadrupolar glass described by a simple model is studied without the Landau expansion for the
free energy. The temperature dependence of the quadrupolar susceptibility is also calculated.

Much efFort has been dedicated in recent years to the
clarification of the nature of nonmagnetic frustrated sys-
tems such as Potts and quadrupolar glasses (QG's). i
Though these systems have been considered. mostly
within the replica-symmetric theory some attempts to
study the replica-symmetry breaking mechanism have
been made. However, the analysis of the last prob-
lem as well as an investigation of the stability of the
replica-symmetric phase have been performed using the
simplified Landau free energy of the system expanded up
to fourth order into the glassy order parameter. Such
an approach is limited to the range where the order pa-
rameter is sufBciently small, but it is not adequate for
the study of the system at lower temperatures. In gen-
eral, the study of properties of quadrupolar and Potts
glasses in the whole range of temperature is rather a
complicated task because of the complexity of interac-
tions in those systems. Nevertheless, it would be inter-
esting and desirable to attempt to perform such investi-
gations for a possible simplest model. We have in mind
the quadrupolar system with strong anisotropy in the z
direction described by the following S = 1 spin (or pseu-
dospin) Hamiltonian:

ranged interaction P (J;s) obeying the Gaussian distri-
bution (not necessary with the zero mean) the model (1)
has been solved within the replica-symmetric theory. "'
As it was discussed in Ref. 9 the long-ranged version of
(1) is not the situation in solid hydrogen, but it is use-
ful in that it does lead to a glasslike ordering for the
quadrupoles.

The main purpose of this paper is to investigate the
limit of stability of the replica-symmetric solution of
the model (1) which should be a first step before fur-
ther studies. This will be realized in strict analogy to
the de Almeida and Thouless stability analysis of the
replica-symmetric solution for the famous Sherrington-
Kirkpatrick spin-glass model. The replica method and
saddle-point treatment applied to the problem with the
Hamiltonian (1) yield, for the free energy per site, the ex-
pression (see also Refs. 7 and 8)

) m —ln Tr exp (—PH [q, m])
(~J)'

where J;~ denotes the coupling between quadrupoles lo-
cated at sites i, j and

with

H[q m]= — ) q C7 G, +) (m —2)Q

Q, =3(S;) —2. (2)

P(J* ) =
2m J2 exp (—KJ, ./2J )

It is assumed that J,~
's are quenched random interactions

of infinite range, independently distributed according to
the probability distribution:

where o., o.' running &om 1 to n refer to the replica num-
ber and Q denotes the operator 0, (2) referred to the
o,th replica of the system at an arbitrary site i. As a
result of the saddle-point treatment one obtains the fol-
lowing self-consistent equations:

where 1V ~ oo denote the number of spins (pseudospins).
The short-ranged version of the Hamiltonian (1) with

the nonrandom couplings J;~'s, called otherwise the trun-
cated electric quadrupole-quadrupole Hamiltonian, has
been used a number years agos (see also Ref. 6) for formu-
lating in a crude approximation the theory of the order-
disorder transition in solid hydrogen (in this case S = 1
denotes the rotational quantum number of quadrupole-
bearing molecules of orthohydrogen). For the long-

q =(G Q, )

(6b)

where the expectation value (. . ) is taken with respect to
the "single-site" Hamiltonian H[q, m]. It can be shown
that the following relations hold:
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and

( -1)(Oe)22 = lim„o ) q
Ck QC1

(0, )T' „=lim ~o —).m

with nj f o.2 g (13 $ cx4)7a

(7b)

G-,(-) = G = (PJ)'((0.')(0.'0: ) + (0.'0.'.)
—2(0' ))

= (PJ)2(q —2m+ qm)

with n g n', and

(i4)

where, as usual, (. .)2 and [ ] „denote the thermal and
sample averaging, respectively.

