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Localization in fractal spaces: Exact results on the Sierpinski gasket
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Localization due to space structure, rather than due to randomness, is investigated by studying the

usual tight-binding model on the Sierpinski gasket.

Some exact results are obtained from the

decimation—-renormalization-group method. It is surprising that there exist an infinite number of ex-
tended states on the Sierpinski gasket. This set of extended states forms a Cantor set. The rest of the
states are exponentially localized except for two states that are localized in a power-law fashion. It can
be shown that exponential localization of lengths of states on the Sierpinski gasket reveal a self-similar

pattern.

Localization due to randomness is not surprising.
However, localization can also be induced by space struc-
ture such as a fractal. In general, the electronic structure
of a given system is determined by the effective potential
on electrons and space. It is well known that crystalline
materials can only admit Bloch waves due to their
translational symmetries. In real life, structures of ma-
terials vary dramatically, ranging from crystallines to
completely disordered structures. Single crystals are ex-
amples of the former, and porous media exemplify the
latter. In 1984, Schechtman et al.! discovered quasicrys-
tals. The structure of a quasicrystal is something between
a perfect crystal and a completely disordered system.
Therefore it is interesting to study how particle states de-
viate from Bloch waves in those materials that are neither
crystals nor completely disordered systems.

The mechanisms leading to the localization of electron-
ic states are already known. In fact, in his seminal paper
in 1958,2 Anderson pointed out that electronic wave
functions in a random potential may be profoundly al-
tered if the randomness is sufficiently strong. He demon-
strated, by using a simplified theoretical model, that a
wave function may become localized when the disorder,
due to the presence of impurities or imperfections in the
lattice, is strong. Generally speaking, in a quantum sys-
tem, there are both tunneling and interference effects
within a wave function scattered by a random potential.
These two aspects can affect each other and produce rich
physics. Delocalized states, such as the Bloch states in
perfect crystals, appear when the tunneling of particles
(with certain energies) is enhanced by a constructive in-
terference of these waves. On the other hand, when the
interference is destructive, it may lead to a localization of
the state. For example, phases of electron waves in disor-
dered systems will be randomized due to scattering by
impurities. The interference of the scattered waves is
destructive if the disorder is strong enough. This leads to
localization in disordered systems. However, it is very
difficult to quantitatively (sometimes even qualitatively)
determine whether an electronic state is localized or ex-
tended (delocalized) for a given disordered system. Tho-
less and coworkers® formulated a scaling description for
the localization problem. Abrahams et al.* proposed a
one-parameter scaling theory. In the theory, all electron-
ic states of a noninteraction disordered system are local-
ized when the dimension of a system is lower than or
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equal to 2 [two-dimensional (2D) disordered electron sys-
tems in a magnetic field have many nontrivial proper-
ties®], and a mobility edge may exist for d =3.

In the past decade, major efforts have been directed to
investigate wave-function properties of quasicrystalline
systems due to the advances of technology and their pos-
sible applications.®’ In particular, the electronic struc-
ture of one-dimensional quasicrystals have received, both
theoretically® !> and experimentally,®’ the most atten-
tion for both its simplicity and experimental realization
in superlattices.6 Localized, critical, and extended states
have been reported to exist and coexist in some 1D quasi-
crystal models, such as quasiperiodic incommensurate
modulated potentials® and Fibonacci quasicrystals.!®!!
Although some analytical approaches have been invented
to study the electronic structure of these quasicrystal sys-
tems, there is still lack of an exact solution which can
give us indisputable answers to the localization problem
in quasicrystals. Our current understandings are
confined to those obtained from numerical studies.’ ™

