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Thermal voltage noise in the mixed state of type-II superconductors has been calculated taking into

account Auctuation modes of nonrigid vortices. It has been shown that bending of vortices leads to new

effects in thermal-voltage-noise spectra at high frequencies. The power spectrum rejecting fluctuations

of rigid vortices is suppressed at very low frequencies and saturates into a white spectrum at a charac-
teristic frequency depending on the strip width. At high frequencies tilt modes of flexible vortices start
to contribute to the fluctuating voltages and the power spectrum undergoes three subsequent magnitude

increases, following co' -, ~ -, and again co' -like behavior before becoming white again. It has been

shown that for layered superconductors of a moderate anisotropy the second ~' -like increase disap-

pears at magnetic fields exceeding a certain threshold field corresponding to the crossover field between
two-dimensional and three-dimensional vortex-lattice melting. Field dependencies of characteristic fre-

quencies separating different regimes of spectral behavior have been evaluated and shown to be qualita-

tively different for low and high magnetic fields.

I. INTRODUCTION

Random motion of Aux vortices in type-II supercon-
ductors leads to fluctuating voltages across the sample. It
was shown by Li and Clem that voltage noise in a super-
conducting slab is determined by the motion of top and
bottom edges of a vortex line, i.e., by the motion of the
points at which the magnetic Aux pierces sample sur-
faces. ' Therefore, in the literature concerned with noise,
vortices are usually regarded as rigid rods and degrees of
freedom corresponding to their tilt are not taken into ac-
count; for a review see Ref. 2. At low frequencies, below
a certain characteristic frequency, such an approximation
is correct. In fact, the energy of a tilted vortex is propor-
tional to the square of the wave vector corresponding to
the tilt displacement. The shortest wave vectors are of
the order of an inverse thickness of the sample. Usually,
noise experiments are performed with samples in the
form of thin strips. The small thickness of such samples
sets the upper frequency limit of the applicability of the
rigid-vortex approximation sufficiently high for a typical
low-frequency noise experiment. Recently Hoc quet,
Mathieu, and Simon have considered tilts of vortex
edges that result from interactions with surface rough-
ness. Nevertheless, the internal part of a vortex line was
still treated as a rigid rod.

The rigid-vortex approach evidently fails at high fre-
quencies. In this paper we demonstrate that by taking
into account all degrees of freedom of vortices, without

accounting for any surface effects, one obtains two addi-
tional, with respect to a rigid-vortex case, subsequent in-
creases of the spectral density of voltage Auctuations.
Spectral-density increases appear above characteristic
frequencies. The first characteristic frequency is associat-
ed with long-wave tilt modes, as compared to the
penetration depth, while the second one rejects the onset
of thermal activation of short-wave tilt modes.

Evidently, flexibility of vortices is most likely to be ob-
served in layered superconductors where topological exci-
tations take the form of pointlike pancakes located in the
layers. Interaction between pancakes results in the
creation of flexible vortex stacks, weakly coupled as corn-
pared to three-dimensional (3D) vortices in continuous
superconductors. Recently, such systems became a sub-
ject of intensive investigations, mostly due to the layered
nature of anisotropic high-T, superconducting oxides.
The dynamics of the pancake lattice was considered by
Bulaevskii et a/. in a paper devoted to NMR in high-T,
superconductors. A characteristic feature of layered su-
perconductors with a moderate anisotropy is the suppres-
sion of Josephson interlayer interactions at strong mag-
netic fields. Consequently, physical properties of these
systems are significantly different at low and strong ap-
plied magnetic fields. Feigelman, Geshkenbein, and Lar-
kin have considered 3D melting of the vortex lattice at
low fields and 2D melting at strong fields. Glazman and
Koshelev pointed out that thermal fluctuations of pan-
cake vortices suppress the superconducting long-range
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order along the c axis. Daemen et al. have demonstrat-
ed the existence of a decoupling phase transition line in
the (H, T) plane above which the superconducting
current along the c axis vanishes.

In this paper we demonstrate that in a layered system
with Josephson coupling between layers there is a cross-
over in the behavior of voltage-noise-power spectra at a
characteristic threshold field. For low magnetic fields we
predict three subsequent increases of voltage-noise spec-
tra, following ~' -, co -, and again co' -like dependen-
cies. We show that the second m' -like increase of
power-spectrum magnitude vanishes at magnetic fields
exceeding the threshold field, which corresponds to the
crossover field between 3D and 2D vortex-lattice melting.
Moreover, we find that field dependencies of characteris-
tic frequencies separating various regimes of spectral
behavior are qualitatively difFerent below and above the
threshold field.

