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Scaling equations are obtained for thermally excited vortex loops in the anisotropic three-dimensional
(3D) XY model with interplane/intraplane coupling ratio Kj /K~~ =yp . For high-T, superconductors,
yp, related to the Ginzburg-Landau masses, is in a strong anisotropy regime, yp

' &0.5, and a length
scale rp =ypap naturally arises (ap = lattice constant). (i) For loop major axes a & rp, the dominant exci-
tations are 3D elliptical vortex loops cutting multiple planes, with a —g ( T)=a p ~

E
~

where
~a~ =—~(T —T, )/T, ~, and v=0. 67. The vorticity segment components (p=x,y, z) are J„(r)=0,+1, and
interact via a Biot-Savart-like law. The renormalized anisotropy yI —+1, asymptotically isotropic, as
I =ln(a/ap)~ Oo: anisotropy is irrelevant. (ii) For loop scales rp & a & 2ap the dominant excitations are
quasi-2D rectangular loops with short sides J,(r)=+1 cutting single planes, that are thus eA'ectively

decoupled at finite scales & rp. The J,=+1 vortex components, of in-plane separation ~R1~ & rp, interact
via a logarithmic [in((Rl~/rp)] Plus linear [Qp(~R1~/ap —1)] Potential. As yp ~0 the coefficient
Qp~0, and the Kosterlitz-Thouless limit is recovered. (iii) The 3D transition temperature T, versus
Kj /K

~~,
calculated for strong anisotropies from "2D" (3D) scaling for scales & rp ( & rp), matches exist-

ing Monte Carlo data well. Critical regions ~E, ~ yp
'~" are estimated. Contact is made with ideas of an

intrinsic critical current arising from linear —yp R
~~

vortex segment e6'ective potentials.

I. INTRODUCTION

High-T, superconductors' (HTS's) have been subject of
intense research, since their discovery in 1987. Whatever
the underlying mechanism, the new layered materials
share with the ordinary superconductors the property of
a macroscopic scalar phase —m. & 0 ~ m, whose gradient is
the superfiuid velocity. Josephson junctions between the
old and new superconductors support a tunneling super-
current; segmented rings of the two materials carry a
persistent supercurrent; and Aux quantization, originat-
ing from multivaluedness of the (gauge-invariant) phase
has been observed. Thus lattice models of coupled pla-
nar "XY" spins —~&8; ~ m, or phases in a layered 3D
structure, are relevant to HTS's.

In fact, signatures of topological (vortex) phase excita-
tions have also been reported in the layered HTS's (Ref.
5) and their artificial superlattices (Ref. 6). The nonlinear
I-V characteristics and resistances show signatures of
the two-ditnensional (2D) vortex unbinding or Berezin-
skii, Kosterlitz-Thouless (KT) transition such as occurs
in strictly 2D Josephson-junction arrays (JJA's) and 2D
planar or XY ferromagnets. (An efFective decoupling of
layers above T, has been suggested' to account for this. )

Vortex-point 2D scaling methods, developed for the 2D
XY model, have been applied" to (3D) high-T, materi-
als.

On the other hand, there is increasing evidence that
the high T, superconductors fall into the 3D XY univer-
sality class. ' Three-dimensional vortex-loop excitations
have been invoked to understand HTS transition temper-
atures. ' The puzzle' of how 2D vortex behavior can be
so prominent in phase-coherent HTS's, and yet coexist
with 3D critical behavior, motivates a study of topologi-
cal vortex excitations of the layered 3D XY model. Some

microscopic models' for HTS's involve quantum capaci-
tive Joseph son arrays, in two dimensions, that are
equivalent to (2+1)D classical XY models with an extra
"time" dimension in a path integral formalism. Once
again, this motivates a study of the anisotropic 3D XY
model.

In this paper, we generalize a previous (isotropic) 3D
vortex-loop scaling approach, ' ' to the anisotropic 3D
XY model. The dominant topological excitations at large
and small scales are identified, and scaling equations for
the fugacity and coupling are obtained. The transition
temperature T, is calculated, and the length scale g+(T)
for T) T, is shown to have both quasi-2D (noncritical)
and 3D (critical) temperature dependences. Critical re-
gions are estimated.

The Hamiltonian is

H = — g g ctt„[cos(6„8;) —1],

where the phase variables —~ & 0; ~ m. are on layered lat-
tice sites ti J, with nearest-neighbor coupling and lattice
constant dl, a~~ (cFi,ai) within (between) planes as in Fig.
1. 6„ is a discrete derivative in the p=x, y, z directions.
This can be transformed' to a model for directed vortici-
ty loop segments 8„(r)=0,+1, interacting via the Biot-
Savart potential. Each closed loop is a toroidal spin-tilt
configuration, and a tumbling loop corresponds to a stir-
ring up of the phases, on a scale of the average loop di-
ameter.

A physical realization of the model is a layered 3D JJA
with superconducting grains at the lattice sites and
different intergrain oxide thickness within and between
planes, so the Josephson coupling ratio 8i/c$1%1. Resis-
tance and current-drive effects in 3D JJA, based on these
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FIG. 1. Anisotropic layered 3D XF lattice couplings Ej,KI)
and lattice parameters a~, a ~~.

vortex-loop scaling results, will be presented elsewhere. '

(Effects of weakly fiuctuating gauge fields are not includ-
ed at this stage, as the essential nature of the transition is
unaffected ' '"')

Equation (1.1) can be regarded as a weakly (Pj ) cou-
pled, layered, Ginzburg-Landau (GL) Lawrence-Doniach
model, ' with pair-wave function magnitudes ~g~ locked
and planes composed of 8~~-coupled in-plane coherent re-
gions —ao. Magnitude fluctuations are ignored as

~(1—T/TGL) and the phase locking temperature
T, «T« the magnitude locking temperature. Then

yo
——(cPz/8~~)=M~~/Mz is the ratio of the Ginzburg-

Landau masses. HTS's are in a "strong anisotropy re-

gime, " yo '(0.5, with'" '
yo '-0.014 (thalhum) and

yo '-0.2 (yttrium).
Feynman and Onsager had proposed a vortex-loop

blowout picture of bulk superQuid-to-normal or A, transi-
tion. It was conjectured by Halperin that vortex loops
with a topological current J„(r}=0,+1 (interacting via a
Biot-Savart potential) could provide an alternative
description of the 3D XY transition. The loops exist:
they can be seen visually in simulations ' blowing out
at transition. Monte Carlo (MC) isotropic 3D XF simula-
tions by Kohring, Shrock, and Wills showed that
suppressing vorticity by an external chemical potential
suppressed the transition out of the ordered state. Thus,
the vortex loops are involved in the transition. Willi-
ams' and Shenoy' proposed a vortex-loop scaling ap-
proach and used it to calculate (isotropic case) critical
properties. Thus, the loops are spin-collective variables,
sufBcient to describe the transition. Recent MC work "'

on the anisotropic 3D XY model showed the transition
temperature was pushed down as interplane coupling
weakened, approaching the KT value, as 8~/8~~~0.
Thus, the 3D vortex loops must have configurations that
go over to 2D vorticity +1 pairs, as planes decouple com-
pletely.

The physical picture' ' of the (isotropic XY), transi-
tion involves thermally activated vortex loops, which in-
crease in number and average diameter a =aoe' on
warming, where ao is the lattice constant. Nesting of
smaller loops and consequent screening of large loops
weakens their binding, allowing further expansion and
nesting, until the largest loop a-g (T)-(T,—T)

blows out at T=T, . The transverse direction Auctua-

tions around the mean circle define a core size' ' a, that
also blows out, a, ~ a -g

The results of the anisotropic generalization are as fol-
lows.

Excitations. The anisotropy ratio yo =Pj /S~~ defines
a regime of strong planar anisotropy (yo '(0.5) and a
length scale in this regime, ro =yoao )2ao. For a
characteristic loop length scale a =aoe', defined as the
loop extent in the x-y plane, there are three types of exci-
tations, depending on the scale. For a &ro, multiplane
tumbling elliptical loops dominate, with loop fugacity
y&(a) dependent on loop orientation a with reference to
the z axis. y&(a) is peaked for (circular) loops parallel to
the plane (a=a/2), while ellipse eccentricity is max-
imum for a =0, loops perpendicular to planes. For
a & ro, ellipses are angularly constrained from tumbling
freely and have orientation constrained to be around the
plane, a=m/2. Rectangular loops appear, of vertical
unit sides of vorticity Jj (r),Jj (r') =+1, and long sides of
length ~r~~

—
r~~~ (ro. Since they cut only single planes in-

dependently, they have a quasi-2D character.
Interactions and scaling equations. The interaction

U(r —r') between vortex segments J(r), J(r') is of the
Biot-Savart type, U(r —r')- ~r —r~ '. For yo '~0, i.e.,
scales a (ro~ ~, the potential U(r —r')-ln(r( —rI~)5, ,
is logarithmic between Jz(r), J&(r)=+1, and confined to
the decoupling planes. The 2D Kosterlitz-Thouless limit
is thus recovered. For yo

' small but nonzero, the J~~

sides of the single-plane or quasi-2D loops, contribute an
eff'ective linear potential -Qo(~r~~ —

r~~~/ao
—1) between

the J~ =6 1 unit sides. The coeKcient Qo -yo (yo ')
with (without) screening from the in-plane circular loops.
This result makes contact with linear potentials (and con-
sequent intrinsic in-plane critical currents) obtained from
simulations, and variational estimates. ' "

2D scaling equations for a & ro for the vortex coupling
E~~ and J&=+1 pair fugacity yl are KT-like, with
corrections from the linear potential. At a =ra, they feed
into 3D scaling equations for a ) ro for KI and (angularly
averaged) yI, couplings and loop fugacities, which are of
the same form as the isotropic 3D case. The larger loops
see an effective anisotropy yI

' progressively smoothed
over by the smaller tumbling loops, and yl

' scales
asymptotically to zero. The fixed points and critical ex-
ponents are thus unchanged: anisotropy is irrelevant.