Here, I present some exact results of localization in
fractal spaces. The usual tight-binding model, with only
the nearest-neighbor hopping considered, is used to de-
scribe a noninteracting particle system for simplicity.
The electronic structure on the Sierpinski gasket is stud-
ied for several reasons. First, a fractal is a good descrip-
tion of porous media at small length scales because both
have scale invariance structures. Similar to quasicrystals,
deterministic fractals do not have a periodic structure
like perfect crystals, but they do have certain long-range
correlations. It will be interesting to study localization
properties in such systems. A better understanding of lo-
calization in fractal spaces may shed light on the localiza-
tion in quasicrystals and random systems in general. The
more important reason is that we can solve the problem
exactly. Domany et al.!> studied the density of states
(DOS) of the Sierpinski gasket by using the recursion re-
lation method. They found that the energy levels are
discrete and degenerate, and the density of states per site
approaches a limit with an infinite number of different
kinds of singularities. They also conjectured that all
states are localized. In order to investigate the localiza-
tion properties of the tight-binding models on the Sier-
pinski gasket, I will use the decimation-renormalization
method to derive the recursion relation of the hopping
coefficient for a chosen energy state. Then the flow dia-
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gram can be obtained for the hopping coefficient, which
contains information about wave functions of the sys-
tem.!>1* Some surprising results are found. There exists
an infinite number of extended states on the Sierpinski
gasket. This set of extended states forms a Cantor set.
Furthermore, it can be shown that exponential localiza-
tion lengths of states on the Sierpinski gasket reveal a
self-similar pattern. The rest of the states (including
those gap states) are exponentially localized except two
states which are localized in a power-law fashion.

To illustrate the method and its potential applications,
let us first study the one-dimensional tight-binding model,

H= 3 t]c; (1)
Cij)

where (ij) denote the nearest-neighbor pairs, c,-T and c;
are creation and annihilation operators, respectively, and
t is the hopping coefficient. It is well known that energy
levels are given by €(k)=2t cos(ka), where a is the lat-
tice constant and k is the usual lattice momentum. All
states with energies in the interval —2¢ <g <2t are ex-
tended due to the Bloch theorem. The states of energies &
outside this interval are the gap states. These states are
always present due to surfaces and impurities in real sam-
ples.®15 Gap states are known to be exponentially local-
ized.'®!> The energy dependence of the inverse of the lo-
calization length is A=& '=In[(e+V'e2—4)/2]. We
will show how the decimation-renormalization method
can be used to extract all of these known results.

Let the eigenstate, with eigenvalue &, be
|n)=3,4,c/|0), where |0) is the vacuum state and A,
is the amplitude of wave function |n) at site i. Then,
after eliminating the odd sites, one has

€Ay =[et?/(2=2tH)(Api1r+ Api_3) . 2)
Thus we obtain the recursion relation
t,=et2_, /(e?—2t2_), 3)

with 1,=¢. t, is the effective hopping coefficient of a par-
ticle from a site to a site of 2" lattice constants away in
the state of energy €. Recursion relation (3) admits three
fixed points t*=0, /2 and —e. Figure 1 is the graphical
demonstration of recursion relation (3). Several well-
known results can be obtained immediately from recur-
sion relation (3).

If ¢, is between A (= —|e|/2) and B (=|g|/2) (dotted
box in Fig. 1), i.e., when the energy is in the gap, |e| > 2t,
recursion relation (3) will lead ¢, to fixed point t*=0 as
shown by dotted line 1 in Fig. 1. According to Robbins
and Koiller,'>!* the wave function will decay to zero
asymptotically at infinity. For large n, Eq. (3) has the
asymptotic solution ¢, ~eexp(—A2"), with a positive
constant A which is inversely proportional to the localiza-
tion length. The exact expression of A in terms of energy
€ and the initial hopping coefficient ¢ is not easy to ob-
tain, but it can be solved numerically. The inverse of the
localization length can be derived from its exponential
fitting. Figure 2 is the plot of In(A) vs In(e —2), which is
the same as the exact result A=g"1

=In[(e+V'e?—4)/2]. The asymptotic behavior of ¢, in-
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FIG. 1. Recursion relation curve and variant flow diagrams
for the hopping coefficient in a one-dimensional lattice. The
solid line is the recursion curve t'=gt?/(e?—2¢%), and the
dashed line is the curve of t’=t. The dotted lines 1 and 2 are
the flow diagrams of two different states.
dicates'>!* that the wave functions of such states at large
distance L (=2", after decimating n times) decay ex-
ponentially as W(L) ~exp(—AL).