II. BASIC EQUATIONS

A. Vortices in layered superconductors

The criterion usually adopted to define a crossover be-
tween a continuous anisotropic and a discrete layered su-
perconducting system is the smallness of the coherence
length along the direction perpendicular to the layers, g~,
with respect to the separation between the layers, d. The
basis for a phenomenological description of layered su-
perconductor s was formulated by Lawrence and
Doniach. They treated the Gibbs functional in the Lon-
don approximation, assuming that a constant modulus of
order parameter describes a discrete set of superconduct-
ing layers located in the x-y plane, separated by a dis-
tance d along the z direction, and coupled together by a
Josephson coupling term depending only on the phase
difFerence of the order parameter, y„+&—y„, in the lay-
ers

2

G[y„, A]=g f d R ~ V'„ll'y„+ A'„ll' +EJ —cos y„+,—q„+ I dz A,

g2+yd'Z ~
8m

B H 4o 0o
Ep=

(4 A,
(~) (4 A. ) d

(2a)

(2b)

V((
' A~)(„'+ V~ Aj ] 0, (2c)

where symbols Vj and b~ denote the lattice gradient and
the lattice Laplace operator, defined as
V~f„=(f„+, f„)ld, and— —

The first term in the discrete sum describes the energy of
superconducting condensate in the nth layer, V'„~~' and
A'„~~' are two-dimensional vectors, while the second term
in the sum accounts for Josephson coupling between the
nth and (n +1)th layers. We use the symbols

~~
and J. to

denote parallel and perpendicular orientation with
respect to the layer plane. In order to find the distribu-
tion of fields and currents in a layered superconductor,
instead of a single equation appropriate for a continuous
superconductor, one should solve the following set of
London equations:

curl~~VI~ 'Ip„=27re, y 5(r~~
—r„) .

Here, r„are the coordinates of pancakes in the nth layer
and e, is the unit vector in the z direction. The Gibbs
functional (1) is the function of radius vectors r„accord-
ing to Eqs. (2a) —(2c) and (3).

In this paper we consider an ideal superconducting
strip containing an Abrikosov lattice of pancake vortex
chains induced by an external magnetic field applied per-
pendicular to the strip surface and layer plane. The strip
possesses length L in the x direction, width 8' in the y
direction, and thickness D in the z direction, such that
L )&8'&)D. The superconducting layers are lying in
x-y plane and are separated by a distance d. Voltage
measuring leads are attached to the strip at points with
coordinates [0,0] and [L,O]; see Fig. 1. We assume that
the strip is carrying no transport current and that the
temperature is kept constant. Pancake vortices are free
to undergo thermally activated movements out of their

hjf„=(f„+,+f„, 2f„)Id— —

Since in layered superconductors Abrikosov vortices con-
sist of chains of pancakes located in superconducting
planes, therefore the equilibrium distribution of fields and
currents at which the Cxibbs potential (1) reaches the
minimum is given by the solution of the system (2a) —(2c)
completed by the following topological relation:

/yg~D

gW

FIG. 1. The geometry of the problem.
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equilibrium positions. We limit our discussion to low
temperatures, in the sense that we do not allow for the
melting of the vortex lattice. Therefore we assume that
the displacements of pancakes from their equilibrium po-
sitions are small and it is allowed to use a harmonic ap-
proximation for the elastic energy of the vortex system.

Positions of pancakes in the film are described by
three-dimensional vectors r . For a pancake with an
equilibrium position a 0 in the Abrikosov lattice frame
(ALP) we write

r =a 0+u(a O, t),
where u(a o, t) is a 2D vector in the layer plane. The en-
ergy of interaction between pancakes can be written in
the harmonic approximation:

U[u(a~a, t)]=—,
' +8(p, s)u(a o, t)u(a, o, t), (5)

ps

where 8 (p, s } is a 2D elastic matrix depending only on
the vector a=a 0

—a,o, i.e., we have 8(p, s) =8(a). Vor-
tex deviations u(a~o, r) can be expanded in the basis of po-
larization vectors e(q, v) diagonalizing the dynamic ma-
trix B(q).