Transition temperature. T, (y 0) is determined by
changes in the (3D) asymptotic scaling flows, as the tem-
perature T is varied. T, —=kz T, /8~~ versus yo matches
the MC data reasonably well, including 3D isotropic
(yo '=1, T, =2.2) and 2D (yo '=0, T, =0.91) limiting
values.

Critical and noncritical temperature dependences.
Above T„the separation g+( T ) between (correlated) seg-
ments can be defined in terms of the single-segment vorti-
city density n „at large scales, g+ n„'~, —with
n, =y&' /a as a~00. g+(T) is found to have 3D criti-
cal behavior —

~
e

~ ( v =0.67 } as
~
e

~

=—
~
( T—T, ) /T,

~
~0, and to have KT-like noncritical
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behavior g+ -exp I [ T/TKi (yo) 1—] ' j. Here

Tzi (yo) is defined by a KT-like condition for finite-scale
unbinding of the quasi-2D excitations, mX&' '(TKi ) =2,

0

where lo: ln—(ro/ao). Critical ( ~e, ~ ) and crossover re-
gions in ~e~ can be estimated by 5% deviations from the
3D, "2D" limiting behaviors, with e, (yo

'

The plan of the paper is as follows. In Sec. II we con-
sider the vortex-loop Hamiltonian (derived from the
cosine Hamiltonian in Appendix A) and its limiting cases.
The bare orientation-dependent fugacity, yo(a) is dis-
cussed, with details of derivation in Appendix B. In Sec.
III the anisotropic elliptical loop scaling equations that
control large scales a ) ro are obtained, with details in
Appendix C. Section IV presents modified quasi-2D scal-
ing equations for finite scales a (ro (that feed into the
asymptotic 3D equations) in the strongly anisotropic re-
gime. The critical temperature T, versus the anisotropy
(yo ) curve is numerically found from asymptotic (3D)
changes in scaling flows and compared with MC data.
Critical regions are estimated. Section V is a summary
and discussion of results.

II. VORTEX LOOPS IN THE ANISOTROPIC
3D XYMODEL

We first briefly summarize the vortex-loop ap-
proach' ' to the isotropic 3D XY model. The Hamil-
tonian of the planar spins on a cubic lattice Ii j of lattice
constant ao= 1 is, as in (1.1),P=1/k~T,

PH= —P8 g icos(b, „8,—1) . (2.1)
p=&,y, 2'

A standard dual transform' ' ' maps this nearest-
neighbor, angle variable I n(8; &m—j model onto a
directed vortex loop [J&(r) j model, with long-range in-
teractions:

m%0
PH= g J(r) J(r')U(r —r') .

fAr
(2.2)

Here J (r)=0, +1, . . . with directions p=x, y, z are
integer-valued topological current components or 3D
vortex variables, on the bonds of a cubic dual lattice of
sites I r j. The bare vortex coupling is approximately re-
lated to the original cosine coupling ICO —-PcF. The seg-
ments J form closed loops. U(R) is the 3D lattice
Green's function, with the R =0 part subtracted,

U(R) = [U(R) —U(0)]

gd qao
(2m )

4m. ( e '~' —1 )X
[6—2 cosq„ao —2 cosq ao —2 cosq, ao]

(2.3)

where the integral is over the Brillouin zone.
A dual-lattice vortex loop corresponds to a quasi-

toroidal original-lattice spiri arrangement in the XY case
or supercurrent Row in the superQuid helium case. This
can be seen by a reverse dual transform putting
J(r)~J(r)+J '"'(r), where J '"'(r) is externally fixed.
One finds, by going back to [ 8, j variables, that they are
appropriately biased around the J'"'(r) line. Tumbling of
loops is then a stirring of spins on the scaly of the average
loop diameter.

Identifying the J segments by the loops [L j to which
they belong, each loop is closed,

(2.4)

and the interaction energy can be separated into an inter-
loop part (LXL') and an intraloop part (L=L'). The
partition function is then

Z= g exp
I J (r)I

m%0
y J (r ).J (r') U(r —r') g y

LAL' rXr' L
(2.5)

where U(R )-R ' asymptotically. As discussed in Appendix A, the configuration sum is over values J„' '=+I of the
closed loops, and integral over their center of mass R' ' and relative p' ' coordinates, fd R' '/ao fd p' '/ao (For.
circular loops, ~p' '~ =

—,'aI, with —,'ai being a fixed mean radius. ) The constant part U(0) in (2.3) is a segment self-

energy, and by loop closure, gg„' '(r) =0, is absorbed into the fugacity yo '. The bare fugacity is

yo '=exp — g J' '(r).J' '(r')U(r —r') ——KOU(0) g [J' '(r)]
2 2

ai al
=exp —~'Z, ln

ao a,
(2.6)

where we have considered effectively circular loops of di-
ameter aI and absorbed U(0) into the cutoff or core scale
a, . For L = 1 minimum-size loops, az, =ao, and
yo "=yo is the smallest-loop bare fugacity with' "

—5.631KOyo=e . At a general minimum scale a =aoe', the
effective core size becomes scale dependent: a, =a, (1).
Loop segments can cross perpendicularly on the lattice
without local energy cost. So, there are no permanent en-
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tanglement effects. The scaling procedure integrates out
smaller loops of all separations from the segment under
consideration, including the loop touching the segment.
Thus, we must exclude such "bubbles" to avoid double
counting, and consider only quasicircular, crinkled, but
self-avoiding loops, of all scales. It is this class of loops
that can nest, screen, and blowout at transition.

The actual closed-loop configuration is as in Fig. 2,
with an average circular perimeter of diameter a =aoe'
and random transverse excursions, (like hairpins of a dis-
torted U shape) within a core region of size a, (l). The in-
teraction energy between the segments on loop I. and a
far off LXL' segment J' '(r') is-J' '(r') (g„J' '(r)/~r —r'~). The magnetic field of a
current-carrying electric wire is cut down drastically if
the wire is folded back along itself in a narrow hairpin or
U shape. Similarly the Biot-Savart-like potential at r' of
a width S"hairpin of the loop will be cut down by factors—W/r' « 1 through cancellation of contributions from
oppositely directed hairpin sides. Only the azimuthal,
uncanceled segments of the hairpin will contribute ap-
preciably to the large-distance potential. These uncan-
celled segments, scattered over the core region a„will
add up vectorially in the azimuthal direction to an
effective perimeter —m.a. The complex topological
current distribution, as far as the outside world is con-
cerned, can thus be represented as an effective circular
loop of average diameter a, and core cutoff a„within
which the irrelevant hairpin details are hidden. This is
schematically depicted in Fig. 2.

The effective loop length ~al depends on the actual
perimeter pL as a-pL with 5&1. A numerical simula-
tion suggests that 5=0.4. The intraloop interaction en-
ergy from the uncancelled azimuthal segments goes as
-aL lnaL /a„as stated above. The antiparallel sides of
the hairpins contribute relatively little to the intraloop
energy of large average diameter loops. For hairpins of
width 8'«aL, the antiparallel segments partially cancel
the segment self-energy contributions at a general
minimum diameter a, that scales all lengths. From U(R )

of (2.3) for antiparallel hairpin sides,

(2.7a)

I =(6 m. KtL—I )yi, (2.7b)

where Ho=4m /3, LI—= 1+in[a/a, (l)]. The key idea in
deriving (2.7) is that oppositely directed segments
J(r) = —J(r ") across the diameter

~
r r'

~

=a, m—ultiply
the potential U and act as a "discrete derivative" on it.
For T & T„ the fugacity falls off exponentially with—a/g
yl —e and the dominant scale g —( T, —T )

diverges at transition. The helicity modulus at that scale
is the vortex coupling with the absorbed scale depen-
dence removed' and is also essentially the superAuid-
density or spin-wave stiffness p, -K& e '-~E~ . Here

dK& Idl =O=dy& Idl as I ~~. One sits on the yl
and EI inAection point, developing at I, and watches
the T & T, solution become unstable as T~T, and

~oo, with (K&,yI )~(K',y')
= (0.3875,0.062). Numerical solutions have been
presented elsewhere with a model' a, (l )la =(KI )" for
the core, and x =0.6 the self-avoiding random walk ex-
ponent. This yields v=0. 67 as the spin-spin correlation
exponent, which is also' "the loop diameter exponent.
The random loops for T & T, have short-range correla-
tions over g+ —

~
e~, which diverge as T~T, .

We now turn to the anisotropic 3D XY model of (1.1),
that is

which, moreover, scales to zero for a general scale
a &&W. Thus only (noncancelled) azimuthal segments
are considered, in the segment self-energy and segment
interaction, making up the loop self-energy. Both the in-
terloop and intraloop energy contributions depend only
on the diameter "a" and cutoff a, ~a, in an effective
circular-loop picture.