If z, starts from a point outside 4B, i.e., when
—2t <g<2¢, then t, will always be larger than |e|/2 as
shown by dotted line 2 in Fig. 1. In other words, the
effective hopping coefficient between two sites is always
nonzero no matter how far the two sites are separated.
Therefore all states of energy —2¢ < ¢ <2t are delocalized
(extended),'>!* as they should be according to the well-
known results. In particular, e=2¢ (point B) is exactly at
fixed point ¢*=¢/2, and the effective hopping coefficient
corresponding to a state of this energy will be a constant.
Obviously, a constant amplitude of the wave function at
all sites is a solution in this case. This corresponds ex-
actly to the state of k=0. On the other hand, the
effective hopping coefficient of state e=—2¢ (point A4)
will be constant after one iteration. Alternating ampli-
tudes of a wave function on the lattice is a solution in this
case. This is just the k = /a state in the known results.

Let us apply the same idea to the tight-binding model
on the Sierpinski gasket (Fig. 3). Similar to the deriva-
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FIG. 2. In(A) vs In(e—2), where A(g) is the inverse of locali-

zation length. The curve is exactly the same as
A=E"!'=In[(e+V'e?—4)/2].
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FIG. 3. Sierpinski gaskets before and after decimation. A’s -0.5
and B’s are the amplitudes of the wave function at the corre-
sponding sites.
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tion of Eq. (2) for the 1D case, it is easy to show
ed,=t(B,+B,+B,+B;),
eB,=t(B,+B;+ A, + As) ,
eB,=t(B,+B;+A,+A4,),
eB,=t(B,+B,+ A, + As5) , )
eB,=t(Bs+Bs+A,+A4,),
eBs=t(B,+Bs+ A,+A4;),
eBs=t(B,+Bs+ A;+A,),

where A’s and B’s are the amplitudes of the wave func-
tion at the sites shown in Fig. 3. Using the decimation
method, we will eliminate the B’s in Eq. (4) and derive a
equation which contains only A’s. After some simple
algebra, we have

2
eA1=E—i~§;(A2+A3+A4+A5). (5)

Therefore the recursion relation is
ty=t*/(e—31) . (6)

t, is, therefore, the effective hopping coefficient of a parti-
cle between two nearest A sites in a state of energy e.
Recursion relation (6) has the two fixed points #*=0 and
e/4. Figure 4 is a graphical demonstration of recursion
relation (6). The localization properties are determined
by these fixed points.

The fixed point t* =g /4 characterizes the behavior of
extended states because of the nonzero -coupling
coefficient.!? Therefore all of those states which will flow
to this fixed point are delocalized. For example, the
effective hopping coefficient of a state of energy e=4¢
will be a constant under recursion relation (6). It is easy
to show that constant amplitudes of a wave function on
all sites is a 'solution. In order to obtain the set of the
delocalized states, we shall use recursion relation (6) by
going backwards. Solving

e/4=1t?/(e—31), (7a)

for t, we have t=¢/4 and t= —¢. t=¢c/4 describes the
state of energy € =4¢, which we mentioned before. The
second solution gives us another extended state of energy
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FIG. 4. Recursion relation curve and variant flow diagrams
for the hopping coefficient on the Sierpinski gasket. The solid
line is the recursion curve t'=t¢2/(e—3t), and the dashed line is
the curve of t’=t. The flow diagrams 1 and 2 (dotted line) cor-
respond to two different states.

€= —t. According to recursion relation (6), the effective
hopping coefficient of a particle in this state will be a con-
stant value of fixed point ¢*=g¢/4 after one decimation.
Thus the amplitudes of the wave function on those A4
sites (Fig. 3) are the same (but those on B sites may not be
the same); i.e., the wave function has an alternating spa-
tial structure on the Sierpinski gasket. Substituting #, by
— ¢ in recursion relation (6), we have

—e=t2/(e—31) . (7b)

There are two roots t =(3+V'5)e /2, which correspond to
another two extended states of energies e=(3FV/5)e/2.
Since the effective hopping coefficients of a particle in the
two states will take a constant value of t* =¢ /4 after two
decimations, the amplitudes of their wave function are
the same on those sites of the Sierpinski gasket which are
constructed from a large length scale of 4a. All other ex-
tended states can be obtained and characterized by con-
tinuing the process. These isolated extended states corre-
spond to those minimum points in Figs. 5(a) and 5(b).
The self-similar nature of this set is clearly noted.