y=ln
k

Ko=(4mB/ )'~
Ko+ (qik, ll/A, i)

k —1/g (1+T/T ) ', T—max
(4m. ) A, d

(12)

where gll is the coherence length in the layer plane.
Observe that the equation for C44 consists of three

terms. The first term corresponds to a nonlocal contribu-
tion to the tilt energy; the second and third terms are
caused by deformations of separate vortex lines. The
second term, the Josephson coupling term, can be
neglected at strong magnetic fields. However, for the
strongly anisotropic case, A,zd »A,

~~,
it can be neglected

for all magnetic fields. In the following we shall consider
a case of moderate anisotropy g, «d «A, '„/A, „at which
Josephson coupling cannot be a priori neglected.

B. Voltage noise due to vortex motion

Following Li and Clem, ' we write for the voltage pro-
duced by a Aux line moving within a Hat slab of a uniform
thickness

B(q)=+8(a)exp(iqa), (6)
~p&p r)pI r

g(p p } g(pbat Bt
(13)

8(q)a(qv)=D „a(qv),

u(a O, t)=pa(qv)exp(iqa o)Q&
qv

Qz (t) are normal-mode amplitudes, and q and v are the
wave vector and polarization, respectively. Since u(a&0, t)
lies in the layer plane there are two polarizations defined
by the relative orientation of vectors a(q, v) and qll. As
will be shown below, for striplike geometries only modes
with longitudinal polarization are meaningful in calculat-
ing voltages due to vortex motion. Elastic constants asso-
ciated with these modes can be conveniently expressed in
terms of the dispersive elastic moduli

Dz&,
= [C»q

II
+C~q j ], q~ =—sin(q~d /2) .qo

g(p)= [b y(P}—b~bi(p)]
4o

m

(14)

where bmtp and bmbt are the values of magnetic induction
due to the current Bow I in the measuring circuit on the
top and on the bottoxn of a slab, respectively.

The resolution function g(p) for a strip arrangement,
such as that shown in Fig. 1, takes the form '"

where p', and pb, denote 2D coordinates of pancakes be-
longing to ith Aux line in the top and in the bottom layer
of the film, respectively. For a continuous superconduc-
tor p',p and pb, are simply associated with the top and
bottom coordinates of the vortex. The resolution factor
g(p) is determined by the geometry of the measuring cir-
cuit:

0g(p'„.b, )=+ e, .
2c8' (15)

The bulk compressive modulus C» corresponds to longi-
tudinal displacements of vortex lines. For a dense Abri-
kosov lattice, H„«H «H, 2 and A,

~~

&&A,j, C» is given
by the well-known equation ' '

B [1 +Xi( q+llq i)]
47r[1+All(qll +q J)][1+AJqll +Allq J]

For the tilt modulus C44 we adapt the form given by '
B' 1 40B&
4~ 1+q A, +q A, 2(4m&j)

+ ln( 1+q j /Ko ),z

2q j (4n.)l.
ll

)

(16)

where the integral (16) is taken over the entire specimen,
and

J(p, t}=J~(p, t)+ JI„(p,t),
J,~;bt(p, t) =g v',

~ &, (t)52[P Pg, b, (t)]. , — .
1

Ptp bt
tp 'btt dt

Assuming that the difference p', —
pb, is much smaller

than the characteristic length at which the resolution
function g(p) changes, i.e., much smaller than the strip
width W, we have simply g(p', ) = g(p'b, ) =g(p, ). N—ow,
we can express the total voltage due to vortex movement
in terms of vortex current density J(p, t):

&(r) = f d'p g(p) J(p, r),



THERMAL VOLTAGE NOISE IN LAYERED SUPERCONDUCTORS

% „(r)= (5V(t)5V(t +r) )
= fd'P fd'P'r, g.(p)gp(P )K p(P P

aP
(19)

will be expressed in terms of the vortex-ftow correlation
function

K p(p, p, r)=(5J (p, t)5Jp(p', t+r)), (20)

where a and P are Cartesian coordinates. If the dimen-

The fluctuating component of the voltage (16) can be ex-
pressed in terms of fIuctuations of the vortex current den-
sity 5J(p, t) =J(p, t) —( J(p, t) ), where ( . ) stands for
the time average:

5V(t)= V(t) —( V(t)), = f d'pg(p)5J(p, t) . (18)