Following the Kosterlitz procedure, the scaling equa-
tions for the interloop coupling EI and the loop fugacity

yI at a general minimum scale a =aoe' are' '

g J' '(r) J' '(s)U(r —s)+g [J' '(r)] U(0) pH = —p g g S„cosh,„8;, (2.8)

—U(0) —U(W/a)-(W/a) «1, with spin coupling in a layered form cP„=d ~
=

cP~~

17) can diameter

c ore 1 e gian ac

SEGMENT

CONFl GUR AT I ON ~

PAR TIAL

.CAN CELL AT lON

ac
E Q. U I VALE NT

SINAI LE LOOP

WlTH CUTo FF

FIG. 2. Effective loop composed of azimu-
thal current segments as seen at large dis-
tances. a, a, are the mean diameter and core
regions of the effective circular loop. Antipar-
allel radial segments in a hairpinhke excursion
within a, have canceling contributions to the
asymptotic potential.
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pH = ,'pd'll —g g (q„a„+4„//II )

p=x, y, 2 q

(2.9)

(8,=8j) within (between) planes. The sites [i] are on a
lattice of lattice constants a„=a~=all (a, =a~) within
(between} planes, and we later set az =all =ap = 1.

In the long-wavelength spin-wave approximation,

plicitly shown by vortex-loop scaling.
The dual transform' ' ' of (2.8) to the vortex-loop rep-

resentation, done in Appendix A, yields'""

pH =—g [X~JII(r)'Jll(r )++II
rAr'

(2.10)

and the anisotropic coupling constants can be absorbed
into new anisotropic lattice constants a„' =a„(8„/Sll)'
This suggests that anisotropic couplings could be ir-
relevant for critical properties; however, this must be ex-

where the segments Jll (J~ ) parallel (perpendicular) to the
x-y plane couple through IC~ (All). Here, as before,
&~l =pJ~I Kg —p8g. The anisotropic interaction
1S~ 1(a),24('c)

d qlldqL iq.R
U(R}= [U(R) —U(0)

2m- 4—2 cosq a
II

—2 cosq a
II

+yp 2 —2 cosq~a~

and obeys the Green's-function equation

(h, ll+yp b,, )U(r)= —4m5, p .

In coordinate space, changing variables q„—+q„a„', the asymptotic behavior is [R=(RII,Z) ]

(2.11a)

(2.11b)

U(R) =yp
Rl, +Z'/yp '(a, /all)

1

Q(XII/rp) +(Z/ai)
(2.12)

Here a coupling ratio anisotropy parameter has been defined,

yP-'=(lt, /I:II )'",
and a related parameter

Eq5—:1 — =1—y
—2

0 ~ 0
II

(2.13)

(2.14)

later enters the vortex-loop fugacity. For the isotropic case, the anisotropy parameter yp
'= 1 and 5p=0. For yp

' —+0,
only the J~J~ contribution in (2.10) survives, yielding KT pairs in two dimensions, as in Sec. IV. In the second equality
of (2.12) a new length scale, considered by Hikami and Tsuneto appears naturally:

rp ——all yo (2.15)

(2.16)

It suggests that different limiting forms of the potential, and different dominant loops, may enter for in-plane separa-
tions R

II
« ro and R

II
»rp.

Since all loop coordinate integrals in the partition function will be scaled in the appropriate lattice constant
g,—+ fd r /a&a II, the lattice constants will drop out on appropriate rescaling rll ~a llrll, z ~za~. Thus, we can, without
loss of generality, consider aII =a~ =ao, the isotropic lattice. We set ao=1 for convenience, writing it explicitly only
where needed to distinguish a length scale.

As in the isotropic case (2.5), we split vortex-loop interactions of I J ' '] into interloop (LAL') and intraloop contri-
butions (L =L'). By adding and subtracting we also separate out the LWL' part of the Hamiltonian, into a contribu-
tion that couples all J„components through the geometric average of the anisotropic couplings,

Kp=—EII7 p =(K All )
—1 1/2

and the difference, pH, . Then (2.10) becomes, in the partition function,

Z= g exp ——Kp g g J' '(r) J' '(r')U(r —r') —pH, .+yp
LAL' rXr' L

con6g

Here the bare Hamiltonian correction pH „shown later to scale to zero, is

(2.17a)

pH, —= g pH', '—=—Kp(1 —
yp ') g g [ —Jll '(r) Jll I(r')+ypJI '(r)JI~ '(r')]U(r —r') .

LAL' LWL' rWr'
(2.17b)

The bare fugacity for loop L is determined by the intraloop interaction and segment self-energy, analogous to (2.6),
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~(r) (2 18)J ' —' ——U 0) QIC [J(( '( )] +K(([JiJ' '(r)J' '(r')]U(r —r') — U 0'K J' '(r) J' '(r')+X((Ji r3'o =e"p

ic case, wi h the potential energy'1" 1oo i i 1 (o' i
'

ely directed segments at
fi d

h isotropic case, simi a y,
1oo t

. For the aniso
.14) the equipotential loop p(2.12)—(2.

r2+ =(—,'a ) (2.19)

(1—50) a1/2

'(1—5si )
(2.20)

e(a), is defined byt bare eccentricity e cz, '

—51/2

smallest for a =a [1—e (a) is sm
/2, h 1oo[e(0)= o

=5' ] and largest for a=a. , w

ofloo I. (2.18},eval t d i Ag y o oop
a and orientationd' B is for diameter aL,Ulx

a =a, that forn elli se of major axis aL =,
1 . A''h'""'" Ain the x-y p ane.

elli se is (x /A +qp p
in the ellipse p an .

ak-
c y

the minor axis aao h%(S 1'-ith respect to e z
Fl . 3.) Comparing wi

a polar angle a wi
'th (2.19), the sem-lane ellipse in Fig.

A and semiminor axis 8imajor axis, an

aveprevious results g

(2.23)

III. SCALIN G EQUATIONS AT LARGE DISTANCES

7cedure follows the isotropicic case, ' with
-1 f t thera ed} vortex- oop u

11 - 1 of 11r. The ellipse axis in
1

small parameter.
s the enera m' '

1 inimum scale a=e .op g

Th' "tit"n f(a the minor axis.a[1—e (a
tion (2.17) can be written as

PE (a )=5.631Ko .o II
~ ~

he lot of bare fugacity ( .2.21) versus
d =10 du with fixe a—

—2—
h k' of h f

Vo

—i 1)
tro ies. The pea ing

in- lane loops (if yo (c
wi

' Frie '
d superconductorsFriedel in layere

28). Fo J,and is easy to un eerstand from
u h an original-lattice(dual) lattice segm pent assing throug an

n an ular di eren
s uare sides, costing a

tish thFor a J„segmen pt assing throug a z-
+2K =4K(([1—5Q/2 . u

J f...,.do + 0 in-plane segments
Il

by

1 —5 sin'ay' '(a) =exp[ PEO(al )(1—5Qsi—il aL3'o

17(a)with the circular loop energy

(2.21) 0.2

pEO(aI ) =n. Ko ln(aLa = /a) (2.22)

cale a 1=att =1, lattice constant,For the minimum scale aL 1=att=,

0.1

V

—8=050 g
0.0

m totically dom-configurations. Asympp
lti lane ellipses oinant, re
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Z= g exp ——g g K&J( '(r) J' '(r')U(r —r') —PH, gy(( '(aL ),
LXL' rAr' L

config

where the correction I3H( at general scale is, essentially (see Appendix C),

(3.1a)

l3H) =—K((1—y( ') g g [—JI( '(r) JI~ '(r)+y&JI )(r)JI '(r')]U(r —r') .
LWL' rAr'

(3.lb)

Here for the smallest scale (L =1) ellipse of scale a,
and angle a, y(' "(a)=y&(a), and the angular average

y&
= f 0 day(( ) I(m/2) is what finally appears.

U(R)=y&(R~~+Z y() ', with the renormalized
segment-segment coupling KI absorbing the general scale
a. Scaling equations for Ki,yi are found. The difference
between the scaling of coefficients in PH( and K( deter-
mines the scaling of the renormalized anisotropy yi
with y( 'O=yo '=(Ki/K~~)' in the bare case. The gen-
eral procedure is as follows.

(1) Integrate out the smallest loops, of scales within a,
a +da. These provide an indirect interaction between
larger-loop segments, that is of the same form —U(R) as

the direct interaction, leading to an incremental
"thermal" coupling change, dKI ——KI y&dl.

(2) Rescale all explicit scale dependences to be in terms
of a +da, e.g. , minimum-scale volume factors in
configuration integrals for the center of mass and relative
coordinates of each loop, a =(a+da ) (1+
6dl). Demand that the new minimum loop scale is also
the new minimum distance of approach of segments on
different loops, i.e.,

K&max(1/R ) =K(a '=(a+da ) 'K((1+dl ) =(K&+dK&)

new max [1/R]. This gives a "geometrical" change
dKI -KIdl, to the coupling that has absorbed the general
lattice scale a.

(3) Absorb all explicit O(dl) corrections in redefined
fugacities y, +dI and couplings KI+d& at the new scale
a +da.

This yields, as shown in Appendix C, scaling equations
of the same form as the isotropic case for the asymptoti-
cally dominant elliptical loops

model' "used, anticipating the result that anisotropy is
irrelevant.

In fact, (Appendix C) the renormalized anisotropy

y& ', close to the fixed point, scales as

d(1 y—() '
= —(1—y( '), (3.3)

—1
KII, yo

K* =1+0.654, —1
3'0

(3.4)

The angularly averaged bare fugacity yo, is evaluated nu-
merically. For weak anisotropy, 50 &(1, it is' "approxi-
mately

so that the relative correction of PH, (2.17b} scales to
zero as (1—

y&
')-e . Asymptotically, y& '~1, and the

planes are isotropically coupled By. contrast, complete
layer decoupling would imply yI ~0. The fixed point is
3D, not 2D, consistent with interlayer perturbations of
the 2D XFmodel. '""'"'

The physical picture is that the larger loops feel the
coupling anisotropy as screened by the nested, smaller,
tumbling loops, that average over and weaken the
effective anisotropy. The fugacity peaking at a=+/2 be-
comes progressively weaker, and elliptical loops become
more and more circular at large scale. The fixed-point
value of the effective anisotropy is (y& ')' =0.