The problem now is to determine the stability con-
dition of the replica-symmetric solution q = q and
m~ = m. For this, as in the spin-glass theory, one
must require that, in the limit n ~ 0, the eigenvalues of
the Hessian with the elements

8 E
pJ N (Om~Om~& ) I I I }

(~1 2), ( 3~4)

-(0.', 0.'0.', ))
= —(PJ) (t —qm)

(15)

and

1/2m (2ese + 1)

with ni g a g n'. In the limit n -+ 0 the parameters r
and t entering Eqs. (14)—(16) are defined as

2 ( O' F
!PJ2N (Oq, ,Oq, , y I

(8b)
with

16
g

(e —1~r = dxe
1/2vr (2e + i) (17)

and

2 ( O' F
G-.(-.-.)

= (8c)PJ N (O Oq )
must be positive. After some algebra one obtains

PJ 2

() = pJq'~2*+ (q+ m —2),
2

where the QG order parameter q and quadrupolarization
m satisfy the equations '

G...= A = 1 — (2 —(O.') —(0')')

=1 — (2 —m —m),(PJ)'
2

and

42~ f= )2 + &y

2e3 + 1

(i9a)

(i9b)

G =B=—

with o. o.',

' ' ((0'0 )-( ')( '))

(q —m )
(PJ)'

2
(10)

G(~~i) (~~i) = P = 2 —2(PJ) (4 —2(0 ) —2(00, )

+(0.'0.') —(0.'0.')') (»)
= 2 —2(PJ) (4 —4m+ q —q )

Equations (19a) and (19b) have no trivial solutions q = 0
and m = 0 at finite temperature (for numerical solution
of these equations, see, Refs. 7 and 8). Therefore the
model (1) does not lead to any sharp phase transition.

Now, following strictly the procedure of Ref. 10, we
obtain that the eigenvalues of our Hessian reduce for n =
0 to

1
Ag = — (A —B+P —4Q+ 3R) 6 [(A —B —P+ 4Q

2

with a

G( ) ( )
= Q = —2(PJ) (2(0 0 ) —(0 0 0 )

—(0'0', )(0'0', )) (12)
= —2(PJ) (2q —t —q )

and

—3B)' —8(C —D) ~)'D
l

A = P —2Q+R. (21)
with ai g n2,

G(, , ) (, , )
= R = —2(PJ) ((0 0,0,0,)

= —2(PJ) (r —q )

It can be shown that oo ) A+ & 2 as T varies from
0 to oo, respectively, with the low-temperature asymp-
totic behavior A+ J/T. For A we have 0 ( A & 1
as 0 & T & oo, respectively, and when the temperature
tends to 0 vanishes as A T/J. In addition, numerical
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FIG. 1. The eigenvalue A of the Hessian as a function of
temperature.

FIG. 2. The variation of the quadrupolar susceptibility y
with temperature. The arrow indicates T, —1.367J.

analysis shows that there is no region in which A~ would
be negative.

Another situation emerges for A, which is negative for
T ( T, and positive for T ) T with T, 1.367J. There-
fore as the temperature is lowered and reaches T, the sys-
tem undergoes the transition from ergodic to nonergodic
phase with multiple minima of the free-energy character-
istic of the glassy state with the broken replica symmetry.
In Fig. 1 the plot A against T/J is presented.

It would be interesting to investigate the tempera-
ture dependence of the quadrupolar susceptibility y =
(cIm/clh)& o, where h denotes the reaction field. The
quadrupolar susceptibility may be obtained adding an
extra contribution Ph to 8 (18) and differentiating (19a)
and (lgb) with respect to h. In the limit h -+ 0 one
obtains

2T P —4Q+ 3B
J' (A —B)(P —4Q + 3R) + 2(t" —D)'

(22)

In Fig. 2 the variation of Jy with T/ J is shown. It is seen
that the susceptibility exhibits a broad hump with the
maximum at T = 2.75J rather far from the temperature
T'

The next step in the study of our model would be
to clarify the applicability of Parisi s replica-symmetry
breaking scheme without the Landau expansion for the
free energy. This problem is currently in progress.
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