Consequently, the voltage autocorrelation function

+vo[5n z(p vo—t, t)+ 5nb, (p vot, t—)], (21)

where no is the equilibrium vortex-line density, 6J and p
are vectors in the laboratory reference frame, and 6v and
6n are measured in the ALF system moving with a veloc-
ity vo. We identity 5v,~ &, as du. ,~ i„/dt an.d 5n,~ b, as.
[ —noVu, „;bt], where du, . &, is the displacement of a
pancake on the top/bottom of the strip. In terms of nor-
mal modes in the ALF,

sions of the measuring circuit are large with respect to
the intervortex spacing the vortex lattice can be treated
as a continuum. Since we have assumed small displace-
ments of vortices from their equilibrium positions, within
the erst-order approximation, the change in the vortex-
Aow density is

5J(p, t)=no[5v~~(p vot—, t)+5vb, (p vot—, t)]

5J(p, t) =nogexp[iqll(p —vot ) ] g cos
qg

dQq
e(qllv) „'—i Oqll'(qllv)Qq. (t)

dt (22)

5V(t)=+5V .(t),
qll

qiD
5V (t) =icos

2
qg

dQ (t)P, +G „Qq (t)
qll

(23)

Putting 5J from Eq. (22) into Eq. (18) we obtain for the
voltage fluctuation

to the commonly used vortex viscosity per unit length g
by a simple relation q=q /d. ' The external force
F,„,(p~, t) is acting in the layer plane, while the vortex-
vortex interaction term is accounted for according to Eq.
(5). Taking the time average of the force balance equa-
tion (29) we obtain for displacements of vortices from
their equilibrium positions

where

Xexp( —i qllvot (24)
du(a o, t) +g G(p, s)u(a, o, t)=5F(a o, ),dt (30)

qv o pg p c qllv exp Eqllp (25)
where 5F=F,„,—( F ) . Expanding Eq. (30) by the nor-
mal displacements, we obtain

and

G, .=-"fd'p g(p)'voexp(tqllp) ['q'~(qllv)] (26)

dQ, (t)
+Dq, Qq„(t) =5F „(t),

dt
(31)

Observe that there are two contributions to the voltage
noise in Eq. (24). The first one is proportional to velocity
fluctuations, i.e., to dQq /dt, while the second term is
proportional to vortex density fluctuations, i.e., to Q
For the considered long strip case, factors I' and 6

qll
can be calculated using Eq. (15):

=15F =—g exp( i qa, o)—s(qv)5F(a, o, t),
S

(32)

and X is the number of pancakes in the sample. The
solution of Eq. (31) is

I' l8lL»n(q, IV/2)
qv

C q
&q:o&.:I.

y W
(27) (33)

2co
Qq

= o (q, co)5Fq (co)exp( idiot), —

Gqv =q.voPq (28) cr (q, co)= [Dq icosi ]— (34)

dr = —g D(p, s)u(s, t)+F,„,(r, t),dt (29)

where qz is the viscosity of a single pancake, connected

where 5, .b is the Kronecker symbol.
The phenomenological equation of a force balance for

the moving pth pancake is

The knowledge of the fluctuating component of the
external force, 5F, enables us to calculate Qq, dQ /dt,
and thus the resulting noise voltage. In the considered
case, the Abrikosov lattice is stationary and Uo=0. The
driving force for vortices is the Langevin force which it is
uncorrelated in direction, space, and time, and has a zero
time average:
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(F (a O, t )F .(a,o, t') ) = Tri o .5,5(t —r'),
(V(t) ) =0,

terms with qi=O prevail and Eq. (38) yields for the power
spectrum

where T stands for the temperature measured in energy
units. The voltage autocorrelation function is then

2

C „qll+ g, co
(40)

d q(, (t) d q„(t+r)

By using Eqs. (33) and (35) this can be shown to be
r

T7l q~D
%'„(~)= glP~ l icos

gll

8Q7f co exp( i co~—)
D2 +~2 2

(37)

Passing from summation to integration in Eq. (40) we find
that for extremely small frequencies, much smaller than
the characteristic frequency co~ which depends on the
strip width,

COp—
2

4m7t 8' (41)

P()BLT
S,(~)=

2~c 8'r]D
CO ((Ct) pr (42)

the power spectrum is increasing with increasing frequen-
cy as

The power spectrum follows directly as

TYl qiD
S,(co)= glP l icos

~ll

~ll
q&

67

Dqlg + x/pQ)

In the range co~(&co&&co~ one immediately gets the
white spectrum of magnitude

0o LTd sill X 00S,(co)=S„= dx = . (43)U& ~c RgD o

Since the factor P is proportional to the Kronecker
symbol 5 .o one can replace summation over qll by sum-

mation over qlly For simplicity of notation the index y in

qll will be omitted in the rest of the paper.