The critical coupling K~(, =—T, '=(8 ((/&kT, ) can be
evaluated numerically, from changes with temperature
variation, in the large-scale fiow behavior of (3.2). An ap-
proximate expression can be found by linearizing (3.2)
about the I =in(g )—+0 "fixed points" (K(,y( )

=(K*,y )=(0.3875,0.0621) when' ( )

dKi
=KI —A 0K' yI, (3.2a) yo-—e

-t)s,y,-', &Eo(1 yo '}-'' e 'I(z), z=
4zo ' (3.5)

dg) = (6 m'K, L()yl— (3.2b)

dI3F, y(= —2'
dl g3

(3.2c)

r

y( 0= —f d a exp[ —5. 631K& 0(1 —
5osin2a )'~z];

7T 0

and I-& ——1 —lnKI, with the same isotropic case core

with corrections -O(1—y) }. Here the initial values
are Kr =o=KII70 ="v KjKII

J(L)(r) y J(L)(r)J(L)(r)+g (J(L)(r))2 0

gives the partition function as

(3.6)

where Io(z) is a Bessel function.
An approximate T, versus yo curve can also be ob-

tained by "approximate self-duality. " " Going back to
(2.10), note that as T~ T, the 1/R potential of ellipses is
screened. Dropping the interaction terms, one is left with
the self-energy, i.e., U(R )~—U(0). Neutrality, or (2.4),
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Z= g exp g [JI(r)Ki+Ji(r)KI]
2

(3.7)
with 5 n=O, one gets the self-dual condition at T, of "

Z= g exp
n„I 2Kii

ni(r)
2%i

{3.8)

Comparing (3.7) on the dual lattice with (Al) and (A5b)
on the original lattice,

irU 0
(3.9)

where U(0) is defined by (2.11a) and is weakly varying
(-lnyz) in yo '.

Figure 5(a) shows a plot (solid line) of the inverse criti-
cal coupling or scaled critical temperatures T, =—E~~, ',