It can be shown that, for energy € not in this set of ex-
tended states, recursion relation (6) will lead #, to the
fixed point £*=0. Thus the wave function will decay to
zero asymptotically at infinity.'>'* Let us distinguish
the following cases. (1) For large n and €0 or 3¢,
the difference equation (6) becomes approximately
t,~t}_,/e. The asymptotic solution of ¢, is 1,
~egexp(—A2"). Thus the wave functions decay exponen-
tially as W(L)~exp(—AL ).1214 2y for =0 or 3¢, the
solution of the different equation (6) is t,=(—3)""t.
Therefore the state of e=0 decays to zero at large dis-
tance in a power-law fashion as W(L)~L "7, with
p=In(3)/In(2)~1.58 since L =2".'21* States with such
behavior are called critical states®!°~!2 which are some-
where in between extended and exponentially localized.
It is interesting to note that p is exactly the fractal dimen-
sion of the Sierpinski gasket. This result may suggest
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FIG. 5. A(g), the inverse of localization length, in two
different energy ranges.

that the support of the functions is the whole Sierpinski
gasket. It is straightforward to find numerically the ¢,(¢)
from recursion relation (6). Therefore A(g) can be ob-
tained by fitting ¢, to exp(—A2"). Figures 5(a) and 5(b)
are the plots of A(g) in different energy ranges. Again,
they reveal a self-similar pattern.

In conclusion, we have presented a case where there
exist localized, critical, and extended states. A method is
proposed to study the electronic structure, namely, using
the decimation-renormalization technique to derive the
recursion relation for the hopping coefficient, from which
one can obtain the asymptotic behavior of a wave func-
tion. It is interesting to note that the mathematical
method used by Domany et al.'® is similar to the one
proposed here. However, the physics is quite different.
Domany et al. studied the recursion relation of the di-
mensionless quantity €/t instead of ¢ /e. Thus Domany
et al. investigated how the energy splits with an increase
of system size, and it is natural for them to obtain the
density of states. On the other hand, we look at how a

51 BRIEF REPORTS 9313

given energy wave function is connected at two different
sites. This gives us a new way of looking at the localiza-
tion problem. The method has been used to reexamine
the well-known one-dimensional tight-binding model, and
the known results have been reproduced. The method
has also been applied to the tight-binding model on the
Sierpinski gasket, with surprising results. Contrary to
the common wisdom that all states are localized on the
Sierpinski gasket,!> we have shown that there exists an
infinite number of isolated extended states in the Sierpin-
ski gasket. The set of these extended states forms a Can-
tor set which is self-similar. The rest of the states are ex-
ponentially localized except two states which are local-
ized in a power-law fashion. For the two power-law-
localized states, their exponents are found to be equal to
the fractal dimension of the Sierpinski gasket. Further-
more, it has been shown that exponential localization
lengths of states on the Sierpinski gasket reveal a self-
similar pattern. Although the above results are obtained
from the analysis of the tight-binding model, one should
expect the conclusions to apply to any noninteraction
particle systems on the Sierpinski gasket from universali-
ty arguments. However, interacting particle systems may
behave differently. The method and idea are quite gen-
eral. It can be used to solve other models and in other
spaces, especially in those finitely ramified fractal spaces.
It will be interesting to apply this method to similar prob-
lems in fractal spaces of different fractal dimensions. The
results from such studies may help us understand how lo-
calization properties change with spatial dimensions. It
will also be interesting to see whether the method can be
used to analyze 1D quasiperiodic systems such as Fi-
bonacci lattices. Previous results in such systems are ob-
tained either from numerical approaches!! or based on
perturbative procedures.!? Exact results may be expected
if the method can be applied to such problems. The de-
tailed structure of the set of an infinite number of extend-
ed states deserves a more detailed study.
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