III. SPECTRAL DENSITY OF VOLTAGE NOISE

The fluctuating behavior of a layered superconductor
depends on the frequency range and on the applied mag-
netic field. For suSciently low frequencies, even in lay-
ered systems, chains of pancake vortices form stacks that
tge behave like rigid-vortex lines. Above the crossover,
frequency tilt modes can be excited and fluctuations cor-
responding to bending of vortices dominate the spectral
properties of the resulting voltage noise. The qualitative
behavior of fluctuating tilted pancake stacks depends on
the applied magnetic field. At low fields the Josephson
coupling between the layers plays a significant role and
the system behaves as a 3D one. At high magnetic fields,
above the crossover field, the layered superconductor
behaves as a 2D system.

A. Transition between rigid and Aexible behavior of
Suctuating pancake strings

At low frequencies, below the characteristic crossover
frequency determined by the strip thickness, the behavior
of strings of pancakes is identical to that of rigid vortices.
The minimal nonzero values of q~ are of the order of
1/D ))1/W; therefore, since C» ~ C44 for all qiAO, we
have C I $ q ll

((C44g J ~ Consequently, at frequencies much
smaller than the characteristic frequency

Qualitatively, this picture corresponds to the thermal-
noise spectra considered by Li and Clem for an infinite
film containing rigid vortices. However, the functional
dependence obtained by Li and Clem at low frequencies
differs from the one predicted by Eq. (42). The V co func-
tional dependence was recently obtained by us for rigid
vortices in the strip geometry. '

For frequencies larger than the crossover frequency co&
all terms in the summation over qi in Eq. (38) are
significant and the first term in the expression for the
elastic constants, Eq. (9), is negligible. Spectrum (38) be-
comes determined by the properties of the elastic
modulus C44. As was mentioned above, the main contri-
bution to voltage fluctuations is given by long-wave fluc-
tuations in the layer planes, i.e., by the fluctuations that
are changing at distances of the order of the characteris-
tic size of the measuring circuit. In our case such a
characteristic length is set by the width of the strip 8'.
Formally, it means that due to the fact that the factor
lP l

is proportional to the function

(q„W) 2sin~(q W/2) [see Eq. (27)] the dominating con-
tribution in the sum over

q~~
in Eq. (38) is given by terms

with qll~ 8' '. It follows from the natural condition
k~ && 8'that in our problem we are entitled to neglect the
elastic moduli dependence on qll and thus, consequently,
neglect the third term in Eq. (11).

Since at high frequencies all summation terms in spec-
trum (38) have to be taken into account, we pass to the
integration over qz, replace the quickly oscillating factor
cos (qiD/2) by its average value 0.5, and obtain for the
power spectrum at frequencies above the crossover ~z

QOBLTri~d co dq~S,(co)=
8vrc 8' ~&~ [(Pod/B)C44] qi+rI co

COg)—
4mqD

(39)
(44)
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The integral (44) cannot be calculated analytically in the
general case. However, one can obtain analytical asymp-
totical solutions for different limiting frequency ranges.
Before proceeding in this direction, let us observe that
strong dependence of the tilt modulus C44 on magnetic
field results in strong dependence of the power spectra on
magnetic field. Careful examination of Eq. (11) leads to
the conclusion that there exists a threshold magnetic field

B,h above which for all qi the first term in Eq. (11) be-
comes significantly larger than the second one. The
threshold field determined from this condition is of the
order of

(4m', ) d
(45)

Note that the threshold field thus determined corre-
sponds to the well-known crossover field between 2D and
3D vortex-lattice melting.