10

2.0

1.5

(1.0
I

8 12 16

Kz/KII = &o

20

1.0 /
~~~

/ ~

2D TKT~&l
l

I
I

l
I ~

I

0.5
0.0 0.2 0.4

ag r

I I

0.6
Ki/Kl —= 7o

1.0

1.4

1.2

ll~2D TKT

0.8
0.00

I

0.02
I

0.04
I I

0.06 —2
Kx/K)) —= &o

I

0.08 0.10

FIG. 5. Dimensionless transition temperature T, =II
~~,

versus anisotropic coupling ratio yp =K&/XII, obtained from a tempera-
ture that triggers asymptotic changes in (3D) scaling Bows. (a) Solid curve 1 & yp & 15, 3D e11ipse-only scaling, with inset sho~ing
ellipses for yp ') 1 (strongly coupled planes) and yp

' & 1 (weakly coupled planes). Symbols are from MC simulations, of Refs. 25(a)
and 25(b). (b) 0& yp & 1, expanded-scale version of (a). The solid curve is from the (inset) a & rp quasi-2D excitations and a ) rp
multiplane 3D ellipses in the yp

' & 0.5 region and 3D ellipses alone in yp & 0.5 region. The dashed line for yp )0.5 is from 3D el-
lipses only, erroneously extended to all scales. The dotted line is from the approximate self-duality explained in the text. MC data
symbols are [Ref. 25(a)], ~ [Ref. 25(b) and 25(c)], and A [Ref. 10(e)]. The dash-dotted line is the finite-scale unbinding TKr defined
in the text. (c) 0 yp 0.01, expanded scale version of (b). Dashed line is finite-scale unbinding TKT defined in the text.
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IV. QUASI-2D EXCITATIONS AT FINITE SCALES

The angle-dependent ellipse fugacity (2.21) is peaked
for u =a/2, with in-plane circular loops becoming ellipti-
cal as they rotate out of the plane over the range
m) a&0. The tumbling of the loops is necessary for a
sampling of the three dimensionality of the system. For
the picture to be consistent, however, one must require
that the average ellipse minor axis [a yo '/(1—
50sin a)' ] &ayo ', must be larger than the minimum
(interplane) lattice scale ao ( =a~ =a~~ ). This implies that
for a scale small compared to the "Hikami-Tsuneto"
(HT) length

~o =a((Xo (4.1)

found from scaling ffow changes of (3.2) versus coupling
anisotropy Kj /K~~ ——yo for 0 & yo & 15, including
strongly coupled planes. For yo ') 1 or 5o=1—

yo &0,
the x-y plane ellipse axis that sets the scale, a, is now the
smaller or minor axis, with the out-of-plane major axis
a /[1 —e (a) ] as shown in the inset of Fig. 5(a). The sym-
bols are the MC data, "for 16X16X16 systems, and
match theory for yo not too large. '

Figure 5(b) shows the same T, versus yo plot, but
now in the region 0&K~/K~~ &1. The 3D ellipse-only
curve (solid line for yo )0.25, dashed line for
yo & 0.25) again agrees with the data, but only up to
about yo =0.25. As the planes decouple, K~/K~~ ~0,
the ellipse-only curve (dashed line) is pushed down to
zero. The dotted line is from the approximate self-
duality of (3.9). As shown in the next section, the
ellipse-only picture breaks down at yo =0.25, and
finite-scale quasi-2D a & ro excitations depicted in the in-
set of Fig. S(b) must be included, yielding the solid curve
for yo &0.25. We now turn to the new a &ro excita-
tions that dominate, for strong anisotropies yo &0.5
when the tumbling-ellipse picture breaks down due to an-
gular constraints.

U(r —r')- —25.,
'U(2D)(rll —

ril) (4.4)

where the 2D interaction potential is, integrating over
the Brillouin zone,

ingful.
The J~~ only, strictly in-plane loops of Friedel' have

zero-energy contribution as yo '~0. From (2.10), and
the discussion at the end of Sec. II, leading nonzero-
energy excitations will have as few J~ and as many J~~ seg-
ments as possible for a given perimeter. These are
efFectively rectangular-shaped loops of unit sides J~ =+1
cutting single planes, with an average separation
a & r~(

—
ri~ ~

& ro, as in Fig. 3. The distribution of
(J~~,J~)=(J„,J~,J, ) segment components in existing MC
simulations lend some support to this idea of quasi-2D
or Hikami-Tsuneto (HT) excitations. Further simula-
tions to check this would be useful. (It should be remem-
bered of course, that these are average shapes; hairpinlike
segment excursions about these can, and will, occur. )

The smallest rectangular loop has unit sides ao in the z
direction and sides 2ao in the plane, i.e., ro&a )2ao.
This defines a strong anisotropy regime yo &0.25 within
which quasi-2D excitations begin to be meaningful. Mul-
tiplane elliptical loops are thus e6'ectively suppressed for
the scale region a & ro that is dominated by single-plane
HT excitations, and quasi-in-plane loops as in Fig. 3 and
the inset of Fig. 5(b). Interestingly, this strong-
anisotropy regime estimate is in agreement with the peel-
off' in Fig. 5(b) of the MC data from the (dashed) ellipse-
only transition line.

The potential U(r —r') between the vortex-loop seg-
ments, in Fourier space, is

U(q) =
p2+ 2p2

(4.3)
Vo

where Pi~ =4 2 cosg Qii 2 cosgyQii, I )
=2 2 cosg aii ~

For yo
' ~0, one gets the decoupled plane limiting

behavior, for U(R ) —= U(R )
—U(0),

a, =—sin ' 1— (4.2)
7"o ro

the elliptical excitations are restricted to oscillations
about n. /2 in an angular range n. /2+a„where

2
' 2 1/2

g Q](
1 ln

ao
+

2

d2
U(2D)(, ),2 qll

2
(1—e )

(2 )2 P2
II

(4.5)

The tumbling-ellipse picture cannot be used for scales
a & ro, and such loops are constrained to be essentially in
plane. For the "forbidden" range of scales a &ro to be
significant, yo must be small. Since the major axis a is
larger than the minor axis (which is )ao), we have
a ~ 2ao or ro ~ 2ao, for the constraint of (4.2) to be mean-

Corrections to the 1n(R~~) potential from expansion of
(4.3) are -0( R~~ ro) ).

From (2.10) and (4.4), the leading order energy contri-
butions of J~ segments of rectangular 1oops for a separa-
tion R, with ro ))R ))a„are given by

PM =g —
mK~~ X JI. '(r~~~, z )JI '(ri~~, z )ln

L,L'

/r —r'/
g [J(1.)( )]2

2 II'
II

L

(4.6)

The J~~ contributions of the long sides, to the energy, become cost-free, as the planes decouple, yo
' —+0. Here loop clo-

sure in the component form (3.6) has been used. We see from (4.4) and the large square bracket sum of (4.6), that each
plane contributes independently, with z =z components only. In this limit, the quasi-2D excitations dominate, and
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PH(z)= mKi—iyo g JI '(rii, z) JI '(rii, z)ln

II II

all

L,L'

planes are effectively decoupled,
stibnite

scales & ro. [For asymptotic (3D) scales, the planes are eff'ectively isotropically
coupled, as shown earlier. ]

As yo ~0, the (circular) loops are restricted to be in-plane only. One can derive 2D KT equations for the coupling
and fugacity of in-plane circular loops. The bare Hamiltonian for Jii-only closed loops in a given plane z, is as in (4.6)

lr —r'/ vr'K y, '
g [J(L,)( )]2

II II' (4.7)

Qo =
—,'Kii U(0)yo (4.8)

For yo
' (0.5 but not tending to zero, the restrictions

The scaling argument for nested Jll in-plane loops follows
the 3D loop case closely, but with the smallest loops act-
ing as "discrete deviatives" on the logarithmic potential,
Jii(r) = —Jii(r ') for ~r —r *l =a across the loop diameter.
The dressed coupling and loop fugacity scaling equations
are of the 2D KT form, and the transition temperature
for in-plane loop blowout is estimated as Ellyo const
or TKT —

diiyo &(T, the 3D transition temperature, for
yo &(1. Thus, for temperature near T„ the in-plane
loops strongly screen interactions of Jll segments on the
same quasi-2D loop. They also screen Jll interactions be-
tween the top part of a rectangle on one plane and the
bottom part of a rectangle on a neighboring plane and
help in effective decoupling of the layer excitations on
scales (ro. (The direct lnRii interaction of the Ji —Ji
sides on one plane would, of course, be unaffected by Jll
screening effects, as the Jll and J~ segments are orthogo-
nal. )

Now consider corrections to (4.6) from Jii long sides of
HT excitations. Since all segment separations R between
ro and ao contribute, we retin the full potential U(R) of
(2.12). The segment self-energy contribution —Jii plus a
screened short-ranged interaction, as above, proportional
to the length -R

II
of the long rectangular side, provides

an effective linear potential 2irgo(R ii/a —1) between the
J~ =+1 vertical sides, on the same loop. For yo

' small
dropping the screened interaction energy, the coefFicient
may be estimated as

aiiyo [ln(K ) ][(Rii/a (4.9)

where a cutoff' in the segment approach, as below (2.7),
has been used to incorporate crinkling of the on-average
horizontal long sides of the rectangle. The U(0) self-
energy terms are absorbed in the core a, [as in (2.6)] to
get the second approximate equality of (4.9). The
coefficient Qo in this regime is then estimated, with
K*=0.3875 and x =0.6, as

Qo-—0.284Kiiyo 'aii .

We set

m (r, z ):—J~j ' (r, z ),

(4.10)

(4.11)

suppressing loop labels. All I J~i '
] in (4.6) have the same

leading lnRii interaction both within (L =L'), and be-
tween (LWL') loops. The effective potential -Rii is ac-
tually only between J~ =+1 on the I.=I.' same loop, but
the error made in relaxing this condition (L AL in-
clusion) is of higher order in the fugacity of loops when
doing partition function scaling. Thus, from (4.6) and the
above discussion, one has effective vortex "points"
m (r, z ) with a log-plus linear interaction,

on angular orientations of the quasi-in-plane loops be-
come less effective, and their screening of the Jll

—
Jll in-

teraction becomes less. However, the Jll
—

Jll self-energy
with the bare potential again gives a linear potential. The
two sides of the rectangle both contribute, and

—2 0
PH -nKii y p

PH =y —~K„y m(r„, z)m(ri, ,z)1
z r &r

II II

all

+ g m (rii, z )
—7rgo g m (rii, z )m (rii, z ) —1

II rll~ril

(4.12)

The logarithmic term of (4.12) dominates the effective
linear terms right up to scales a -ro, for yo '((1. [For
(4.8) the linear term contribution at the largest scale —ro
is garo-yo '~0, recovering'"' the KT limit. ] The
standard scaling procedure ' leads to quasi-2D

,y&( scaling equations for I=+1 vortex coupling
and vortex pair fugacity that reduce to the KT equations
as y, '~0:

dX" '

~ (2D) (2D)
0

(2D)

dI
=[4—2m(K' '+Q ')]y'oe I

(4.13)

where Qo=—[U(0)yo /2]KO ', 320=4ir .
Corrections to lnR of order (R /ro ) have been