B. Fluctuations of flexible pancake strings:
Low magnetic fields

At low applied magnetic fields the magnetic interaction
between pancakes in the same layer is comparable to the
Josephson interaction between pancakes in the adjacent
layers. Therefore long-wave fluctuations are determined
by the magnetic nonlocal term of the tilt elastic modulus,
while the Josephson term corresponds to short-wave Auc-
tuations. Spectrum (44) possesses several intrinsic
characteristic frequencies. The highest one corresponds
to the frequency at which modes with wave vectors
qi- 1/d are excited:

16K, d q
(46)

S„(co)=
POBTL p p3

16' 2)k.
ii

P cos(y/2)

p (co/co )'/

1/2a cos(cp/2 —m/4)
1/4

CO

CO +CO

(47)

y=arcsin
2

COg

CO +COA,

1/2 2aoXa=
4~A, ~

where the new characteristic frequency is defined as fol-
lows:

Thus for frequencies from the range coD «co«md the
dominating contribution to the spectrum (42) is provided
by small wave vectors qi«1/d. Within this frequency
range we are entitled to replace qz by q~ and to extend
the integration limits to +ao. The logarithmic depen-
dence of quantity y on qi in Eq. (12) is very slow. We
neglect the logarithmic dependence and put qi-ao/kiA, ~~.

As a result, in the first order of the small quantity
(ao/Ai), where ao =(Po/B)'/, we obtain

COg—
4 qA,

~~

(48)

For frequencies from the range mD «~ «co& the power
spectrum is given by

JOB TL
S, (co) =

88'c gA.

1/2 2

(49)

There are two frequency-dependent terms in Eq. (49).
The contribution of both terms becomes equal at frequen-
cies of the order of

y4/3
B2/3

(4 )4/3g2) 2/3 (50)

and the functional dependence of the spectrum changes
from co' to co . In the lower frequency subrange,
boa « co « co„ the power spectrum is dominated by
long-wave tilt modes with qi&(4m. 2)colpoB)' «1/A, 1.

The elastic energy corresponding to such displacements is
proportional to the dispersionless nonlocal modulus

C4 =B /4m. Within the upper frequency subrange with
co dependence, co, & co & co2, modes with qi & A, i/aors,

~~

provide the dominating contribution to the thermal
noise.

At very high frequencies, ~&&&co&&cod, tilt modes
with wave vectors qi & (2m 2)co/apoB )'/ are engaged in

voltage-noise generation and the power-spectrum shape is
determined by the short-wave Josephson part of the tilt
modulus. Thus for very high frequencies we have

(y~)1/2TL
S, (co) = (2vra)/a )'/

88c2ql/2
(51)

At ultrahigh frequencies, above the highest characteristic
frequency cod, one can write 2) co »(pod /B)C44q i for all

q~ and the resulting power spectrum becomes white
again:

POBL T
S, (co) =S„2=

4c 8'gd
(52)

Let us observe that the magnitude of white spectral
density at ultrahigh frequencies, co »cod, is D/2d times
larger than the white spectrum density at low frequen-
cies, co «coD, see Eq. (42). The value of the ratio D/d is
set by the number of layers Xl in the strip or, in other
words, by the number of pancakes in a single vortex
stack. This result is physically transparent. Indeed, at
low frequencies only one degree of freedom per one Aux

line contributes to the thermally activated noise power
spectrum, whereas, at high frequencies, all degrees of
freedom are engaged in the voltage-noise generation caus-
ing a significant, approximately Nl times increase in the
power-spectrum magnitude.

At strong magnetic fields exceeding the crossover
threshold field only magnetic interaction between the lay-

C. Fluctuations of flexible pancake strings: High magnetic fields
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ers is significant, i.e., the first term in Eq. (11) prevails at
all qi. In order to calculate spectrum (44) we divide the
integration range (O, n/d. ) into two subintervals; from 0
to I/A,

~~

and from I/A,
~~

to m'/d. The kernel in the latter
interval can be approximated by a constant. We have
used for the constant (itiod/B)C44qi=21~coi, and ob-
tained

2

f m. /d co dqg '7l Q)

'
~~~ [(pod/B)C44] q i+2) io d2) Io +coi

(53)

/~ll co dqy

o [(pod/B)C44] qi+7) co

The value of the integral calculated in the limits
(0, 1/A,

~~)
is small in comparison with Eq. (53) for all fre-

quencies lying above the characteristic frequency co&. On
the other hand, for the low-frequency range,
co~ &&co &&~&, this subintegral can be calculated as fol-
lows:

D. Fluctuations of Sexible pancakes strings
in layered high-T, superconductors

In high-temperature superconducting (HTSC) materi-
als the role of superconducting layers is played by Cu02
layers. In real compounds with a pronounced layered
quality, such as, e.g. , (2212) Bi-Sr-Ca-Cu-O, there is more
than one layer per unit cell. The coupling between intra-
unit cell layers is much stronger than the interunit cell
coupling. Therefore we consider the real layered HTSC
material as being composed of layers of strongly coupled
intracell sublayers. Consequently, a flexible vortex stack
consists of Josephson-coupled flexible pieces of 3D vor-
tices located within the intracell layers. Tilt-mode excita-
tions of these pieces contribute to the power spectra of
voltage noise at very high frequencies. In the following
we consider the power spectrum due to tilt fluctuations of
flexible vortex segments in intracell layers. In principle,
one should calculate first the elastic modulus of the entire
vortex system including intracell-vortex short-wave

N dqg 3/2 1/2

0 (p+d /4~)2q4+ 212~2 (2y~)1/2+3/2d 2

(54)

Thus we can write for the power spectrum for frequencies
co »co&

$0BLT
S„(io)=

4qc 8'

' 1/2
co /d

N +COg
(55)

(56)

Clearly, as in the previously discussed case, there is a
change of the spectrum functional dependence at a fre-
quency of the order of
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Note that the characteristic frequency at which the ex-
ponent of the power spectrum changes from —,

' to 2 is
difFerent from that determined for low magnetic fields;
see Eq. (50). In particular, the magnetic field dependence
of the characteristic frequency is stronger at fields above
the crossover field.

Since the Josephson coupling term is negligible at
strong magnetic fields above the crossover, there is no
subsequent co' -like magnitude increase and the voltage-
fluctuation spectrum becomes white already at cu-co&. In
Fig. 2 we schematically summarize the discussed
behavior of thermal-voltage power spectra for magnetic
fields below and above the crossover field.

The results presented above are valid for systems with
moderate anisotropy, k~d &&A,

2II
~ For strongly anisotropic

systems, where A,~d &&A, ll, the situation is much simpler
and the power spectrum due to fluctuations of flexible
vortices at frequencies Io »cocci is given by Eq. (51) for all
magnetic fields.
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FIG. 2. Schematic behavior of thermal-voltage-noise power
spectrum: (a) low magnetic fields 8 &B,h and (b) strong magnet-
ic fields B)S,h.



THERMAL VOLTAGE NOISE IN LAYERED SUPERCONDUCTORS

modes. However, as will be shown below, the charac-
teristic frequencies of onset of these modes are well above
all remaining frequencies of the problem. Therefore we
are allowed to treat these Auctuations as independent ad-
ditive contributions to the power spectrum. Employing
the general Eq. (38) which is valid for continuous vortices
we obtain for the power spectrum of the discussed intra-
cell contributions

QOBLTg i c, ~~d qi
S,(~)=

8n.c W '~ i [($0/B)cd] qi+g ~

where the modulus

$0B in~
22+4m(1+A q ) 4~A

(57)

(58)

d& is the distance between intracell superconducting lay-
ers, A is the London penetration length in these layers,
q=(qi, q~~), and a=A/g. In this approach which ac-
counts for the internal structure of unit cells, the previ-
ously introduced quantity d denotes now the separation
between the cells. The evident condition B «Po/d, en-
ables us to neglect the first term in Eq. (58). As a result,
integral (57) gets an extremely simple form which can be
easily evaluated in different frequency ranges:

(1) co &(co,
&
«co,2.

POBLT
S„(~)=

8m.c g8'd,

2

where

Joins. goin~
cu, &= and co,2=

4mqA d f 4nqA gi

(2) co, i (&co « co,2.

QOBL T
S„(co)=

32c gad&

' 1/2

(60)

(3) co~2 ((co.
QOBL T

S„(co)=S„3=
8mc gWgi

(61)

IV. CONCLUSIONS

It should be noted here that the spectral density of the in-
tracell vortex fluctuations leads to the same functional
behavior of the power spectrum as those due to lower-
frequency modes. We conclude that intracell vortices
cause the appearance of an additional spectrum increase
at ultrahigh frequencies co )&su„&&cod. The magnitude
of the very high frequency plateau S,3 exceeds drastically
the magnitude of plateaus resulting from saturation of
lower-frequency modes. Indeed, the ratio S,3/S, 2 scales
as d /g'i ))1.

power spectra at high frequencies above the characteris-