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dropped, and 3D loops take over for scales beyond r0.
We therefore consider only leading "geometric" scale-
dependences of the linear-potential coefficient, QI Qoe,I

ignoring possible screening corrections -yI' ' to it' ' ' as
higher order, and diScult to estimate consistently.

The 2D bare spin-wave corrected coupling
EI2DO' =E~~ /[1+(2E

~

) '], and pair fugacity
yl' 0' =exp[ mE—o '], are the inputs for quasi-2D scal-
ing up to i=10——In(ro/ao}. Beyond 10, the fugacity
scales sharply to zero, yI' '~0, as the linear attractive
potential between m=+1 vortices starts dominating.
This means HT excitations are suppressed as scales in-
crease beyond a=ro. On the, other hand, from (4.2),
tumbling elliptical loops are angularly constrained, as
scales decrease below a =I'0. The HT single-plane loops
convert to multiplane loops at a =r0, which is therefore
the natural "handover" scale. The renormalized 2D out-
puts at i=la from (4.13) are the inputs to 3D scaling
(3.2):

~(2D) ~ y
(2D) (4.14)

0 0 0 0

This handover choice /=lo=ln(yo) also has the virtue
that in the limit that we ignore thermal renormalizations,
and drop fugacity terms, in (3.2), and (4.13) the 2D/3D
in-plane couphngs EI' ' =E0 ' =EI~ and EI

—I '0
Ellro le O=KII are continuously matched.
For weak anisotropy yp & 0.5, rectangular excita-

tions, that must have long sides rp&2a0, lose their
definition, ellipses tumble freely, and (3.2) is used at all
scales. The scales where (3.2} and (4.13) are used, are de-
picted in Fig. 6(a) with the solid line the a = ro handover
boundary crossed at fixed y0 '. The renormalized cou-
pling Ei and fugacities y& versus 1 are given in Fig. 6(b)
for temperatures close to transition.

The transition temperature T, =K~I, for all y0 is
determined as before by the temperature for changes of
the asymptotic scaling Qows. This yields the solid curve
of Fig. 5(b), both for yo

' (0.5 (2D scaling handed over
at lo to 3D scaling}, and yo '&0. 5 (3D scaling alone}.
The transition curve for very strong anisotropies
yo (0.1 is as in Fig. 5(c). There is reasonable agree-
ment in Figs. 5(b) and 5(c) between the solid curve and
the MC data of Epiney "and Baeriswyl et al. ' ' (H),
Chui and Giri "

(~), and Minnhagen and Olsson'+'
(A). The MC simulations are done on the XY cosine
model, with typical MC error bars shown. If (4.10) in-
stead of (4.8) is used for Qo, it results in a change of only
-2%. The quasi-2D finite-scale vortex "unbinding"
temperature for the HT excitation J~ =+ I segments,
defined by HEI' '[TxT(yo)]=2 for scaling of (4.13), lies

below th T, line, that joins it only at y0
For T & T„ the average vortex segment separation g+

at large scales is g+ =n„'~, where n„ is the asymptotic
single-segment density n„=(y )'i/a, a-+ao. (Vortex-
loop closure implies that for any J„ there is somewhere
on the same loop, a segment —J„,so yI' is the relevant
single segment fugacity. ) Figure 7 shows that g+(T) has
both critical 3D exponent behavior (solid lines),
ln(g'+)- —vln~e~, where ~e(=[T T, (yo)]/T, (yo), a—s
well as noncritical quasi-2D behavior (dashed line)

16—
NS

0.2 0.4 0.6

1.5 — (b)

1.0 -0.001

0.5 0.0

0.0

0.4—

=0.001

0.2

0.0
0

FIG. 6. (a) Scale regions where 2D/3D scaling regions are
used, with a handover as the a=ro=yoao line is crossed for
constant yo '. (b) Renormalized fugacity y~ and coupling KI
versus scale, I =ln(a/ao) for temperatures T=K~~ ' around the
critical value, and for yo

' =0.1414. Here e=—( T—T, )/T, .

ln(g+ )-r', where r = [T/TxT(yo) 1—]. We find
from numerical fits that v=0. 67, the 3D XYexponent for
~a~~0. Note that g+(T) is defined in terms of the
asymptotic (3D) fugacity. The dashed lines merge to-
wards to y0 '=0 strictly 2D behavior, away from their
respective T, (yo}'s, consistent with the effective decou-
pling ideas' but here in a finite-scale decoupling picture.
The noncritical 2D temperature dependences from KT-
like unbinding at scales a ( ro, comes from the feeding in,
by (4.14), of small scales to large scales. We elsewhere
find' the phase slip resistance 8 is related to the interseg-
ment separation, and so R also has noncritical quasi-2D
and critical 3D behavior.

The 3D critical region (e~ ( ~E, ~
is estimated by a 5%

deviation from the ~@~ ~0 straight line of in(g+) versus
ln( ~e~ ), and ~e, ~

is plotted (solid line) versus yo in Fig. 8.
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ln )e(

0

FIG. 7. Logarithm of vortex segment separation S+(T)
versus temperature variables for T & T, (pp) and
pp: Kg /K

~~

=0.0002, and 0.02. Solid lines are referred to
upper horizontal axis In~a~, where (e~:—I[T T (yp)]/T (yo)~
and have linear slopes v=0. 67 for 3D critical region ~e~ —+0.
Dashed lines refer to the lower horizontal axis ~ ', where
r= [(T T„r(y&&)]/—T„T(yo), and have (noncritical) KT-like
linear behavior, away from its critical region.

0.6

0.5
'BD NON —CRITICAL BEHAVIOUR

0.4

0.3

r

PD 3D CROS

0.2

0.0
0.00 0.05 0, 10 0.15 0.20 0.25

KJ/KII = Pp

FIG. 8. The solid line showing the 3D critical region bound-
ary of e=~I[T T, (yp)]/T, (yo)~ e, (yo} ve—rsus yo =—Ki/XII,
defined by 5% deviation from 3D exponent behavior. The
broad dashed line is the 2D region boundary in ~e~ defined by
5% deviation from 2D KT behavior. The dash-dotted line is an .
estimate

~
e

~

=yo
' ', of the 2D-3D crossover, with v =0.67.

For yp =2X10 (thallium) ~e, ~

—10, while for
yp —-0.04(yttrium) e, ~

—10 '. The ~e~ for which there
is 5% deviation from the linearity of ln(g+) versus r
is also plotted (broad dashed line). There is a 2D-3D
crossover region between. A rough bound for ~e, ~

is the
length crossover condition, g+-apse~ '=rp=apyp, or
~e~„„,-yp ' '(dash-dotted line).

We now brieAy comment on similarities and differences
with previous work. Minnhagen and co-workers' have
considered the anisotropic 3D XY model with vorticity-
suppressing constraints on alternate planes, either by
phases 0=0 fixed, or with external, local, Shrock-like
potentials. By variational and MC simulation methods,
they find that (i) the single-plane rectangular vortex loops
have J,=+1 unit sides interacting via a

2m%II lnR II /&p)+2m Qp(R II/~p

potential and (ii) the bare coefficient Qp o-yp . The re-
normalized finite-temperature linear coefficient of R

~~

vanishes, Qp(T, )=0, at T=T, . (iii) Thus, vortices have
a 2D-like, purely ln(RII) potential and quasi-2D resis-
tance versus temperature behavior above T„ i.e., the lay-
ers are effectively decoupled for T) T, . (iv) The linear
potential terms -R~~ give rise to an intrinsic critical
current, comparable to experiment (but with strength
about a factor of 8 larger).

We have studied the anisotropic 3D XY model with no
further external constraints on the vortex-loop blowout.
We find that (i) for pnite scales RII (rp, there are indeed
dominant single-plane excitations, with a log-plus-linear
interaction obtained from a strong anisotropic limit of
the (anisotropic) Biot-Savart potential, but the asymptot-
ic excitations are multiplane loops —g ( T ) —~ e~ . (ii)
The linear potential bare coefficient Qp goes as yp or
yo in different limits, the latter if screening due to in-
plane JII-only loops are neglected. (iii) The quasi-2D
finite-scale excitations can feed into and control the (non-
critical) loop fugacity, through the scaling equations.
This suffices to produce KT-like T dependence in g+( T )

governing loop correlations above T„even without com-
plete plane decoupling at larger scales. (iv) With lattice
constant ap=(II, the in-plane Ginzburg-Landau length,
the ratio of our estimate 2mgp=0. 568~KIIgIIyp

' to'
2m.go=sr &2%II)IIyp

' is about a factor of —,'. (v) Even
without alternate-plane constraints that suppress loop
blowout, one might speculate how a quasi-2D population
could arise even at large scales. A current drive I, will
exert, through a I.orentz-like force, a torque on J corn-
ponents in the x-y plane, rotating loops to the y-z plane.
These loops would become rectangular even on scales
larger than ro, and the J,=+1 sides will be driven out-
wards, perhaps splitting into single-plane rectangles by
fluctuations. The overcoming of the in-plane binding po-
tential (log plus linear) would give rise to a critical
current.

V. SUMMARY

We have presented a vortex-loop scaling analysis of the
layered 3D XYmodel, generalizing our previous isotropic
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case results. Large loops cutting multiple planes are, on
average, elliptical with angle-dependent fugacities peaked
for loop orientation in the x-y plane, when the loops are
circular. The effective anisotropy seen by the progres-
sively larger loops is progressively smoothed by the
smaller, tumbling loops, driving the effective anisotropy
to zero. The asymptotic scaling equation behavior for re-
normalized coupling and fugacity is that of an isotropic
model with bare vortex-loop coupling that is the
geometric mean Ko =QE—jul ——Elyo ' of the actual cou-
plings. Thus, critical exponents are unchanged: anisot-
ropy is irrelevant.

The transition temperature T, = king T, /8~~
=—K

~~,

'

versus coupling ratio ICi/K~~ ——oui/8~~=— yo from multi-
plane elliptical loops alone is in good agreement with MC
data points in the region 0.25(K~/K~~ (15. In the
high-anisotropy regime, yo &0.25, the elliptical loops
are restricted to a range of angles about the plane and be-
come strictly in-plane, as yo '~0. A new population of
long rectangular loops of unit sides J~ =+1 cutting single
planes become important for in-plane scales
Rll "o= llano' beyond which they are improbable, and
the asymptotically dominant multiplane loops take over.
Thus, for yo

' «0.5 or ro))2a~~, the lattice planes fluc-
tuate independently, and are effectively decoupled, over
finite scales & ro. The in-plane potential for J~ =+1 sides
of these quasi-2D excitations is logarithmic, -KolnRI~,
with small linear -R

~~

corrections. This yields KT-like
quasi-2D scaling equations for scales & ro, with the
quasi-2D renorrnalized coupling and fugacity feeding in
as inputs into the 3D scaling equations. With the in-