tic frequency set by the strip thickness. Below this fre-
quency, excitation of rigid-vortex long-wave modes
causes initial increase of the power spectrum and its satu-
ration at a characteristic frequency depending on the di-
mensions of the voltage measuring circuit. This regime
of thermal Auctuations has been already discussed by Li
and Clem. '

The flexibility of vortices causes additional increases of
the power spectra at frequencies corresponding to the on-
sets of tilt modes. The tilt Auctuation modes should be
most pronounced in layered superconducting systems
with a moderate anisotropy where vortices consist of
loosely coupled pancake stacks. For such systems, at low
magnetic fields, we predict three subsequent increases of
thermal-voltage-power spectra. The increases follow

1/2, M2, and again ~1/2 behavior. The first high-
frequency co' -like region corresponds to the long-wave
tilt-mode fluctuations. %'ith increasing frequency, tilt
modes with shorter wavelengths start to contribute to the
voltage noise and the spectrum functional dependence
changes into m -like behavior, at frequencies above the
magnetic-field-dependent characteristic frequency. The
highest-frequency increase in voltage power spectra is as-
sociated with excitations of short-wave tilt modes con-
trolled by the Josephson coupling energy between the lay-
ers. Finally, when all degrees of freedom of the vortex
system become thermoactivated the power spectrum be-
comes white again. The high-frequency white noise mag-
nitude is D/2d times higher than the white spectrum lev-
el in the Li and Clem regime of thermal Auctuations of
rigid vortices.

The overall picture is magnetic field dependent. There
is a characteristic threshold field B,„, corresponding to
the well-known 2D/3D lattice melting crossover field [5],
at which the pronounced change in spectral behavior
takes place. At magnetic fields above the crossover field

the functional dependence of the characteristic frequency
separating long-wave and short-wave tilt modes, i.e., the
first co' -like and subsequent co regions, changes from
co, -B ~ into a stronger co, -B dependence; see Eqs. (50)
and (56). Moreover, the second co'~ -like magnitude in-

crease vanishes and the power spectrum saturates after
the co region. These features are due to the smallness of
the Josephson coupling with respect to magnetic interac-
tions between vortices at high magnetic fields.

The voltage-noise power spectrum of a continuous an-

isotropic superconductor containing flexible vortices can
be derived straightforwardly from the equations obtained
in Secs. III B and III C for layered superconductors with

moderate anisotropy by substituting the interlayer spac-
ing d with coherence length gi. The results will be valid

at all magnetic fields B,&
«B «B,z. Observe that in the

continuous superconductor case the threshold field given

by Eq. (45) is

In conclusion, we have shown that allowing for Aexibil-
ity of vortex strings, i.e., taking into account the excita-
tion of tilt modes of vortices, leads to qualitatively new
effects that manifest themselves in thermal-voltage-noise

(62)

and corresponds directly to the second critical field, as
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follows from the definitions of coherence length and
penetration depth. Therefore the predicted crossover in
spectral behavior at the crossover magnetic field turns
out to exist exclusively in layered superconductors.

In high-T, materials with pronounced layered charac-
ter we predict an additional increase in power spectra at
ultrahigh frequencies due to intracell fluctuations of vor-
tices. However, experimental observations of the predict-
ed effects of vortex flexibility in, e.g., Tl-based com-
pounds, would require use of microwave techniques. The
characteristic lengths of these superconductors are of the
order A, =2X10 cm, d=2X10 cm, A.i/A, i=30,
pi=10 cm, and d, =5X10 cm. ' According to
NMR data on relaxation rates in T12BazCu06, the vortex
viscosity per unit length is of the range g = 10 —10
g/cm s. The crossover field for Tl-based compounds was
estimated to be B,h —1 T. For a strip with sizes L =1
cm, 5'=10 cm, and D=10 cm we obtain, in the

Geld range from 0.1 up to 10 T, the following values for
the characteristic frequencies: rou. /2'-B(10 —10 ) Hz,
coD/2rr —8(10 —10 ) Hz, co /2n —8 (10 —10 ) Hz,
for 8 &B,h, and co, /2m -B(10"—10' ) Hz for
8 &B,h, coi/2rr —B(10' —10") Hz, cod/2m —(10' —10")
Hz, co, i/2n -(10' —10' ) Hz, and co,z/2m -(10' —10' )
Hz where B is measured in T. The magnitudes of the
spectral density of thermal voltages, for T-30 K and
B—10 T, at high- and very-high-frequency plateaus, are
of the order S„z-10 ' —10 ' V /Hz and
S„3-10 ' —10 ' V /Hz, respectively.
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