clusion of finite-scale quasi-2D inputs, the transition tem-
perature T„ found by a change in asymptotic behavior,
matches the MC data in the high-anisotropy regime,
yo 0.25, and T, is driven to the KT transition temper-
ature (and not to zero) as the planes decouple.

With the scaling equations in the high anisotropy,
finite scale &ro regime, one can now calculate' renor-
rnalized stiffness constant or helicity modulus —superfluid
density, quasi-2D resistance behavior, and nonlinear I-V
characteristics. These could have relevance for recent
work on layered high-T, superconductors. ' Using the
anisotropic scaling equations, one might also examine the
problem of quantum fluctuations in capacitive Josephson
arrays, granular superconducting films at low tempera-
tures, and high-T, models' that map onto an (aniso-
tropic) classical (2+ 1)D XYmodel.

In conclusion, a vortex loop scaling analysis of the an-
isotropic 3D XY or planar ferromagnet has been present-
ed, which may have relevance for other problems of
current interest.
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APPENDIX A: DUAL TRANSFORM
OF THE ANISOTROPIC 3D XYMODEL

The dual transformation' '"' extracts topological exci-
tations and their long-range interactions from nearest-
neighbor Hamiltonians and their symmetries. The trans-
form, applied to the partition function of the anisotropic
3D XY model, follows the isotropic case closely. The re-
sults are as elsewhere'"" with derivation sketched here
for completeness. We take at an intermediate stage
a„=ao=1 a cubic lattice, without loss of generality, as
noted in the text. The number of lattice sites is
N =N. XN, XN, .

(i) Fourier expand the Boltzmann factor, and integrate:

„dO;
Z =+ I exp g g Pcf„cosh,„O;—~ 277

„dO;=Q I g exp[V(tn„;])]exp i g n„;b,„8;
P, l

exp[ V( I n„; j ) ]+5t, .„o
In

(A 1)

Here n„; =0, +1,+2, . . . , +~ (exp[ V( nt„, )]]) are the Fou.rier labels (Fourier coefficients), with n„; as integers,
reflecting the AO~AL9+2m syrnrnetry of the cosine Hamiltonian. Direction labels are p=x, y, z, or 1,2,3. The Fourier
coefficients will tend to increase, with decreasing temperature, which is inconvenient for a low-T calculation. Although
5 n; =0, we will use the phrase "vortex loops" only for dual-lattice variables J(r), with 6 J(r ) =0, which appear later,
and whose (renormalized) loop fugacity is the small expansion parameter, at low temperatures.

(ii) Satisfy the constraint as an identity. Introducing dual lattice variables N(i), with Ni, (i ) =0, +1,+2, . . . , + ~ on a
dual cubic lattice displaced from the original lattice by ( —,', —,', —,

' ), the original lattice n; can be written as the curl,

n„;= g e„,ih~i(i),
v, A, =1,2, 3

(A2)

where e„&=+1 ( —1) for cyclic (noncyclic) coordinate direction labels, and zero for any two coordinates directions
that are equal. Thus 4 n=h (5 XN) =0. Then (Al) becomes
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Z= VI I(ebX),. ] je p~ t (A3)

(iii) Use the Poisson summation formula. This gives new integer variables I J(r) j (vortex-loop segments) and continu-
um variables IP(r) j ("spin waves")

Z=Q f dP&(r) g exp(VI[(ebg);]j)exp 2~i+/(r) J(r)
oo IJ (r)j I

(A4)

with b, -J(r) =0 by gauge invariance P(r) ~P(r)+ hy(r) and integration over y(r). So far, everything is exact.
V( I~,. j ) 'V(~,. )

(iv) Eualuate the Fourier coe+cient in low Tapp-roximation W.e have e "' =g„,e "', and the inverse Fourier
transform gives the Fourier coefficient or weight factor as

V(x . ) n di m' di+@ pc( cosh 0. i(x . )6 0.
ps& P P &e P~& P

—~ 2i —~ 2'
I„(P—P„)=Io(PcF„)exp[in( [I /Io —1 j+1)], (ASa)

where I„(x) is a modified Bessel function of imaginary argument. For (P8„) ((1
—x /2E

(0+„)
with K„=K (P8„)=Pc(„at low temperatures. The behavior of K„(PP„)near T, is discussed later.

(v) Integrate ouer continuous Uariables Pi(r). In Fourier space, the weight factor in (A4), using (A5b), is given by

(Asb)

exp[ V( [eb,@j )]=exp g V [ [(eb,P)„; ] j

=exp
[eked„, ]

2K„

2K„

where IP„(q) I
=2—2 cosq„a„and a„are lattice constants. Changing variables

y„=(rC„) '"y„', P„=-(rC„) '"P„', -

we have

(A6}

(A7)

exp V[[{eb,g)„;]j =exp
q, p X P Z

Ip'I'I4' q I'

2KiIC
ii

where K„=K~=K~~, K, =Xi for layered couplings and a gauge P' P'(q) =0 is chosen. Using (A8) in (A4), and integrat-
ing over P'(q), the partition function in Fourier space is

I
J (q)IZ= g exp

2 „K„ IP' (q)I

where the term that has IP'(q ) I

=0 is excluded, and irrelevant factors are dropped.
The anisotropic vortex-loop model partition function is then, with (J„J~) = J~~, J, =Ji

(A9}

+ exp X (I~i ii(r} tl(r')+I~ll &( ) i( '))
I Jj rwr'

The potential is the lattice Careen's function, with

(A10)

iq R4
U(R) =a,a (A 1 1)

2& 4 2cos g QII 2cos g QII + 2 2cos g Qy fo
Here yo =—Ki/K~, and we define U(R) = [ U(R) —U(0)], i.e., U(q) = [ U(q) —

5~p'~ ogqU(q)/N].
With [Jj=( [J ~ ~

j ) vortex segments are labeled by the loop (L) to which they belong, and there is closure for each
loop separately, 6 J ' '(r) =OVL. The constant U(0) terms by closure gJ„' '(r) =OVp of (3.6) go into the fugacity of
{2.6) and get absorbed into the core size' ' a, . Separating L AL interloop segment interaction energies,
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exp ——g + [K~JII '(r) Jll '(r')+KIIJ~ '(r}J~ '(r'}]U(r—r') Xgyo2 L
(A12)z—

U(R}= 1

(Rl, /r, )'+ (Z /a, )'

asymptotically. More precisely U(R) is the 3D lattice Green s function,

I J'~'(r) =O, +1 I

where yo
' is the fugacity from the L =L intraloop segment interaction, as in (2.6) and evaluated in Appendix B. From

(A10), with R= (Rll, Z ) and ro as in (2.13) and (2.15),

(h, 'll+y, '6', )U(R)= —4 5

Z can be written as in (2.17) of the text, by adding and subtracting terms,

Z= g exp ——g g KoJ' '(r) J' '(r')U(r —r') —PH, kayo
I
J[L]

I
LWL' r&r' L

Here Ko =—Kllyo and the bare anisotropic correction term [of (3.1b)] can be written as

(A14)

(A15}

Ko" yo' & &[ Ilr Jll( )+yp, (r)J, (r')]U(r —r').
LAL' rWr'

(A16)

We need a connection between the vortex coupling E
~~

and the temperature T„valid near the transition temper-
ature T=T, . From (A5), as mentioned, Kll

——p/ll for
T~O, and the bare vortex coupling is the original cosine
coupling. The cosine interaction supports both vortices
and spin waves, and for low temperatures, T « T„ there
will be (long-wavelength) spin-wave corrections as in two
dimensions to the bare (even short-distance) vortex cou-
pling, since vortices are extended objects.

Working with a truncated version of (A5) in (Al),
and restricting I to three values n„; =0,+1 with h-n=0,

Z=
In„=o,+i I

exp —g n; /2K' (A17)

in the isotropic case. Comparing this with the first three
coefficients of the cosine weight factor yields a non-
linear relation between K' and Pd'. However, the deriva-
tion of (A4} from (Al) requires a sum over all integer
values n„, =0,+1,+2, . . .+Do in an intermediate step.
It is the final "vortex" variable J„(i) (and not the inter-
mediate variable n;) that is eventually restricted to its
smallest values 0, +1 in a leading-order vortex-fugacity
expansion. It is not obvious what the relation K(PP) will
be in such a case. The spin-wave stiffness must be renor-
malized by the vortices; the short-distance force between
vortices is renormalized by spin waves. A self-consistent
scheme is required, in general. We appeal, therefore to a
physical argument near T, .

In two dimensions, the long-wavelength spin-wave
stiffness is nonzero at TKT, spin waves are we11-defined

right up to transition, and the low-T expansion gives a
good description of the actual spin-wave renormaliza-
tion of the bare vortex-vortex coupling.

In three dimensions, however, the long-wavelength
spin-wave stiffness vanishes at T, as a power of T, —T,
spin waves are less we11-defined at the transition, and any

spin-wave corrections must go as a power of T, —T, im-

plying the bare vortex-type coupling is again valid with
K=PS near T, . This assumption was made earlier' and
gave good results for the critical coupling; here it is as-
sumed to hold also in the anisotropic case, Kll -—p/ll,
K~ =Pd"~. The good agreement in this paper between the
critical coupling from the MC simulation of the cosine
model [p/ll, (yo)] and the vortex scaling [Kll, (yo)] lends
indirect support to this physical picture.

APPENDIX 8: LOOP SELF-ENERGIES
FROM INTRALOOP INTERACTIONS

The large-scale excitations are a continuous closed line
of vortex segments having the same potential,
U(r —r')= U(2r) between opposite r= —r' segments. In
the isotropic case, (2r) =a represents a circle r =(a /2).
In the anisotropic case, we set (with a~=all =ao=l),
from (2.12),

r'„+z'/(1 —5, ) =(a/2)', 5,= l —y, '=1—(K, /K„)

(B1)

representing an ellipse. For a coordinate system with x-g
in the plane of the ellipse, x /A +g /8 =1, where
A, B are the semimajor (along x) and semiminor (along g)
axes. For a segment J making an angle P with respect to
the x (major) axis, x = A cosP and g =B sing. With a the
polar or ellipse tilt angle between g and Z, the coordi-
nates are z=gcosa and y=gsina. Substituting into
(Bl), the semimajor and semiminor axes are

1/2

A =—,8 =— = [1—e (a)]'~ A . (B2)
2 (1—5 sin a)'

Here a is the ellipse scale in the x-y plane and is the ma-
jor axis for 50)0, yo '(1. In-plane a=a. /2 loops are
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circular, of diameter a, while ellipse eccentricity e(a) is
largest for vertical, a =0 loops, when g =z,
B=(a /2)(1 —5o)'~ and e(0) =5O~ . For yo

'

=(E~/E~~)' ~0, loops get squeezed to higher eccentri-
cities. The ellipse distance from the origin is
(x +y +z )' =A(1 —e sin y)'

With this parametrization,

[yo 'U(r r') ] —= (x —x') + (y —y') +, 2 (z z)
(1—50)

2

1cosg= +1+(8 /A )cot P
B cot/
A '(/1+(B /A )cot P

(B4)

parametrized in terms of a and P. If g is the angle be-
tween the J direction and the x axis in the x-g plane,
then, in the general x-y-z frame,
J= ( cosP, sinfsina, sin/cosa ). Since J is tangential to the
elliptical curve, tang=dg/dx = B—cot//A. Then

[2(1—cos(P —P')],
2

(B3) The fugacity, for a loop aL =a, aL =n is

with the form on the right as it appears' ' in the isotro-
pic case.

The topological current segments can also be

(L)— (I)
y0 =—e 7

where

(B5a)

PZO '= —y [E~J~~(r) J(r')+E~~Jj(r)JJ(r')]U(r —r')+ —U(0) E~~ y JJ(r)+EJ y J~)(r)
rWr

The energy can be written as (temporarily suppressing the U(0) self-energy term)

(B5b)

f 27I f f 2'll

0 27T 0

E~[sin P+(1—e )sin acos P]+E~~(1—e )cos a cos P

&2[1—cos(P —P') ] (1—e cos P)
(B6)

13EO(a)=m E~~ in[a/a, (l)] . (B7)

Doing the P integration "in (B7), the anisotropic case
fugacity is angle dependent

where we have, as in the isotropic case, ' made a sharp-
peaking P =P' approximation in the current-current
products.

With a cutoff a,'/a on the P —P' angular integration
and absorbing constants of integration and mU(0) self-
energies, etc., into the final core size a„as mentioned in
the text, the isotropic case loop energy is'

yo '(a ) =exp[ PEO(a )(1——50sin a )'~ ], (B8)

APPENDIX C: VORTEX-LOOP SCALING

At a general minimum scale, a=a0e the partitionI

function of (2.17) can be written as a sum of an isotropic
current scalar product part, plus an anisotropic correc-
tion [J~~=(J„,J ), J~=J,],

as in (2.21) of the text. Here we have dropped corrections
—[1—e (a ) ]'~

I [1—e (a ) ]'~ —1], which are small in
all relevant limits e -m. /2 for all 50, and 50~0, 50~1 for
all a.

Z= g exp ——g g E&J' '(r) J' '(r')U(r —r') —PH, ay) '(aL ),
I
J«)

I
LWL' rWr' L

config

where the (A16) correction term 13H, can be written in a symmetrized form

(Cl)

PH, —:—EI(l —yi ') g g [ —,'(yi —1)gIJ' '(r) J' '(r')+ —'(y +1)JI '(r)s Jj '(r')]U(r —r') .
2 LWL' rWr'

(C2)

The coupling KI has absorbed a minimum length scale a, as mentioned in the text. We here define a product
JSJ—=J~Jj —

J~~.J~~=Q„Q„J„A„with A„=+1, A„„=A = —1, while, of course, J J=JjJ~+ J~~ J~~=P„J„J„.Here
gi is a coupling constant that may be generated by scaling with the bare value g0=1. The bare fugacity y0 ' is as
defined in (2.21), and the bare coupling in the main part of the Hamiltonian is E& O=QEj E~~~, the geometric mean of
the anisotropic couplings. Here the interaction U(r —r ) satisfies the equation at general minimum scale a,

(~'„+y, 'b, ,') U(r )—:D 'U(r) = —4~5, , (C3)

where we have allowed for possible renormalization of the anisotropy, and introduced y I
=—1 —5&, with
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z= y e IIy,'~'=z, +5z.
I
J(L)I L

Here l3H =—,'mK&gz &L g, , J ' '(r).J ' '(r'}U(r —r') involves all the loops of scales ~ )aL )a. Z & is as in (C4), with a
Hamiltonian l3H & that involves only loops aL )a +da, while 5Z involves the smallest loops L = 1 in the shell a, a +da:

T

5Z= g II y,' 'e ' g y, II exp —~K g J'"(r, ).J' '(r)U(r —r, )

I
J(L)

I
L(%1)

I
J(l)I L(%1) r, r&

config config

(C5)

with y& "=y& for the smallest I, = 1 loop. We define the "mirror position" r& as the position where an oppositely direct-
ed segment occurs, J„'"(r,) = —J„'"(r', ), so that the small loop acts as a "discrete derivative, "

g J„'"(ri)U(r, —r')= —,
' g J„'"(ri)[U(ri—r') —U(r*, —r)]

yi ~o=yo ~=(Ki/K~~). We have defined the derivative operator D=(h~~, y& 'b, , ), and in Fourier space
U(q)=4m[Pe~ +yo Pi] ', with (Pi,Pi}=(P„,P~, P, ) and P„—= 2 —2cosq„a„. We first consider the scaling behavior of
the J J Hamiltonian term in (Cl) and then see how the corrections of PH„modify the results, and yield scaling equa-
tions for yI '. The argument follows the circular-loop case closely, so we first outline this isotropic model scaling. '

The partition function can be separated into a part Z& that involves only loops of scale )a+da and a part 5Z that
involves interaction of the smallest loops in a range a, a +da, with the rest

=
—,
' g J„"'(ri)&.b,„U(ri —r),

where the unit vector a= [(ri —ri )/a ] spans the loop, and ~ri —r~i
~

=a is the circular loop diameter, and the minimum
scale.

The term in square brackets in (C5) can then be written, for interaction with two larger-loop segments on loops
LAL' (i.e., L,L'W 1),

= X X ylIIII
I
J(L)I Ig(&)I

r r'

g J'"(ri).J' '(r)(& 5, )U(r, —r)
Ir

X 1 — g J '(r ) J' '(r')(& lL )U(r —r') +mKI LI

2 2 r2 2
r2

(C7)

By J„'"=g]. symmetry, with a partial integration, shifting the derivative to act on U, and a sum over J'"=+1, the
term in square brackets is

yi 1—
I
J(L)

I
config

m EC $ J' '(r).J' '(r') $ U(ri —r)(a.h, ) U(ri —r')
rXr' r&

(C8)

Doing the angular average over the diameter vector a gives ((a 6, ) )U(ri —r)= —,'6, U(r, —r)= —4m/35, , The

configuration sum J"' is over the center of mass R,'" and relative p"' coordinates of the I.=1 loop in a shell

a,a+da, with the shell integration —,'a (p"'( —,'(a+da) giving j d p"'/a =
—,'md/. The center of mass of the loop

Jd R,'" /a gives a volume factor 0/a for the first terms in the large parentheses of (C7) and allows the delta-

function argument in the second, to be satisfied, as R sweeps through the system.
So, finally,

4
5Z= g II yi' 'e ' 2ny&dl + yi dl KI g J' '(r) J' '(r')U(r r')—

a
(C9)

Recombining Z =Z& +5Z and reexponentiating, we get
a thermal renormalization contribution to coupling,

dKi = —AOKI yidl, Ao= 4n /3, — (C 1oa)

and a free-energy density scaling equation dPFi/a
=2myI/a dl.

The loops are now of minimum size a+da, but the
minimum interloop distance is still a, with potential con-
tributions —J' 'J ' 'E& /a. Demanding that the
minimum loop size is the minimum interloop approach
implies an increase in coupling of the 1/R potential,
Ki/a = [KI(1+dl )]/(a+da ), or an increment
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dKI=KIdl . (C10b)

(Cl 1)

[where (iv) below has been anticipated in the approximate
equality].

(ii) The dl factor from the a, a+da shell in the
configuration integral is changed by the ratio of the ellip-
tical to the circular perimeter. From (2.19) and (1.9)

vrdl~rrdl J dP(x +rl }' /era
0

n/2 (gd=m dl (1—e sin |)))'
o m/2

=rrdl[1 —
—,'(e (a))],

where e =e(a) is the eccentricity. For 5I =1—
y& ((1,

anticipating the result that yI ~1 asymptotically, the
net change is

This is a geometrical contribution to the coupling KI that
has absorbed a scale a. (For 2D charges q, the potential
energy is -q lnR, so q is an energy; for 3D q is an en-
ergy times a length )C.ombining the two increments
(Cl 1) gives the isotropic case K& coupling equation (2.7a).

Turning to anisotropic or elliptical loop scaling, the ar-
gument carries through largely as before, but with four
difFerences: (i) The r, —r f vector across the ellipse is not
a constant, as it rotates through the ellipse perimeter, and
the equation obeyed by U is (C3); (ii) the shell volume in
the scale a, a +da is around an elliptical, not circular per-
imeter, (iii) U is explicitly dependent on the scale-
dependent anisotropy y& ', and (iv) the fugacity y&(a) de-
pends on the angle a between the z axis and the ellipse
minor axis, which could weight angular averages previ-
ously done freely over tumbling smaller loops. Angular
averages ( ) include an average over a with weight
yl(a)/y~, wherey& is the free angular average ofyl(a).

The corresponding modNcations of the argument are
as follows.

(i) Defining R:—[(r r*—
)~~, y, (r —r*)i], the ellipse is

given by (2.19), i.e. , R =a . Then, from (C3), the angu-
lar average over all segments and over all loop orienta-
tions,

([(r,—r', )/a) 5]') U=([(R/a) D]') U

mated by the product of the free angular averages, with
corrections that are higher order in 6Iyl. Thus, the angu-
larly averaged fugacity yI just replaces the previous, iso-
tropic fugacity. Thus the KI scaling equation is to
O(5Iyl ),

=K, —w0K,2y, (C15)

=(6 vr KILI)y—i .
dl

(C17)

We now consider the scaling of the rotationally nonin-
variant pH, of (C2}, and obtain the scaling equation for
yl '. Including both direct terms from pH, pH, in (C2)
and the cross term pHopH, in (Cl), the scaling of the
coefficient, of the +J J term of C(2), to O(5I ), goes as

d(1 —yi ') = —AoKei(1 )'i ') . — (C18)

In obtaining (C18), we must go through arguments
such as (C7) and (C8) for the isotropic case and use rela-
tions as given below in an obvious notation (suppressing
arguments for simplicity). Using (Cl 1)

4g J JUJ JU= —g g J„J„U(a„b,„) U

= —gJ JU—'D U= gJ JU,4~
3 3

4 g Je JUJU' JU= —g g J„J„A~„U(&„b,„)2U

as in (3.2a).
Other explicit scale dependences are absorbed in the

fugacity. The unit-cell a scale factors in the
configuration integrals [center-of-mass and relative coor-
dinates ( J d 8,' ' /a )( I d p' '/a ) for each loop L]
give a renormalization increment dyr =6dly&. The expli-
cit scale dependence of the fugacity (2.21) and of the an-
isotropy yI give collecting contributions,

dy& =6y&dI mK—IL.ty&dl+ 'PEo(—a}5I(sin a)yldl,

(C16}

with L& —=1+in(a/a, ), an angular average ( ) over a
with weight y&(u)/yI. Thus, to relative order 5&, shown
later to scale to zero,

~dl~7rdI[l —
—,'5&] . (C13)

(iii) The scale dependence of the effective anisotropy
yI

' in U generates a new additional potential

I J(q) I I J(q) I

p2 +y 2p2 p2 +y
2 p2

[(d5i/dI )du". ] IJ(q) I'

(P2+ ~
—2p2)2

The additional term is asymptotically small, with
coeKcient shown below scaling to zero, and so it is
dropped.

(iv) The angular average of y&(a) and other a-
dependent scaling factors, such as above, can be approxi-

= —g JJU—,'D U= g J.JU,

(C19)

4y JgJUJ JU= —g g J„J.UA„.(o„h„)'U

= —g JeJ—,'D'U= g JJU,

The common fixed point of (C18) and (C15) is clearly
the 3D fixed point unchanged, A 0K *y ' = 1 and
1 —(y ') =0. In the vicinity, to O(5&), (C18) gives

5i —= 1 —yi =(1—y )e
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dgl

dl
——2A Ey= —20 I (C21)

The coelllcient gi can be shown from (C20) to be well

behaved, not changing these conclusions. Near the fixed
point, with relative order corrections -61,

~o&tyt)gt is dropped, so

iltonian term of (Cl) determines the Kt,yt scaling equa-
tions.

Note that in the strongly anisotropic regime
yo & 0.25 the quasi-2D HT excitations, which scale as
(4.13), dominate for scales a (ro. The 3D scaling equa-
tions and renormalization of y&

' cut in only for I ) lo, so
(C20) is replaced, for yo

' (0.5, by

i.e., gt-gc —2l. Thus, since (1 —yt ')-e '~0, the PH,
contribution of (C2) scales to zero, and the J J first Ham-

—1 (1 y
—1)e 0 (C22)
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